1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/swap_state.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 * 8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 9 */ 10 #include <linux/mm.h> 11 #include <linux/gfp.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/mempolicy.h> 14 #include <linux/swap.h> 15 #include <linux/swapops.h> 16 #include <linux/init.h> 17 #include <linux/pagemap.h> 18 #include <linux/pagevec.h> 19 #include <linux/backing-dev.h> 20 #include <linux/blkdev.h> 21 #include <linux/migrate.h> 22 #include <linux/vmalloc.h> 23 #include <linux/huge_mm.h> 24 #include <linux/shmem_fs.h> 25 #include "internal.h" 26 #include "swap.h" 27 28 /* 29 * swapper_space is a fiction, retained to simplify the path through 30 * vmscan's shrink_folio_list. 31 */ 32 static const struct address_space_operations swap_aops = { 33 .writepage = swap_writepage, 34 .dirty_folio = noop_dirty_folio, 35 #ifdef CONFIG_MIGRATION 36 .migrate_folio = migrate_folio, 37 #endif 38 }; 39 40 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly; 41 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly; 42 static bool enable_vma_readahead __read_mostly = true; 43 44 #define SWAP_RA_ORDER_CEILING 5 45 46 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2) 47 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1) 48 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK 49 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK) 50 51 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK) 52 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT) 53 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK) 54 55 #define SWAP_RA_VAL(addr, win, hits) \ 56 (((addr) & PAGE_MASK) | \ 57 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \ 58 ((hits) & SWAP_RA_HITS_MASK)) 59 60 /* Initial readahead hits is 4 to start up with a small window */ 61 #define GET_SWAP_RA_VAL(vma) \ 62 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4) 63 64 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); 65 66 void show_swap_cache_info(void) 67 { 68 printk("%lu pages in swap cache\n", total_swapcache_pages()); 69 printk("Free swap = %ldkB\n", K(get_nr_swap_pages())); 70 printk("Total swap = %lukB\n", K(total_swap_pages)); 71 } 72 73 void *get_shadow_from_swap_cache(swp_entry_t entry) 74 { 75 struct address_space *address_space = swap_address_space(entry); 76 pgoff_t idx = swap_cache_index(entry); 77 void *shadow; 78 79 shadow = xa_load(&address_space->i_pages, idx); 80 if (xa_is_value(shadow)) 81 return shadow; 82 return NULL; 83 } 84 85 /* 86 * add_to_swap_cache resembles filemap_add_folio on swapper_space, 87 * but sets SwapCache flag and 'swap' instead of mapping and index. 88 */ 89 int add_to_swap_cache(struct folio *folio, swp_entry_t entry, 90 gfp_t gfp, void **shadowp) 91 { 92 struct address_space *address_space = swap_address_space(entry); 93 pgoff_t idx = swap_cache_index(entry); 94 XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio)); 95 unsigned long i, nr = folio_nr_pages(folio); 96 void *old; 97 98 xas_set_update(&xas, workingset_update_node); 99 100 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 101 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 102 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 103 104 folio_ref_add(folio, nr); 105 folio_set_swapcache(folio); 106 folio->swap = entry; 107 108 do { 109 xas_lock_irq(&xas); 110 xas_create_range(&xas); 111 if (xas_error(&xas)) 112 goto unlock; 113 for (i = 0; i < nr; i++) { 114 VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio); 115 if (shadowp) { 116 old = xas_load(&xas); 117 if (xa_is_value(old)) 118 *shadowp = old; 119 } 120 xas_store(&xas, folio); 121 xas_next(&xas); 122 } 123 address_space->nrpages += nr; 124 __node_stat_mod_folio(folio, NR_FILE_PAGES, nr); 125 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr); 126 unlock: 127 xas_unlock_irq(&xas); 128 } while (xas_nomem(&xas, gfp)); 129 130 if (!xas_error(&xas)) 131 return 0; 132 133 folio_clear_swapcache(folio); 134 folio_ref_sub(folio, nr); 135 return xas_error(&xas); 136 } 137 138 /* 139 * This must be called only on folios that have 140 * been verified to be in the swap cache. 141 */ 142 void __delete_from_swap_cache(struct folio *folio, 143 swp_entry_t entry, void *shadow) 144 { 145 struct address_space *address_space = swap_address_space(entry); 146 int i; 147 long nr = folio_nr_pages(folio); 148 pgoff_t idx = swap_cache_index(entry); 149 XA_STATE(xas, &address_space->i_pages, idx); 150 151 xas_set_update(&xas, workingset_update_node); 152 153 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 154 VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio); 155 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 156 157 for (i = 0; i < nr; i++) { 158 void *entry = xas_store(&xas, shadow); 159 VM_BUG_ON_PAGE(entry != folio, entry); 160 xas_next(&xas); 161 } 162 folio->swap.val = 0; 163 folio_clear_swapcache(folio); 164 address_space->nrpages -= nr; 165 __node_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 166 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr); 167 } 168 169 /* 170 * This must be called only on folios that have 171 * been verified to be in the swap cache and locked. 172 * It will never put the folio into the free list, 173 * the caller has a reference on the folio. 174 */ 175 void delete_from_swap_cache(struct folio *folio) 176 { 177 swp_entry_t entry = folio->swap; 178 struct address_space *address_space = swap_address_space(entry); 179 180 xa_lock_irq(&address_space->i_pages); 181 __delete_from_swap_cache(folio, entry, NULL); 182 xa_unlock_irq(&address_space->i_pages); 183 184 put_swap_folio(folio, entry); 185 folio_ref_sub(folio, folio_nr_pages(folio)); 186 } 187 188 void clear_shadow_from_swap_cache(int type, unsigned long begin, 189 unsigned long end) 190 { 191 unsigned long curr = begin; 192 void *old; 193 194 for (;;) { 195 swp_entry_t entry = swp_entry(type, curr); 196 unsigned long index = curr & SWAP_ADDRESS_SPACE_MASK; 197 struct address_space *address_space = swap_address_space(entry); 198 XA_STATE(xas, &address_space->i_pages, index); 199 200 xas_set_update(&xas, workingset_update_node); 201 202 xa_lock_irq(&address_space->i_pages); 203 xas_for_each(&xas, old, min(index + (end - curr), SWAP_ADDRESS_SPACE_PAGES)) { 204 if (!xa_is_value(old)) 205 continue; 206 xas_store(&xas, NULL); 207 } 208 xa_unlock_irq(&address_space->i_pages); 209 210 /* search the next swapcache until we meet end */ 211 curr = ALIGN((curr + 1), SWAP_ADDRESS_SPACE_PAGES); 212 if (curr > end) 213 break; 214 } 215 } 216 217 /* 218 * If we are the only user, then try to free up the swap cache. 219 * 220 * Its ok to check the swapcache flag without the folio lock 221 * here because we are going to recheck again inside 222 * folio_free_swap() _with_ the lock. 223 * - Marcelo 224 */ 225 void free_swap_cache(struct folio *folio) 226 { 227 if (folio_test_swapcache(folio) && !folio_mapped(folio) && 228 folio_trylock(folio)) { 229 folio_free_swap(folio); 230 folio_unlock(folio); 231 } 232 } 233 234 /* 235 * Perform a free_page(), also freeing any swap cache associated with 236 * this page if it is the last user of the page. 237 */ 238 void free_page_and_swap_cache(struct page *page) 239 { 240 struct folio *folio = page_folio(page); 241 242 free_swap_cache(folio); 243 if (!is_huge_zero_folio(folio)) 244 folio_put(folio); 245 } 246 247 /* 248 * Passed an array of pages, drop them all from swapcache and then release 249 * them. They are removed from the LRU and freed if this is their last use. 250 */ 251 void free_pages_and_swap_cache(struct encoded_page **pages, int nr) 252 { 253 struct folio_batch folios; 254 unsigned int refs[PAGEVEC_SIZE]; 255 256 folio_batch_init(&folios); 257 for (int i = 0; i < nr; i++) { 258 struct folio *folio = page_folio(encoded_page_ptr(pages[i])); 259 260 free_swap_cache(folio); 261 refs[folios.nr] = 1; 262 if (unlikely(encoded_page_flags(pages[i]) & 263 ENCODED_PAGE_BIT_NR_PAGES_NEXT)) 264 refs[folios.nr] = encoded_nr_pages(pages[++i]); 265 266 if (folio_batch_add(&folios, folio) == 0) 267 folios_put_refs(&folios, refs); 268 } 269 if (folios.nr) 270 folios_put_refs(&folios, refs); 271 } 272 273 static inline bool swap_use_vma_readahead(void) 274 { 275 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap); 276 } 277 278 /* 279 * Lookup a swap entry in the swap cache. A found folio will be returned 280 * unlocked and with its refcount incremented - we rely on the kernel 281 * lock getting page table operations atomic even if we drop the folio 282 * lock before returning. 283 * 284 * Caller must lock the swap device or hold a reference to keep it valid. 285 */ 286 struct folio *swap_cache_get_folio(swp_entry_t entry, 287 struct vm_area_struct *vma, unsigned long addr) 288 { 289 struct folio *folio; 290 291 folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry)); 292 if (!IS_ERR(folio)) { 293 bool vma_ra = swap_use_vma_readahead(); 294 bool readahead; 295 296 /* 297 * At the moment, we don't support PG_readahead for anon THP 298 * so let's bail out rather than confusing the readahead stat. 299 */ 300 if (unlikely(folio_test_large(folio))) 301 return folio; 302 303 readahead = folio_test_clear_readahead(folio); 304 if (vma && vma_ra) { 305 unsigned long ra_val; 306 int win, hits; 307 308 ra_val = GET_SWAP_RA_VAL(vma); 309 win = SWAP_RA_WIN(ra_val); 310 hits = SWAP_RA_HITS(ra_val); 311 if (readahead) 312 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX); 313 atomic_long_set(&vma->swap_readahead_info, 314 SWAP_RA_VAL(addr, win, hits)); 315 } 316 317 if (readahead) { 318 count_vm_event(SWAP_RA_HIT); 319 if (!vma || !vma_ra) 320 atomic_inc(&swapin_readahead_hits); 321 } 322 } else { 323 folio = NULL; 324 } 325 326 return folio; 327 } 328 329 /** 330 * filemap_get_incore_folio - Find and get a folio from the page or swap caches. 331 * @mapping: The address_space to search. 332 * @index: The page cache index. 333 * 334 * This differs from filemap_get_folio() in that it will also look for the 335 * folio in the swap cache. 336 * 337 * Return: The found folio or %NULL. 338 */ 339 struct folio *filemap_get_incore_folio(struct address_space *mapping, 340 pgoff_t index) 341 { 342 swp_entry_t swp; 343 struct swap_info_struct *si; 344 struct folio *folio = filemap_get_entry(mapping, index); 345 346 if (!folio) 347 return ERR_PTR(-ENOENT); 348 if (!xa_is_value(folio)) 349 return folio; 350 if (!shmem_mapping(mapping)) 351 return ERR_PTR(-ENOENT); 352 353 swp = radix_to_swp_entry(folio); 354 /* There might be swapin error entries in shmem mapping. */ 355 if (non_swap_entry(swp)) 356 return ERR_PTR(-ENOENT); 357 /* Prevent swapoff from happening to us */ 358 si = get_swap_device(swp); 359 if (!si) 360 return ERR_PTR(-ENOENT); 361 index = swap_cache_index(swp); 362 folio = filemap_get_folio(swap_address_space(swp), index); 363 put_swap_device(si); 364 return folio; 365 } 366 367 struct folio *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 368 struct mempolicy *mpol, pgoff_t ilx, bool *new_page_allocated, 369 bool skip_if_exists) 370 { 371 struct swap_info_struct *si = swp_swap_info(entry); 372 struct folio *folio; 373 struct folio *new_folio = NULL; 374 struct folio *result = NULL; 375 void *shadow = NULL; 376 377 *new_page_allocated = false; 378 for (;;) { 379 int err; 380 /* 381 * First check the swap cache. Since this is normally 382 * called after swap_cache_get_folio() failed, re-calling 383 * that would confuse statistics. 384 */ 385 folio = filemap_get_folio(swap_address_space(entry), 386 swap_cache_index(entry)); 387 if (!IS_ERR(folio)) 388 goto got_folio; 389 390 /* 391 * Just skip read ahead for unused swap slot. 392 */ 393 if (!swap_entry_swapped(si, entry)) 394 goto put_and_return; 395 396 /* 397 * Get a new folio to read into from swap. Allocate it now if 398 * new_folio not exist, before marking swap_map SWAP_HAS_CACHE, 399 * when -EEXIST will cause any racers to loop around until we 400 * add it to cache. 401 */ 402 if (!new_folio) { 403 new_folio = folio_alloc_mpol(gfp_mask, 0, mpol, ilx, numa_node_id()); 404 if (!new_folio) 405 goto put_and_return; 406 } 407 408 /* 409 * Swap entry may have been freed since our caller observed it. 410 */ 411 err = swapcache_prepare(entry, 1); 412 if (!err) 413 break; 414 else if (err != -EEXIST) 415 goto put_and_return; 416 417 /* 418 * Protect against a recursive call to __read_swap_cache_async() 419 * on the same entry waiting forever here because SWAP_HAS_CACHE 420 * is set but the folio is not the swap cache yet. This can 421 * happen today if mem_cgroup_swapin_charge_folio() below 422 * triggers reclaim through zswap, which may call 423 * __read_swap_cache_async() in the writeback path. 424 */ 425 if (skip_if_exists) 426 goto put_and_return; 427 428 /* 429 * We might race against __delete_from_swap_cache(), and 430 * stumble across a swap_map entry whose SWAP_HAS_CACHE 431 * has not yet been cleared. Or race against another 432 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE 433 * in swap_map, but not yet added its folio to swap cache. 434 */ 435 schedule_timeout_uninterruptible(1); 436 } 437 438 /* 439 * The swap entry is ours to swap in. Prepare the new folio. 440 */ 441 __folio_set_locked(new_folio); 442 __folio_set_swapbacked(new_folio); 443 444 if (mem_cgroup_swapin_charge_folio(new_folio, NULL, gfp_mask, entry)) 445 goto fail_unlock; 446 447 /* May fail (-ENOMEM) if XArray node allocation failed. */ 448 if (add_to_swap_cache(new_folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow)) 449 goto fail_unlock; 450 451 memcg1_swapin(entry, 1); 452 453 if (shadow) 454 workingset_refault(new_folio, shadow); 455 456 /* Caller will initiate read into locked new_folio */ 457 folio_add_lru(new_folio); 458 *new_page_allocated = true; 459 folio = new_folio; 460 got_folio: 461 result = folio; 462 goto put_and_return; 463 464 fail_unlock: 465 put_swap_folio(new_folio, entry); 466 folio_unlock(new_folio); 467 put_and_return: 468 if (!(*new_page_allocated) && new_folio) 469 folio_put(new_folio); 470 return result; 471 } 472 473 /* 474 * Locate a page of swap in physical memory, reserving swap cache space 475 * and reading the disk if it is not already cached. 476 * A failure return means that either the page allocation failed or that 477 * the swap entry is no longer in use. 478 * 479 * get/put_swap_device() aren't needed to call this function, because 480 * __read_swap_cache_async() call them and swap_read_folio() holds the 481 * swap cache folio lock. 482 */ 483 struct folio *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 484 struct vm_area_struct *vma, unsigned long addr, 485 struct swap_iocb **plug) 486 { 487 struct swap_info_struct *si; 488 bool page_allocated; 489 struct mempolicy *mpol; 490 pgoff_t ilx; 491 struct folio *folio; 492 493 si = get_swap_device(entry); 494 if (!si) 495 return NULL; 496 497 mpol = get_vma_policy(vma, addr, 0, &ilx); 498 folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx, 499 &page_allocated, false); 500 mpol_cond_put(mpol); 501 502 if (page_allocated) 503 swap_read_folio(folio, plug); 504 505 put_swap_device(si); 506 return folio; 507 } 508 509 static unsigned int __swapin_nr_pages(unsigned long prev_offset, 510 unsigned long offset, 511 int hits, 512 int max_pages, 513 int prev_win) 514 { 515 unsigned int pages, last_ra; 516 517 /* 518 * This heuristic has been found to work well on both sequential and 519 * random loads, swapping to hard disk or to SSD: please don't ask 520 * what the "+ 2" means, it just happens to work well, that's all. 521 */ 522 pages = hits + 2; 523 if (pages == 2) { 524 /* 525 * We can have no readahead hits to judge by: but must not get 526 * stuck here forever, so check for an adjacent offset instead 527 * (and don't even bother to check whether swap type is same). 528 */ 529 if (offset != prev_offset + 1 && offset != prev_offset - 1) 530 pages = 1; 531 } else { 532 unsigned int roundup = 4; 533 while (roundup < pages) 534 roundup <<= 1; 535 pages = roundup; 536 } 537 538 if (pages > max_pages) 539 pages = max_pages; 540 541 /* Don't shrink readahead too fast */ 542 last_ra = prev_win / 2; 543 if (pages < last_ra) 544 pages = last_ra; 545 546 return pages; 547 } 548 549 static unsigned long swapin_nr_pages(unsigned long offset) 550 { 551 static unsigned long prev_offset; 552 unsigned int hits, pages, max_pages; 553 static atomic_t last_readahead_pages; 554 555 max_pages = 1 << READ_ONCE(page_cluster); 556 if (max_pages <= 1) 557 return 1; 558 559 hits = atomic_xchg(&swapin_readahead_hits, 0); 560 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits, 561 max_pages, 562 atomic_read(&last_readahead_pages)); 563 if (!hits) 564 WRITE_ONCE(prev_offset, offset); 565 atomic_set(&last_readahead_pages, pages); 566 567 return pages; 568 } 569 570 /** 571 * swap_cluster_readahead - swap in pages in hope we need them soon 572 * @entry: swap entry of this memory 573 * @gfp_mask: memory allocation flags 574 * @mpol: NUMA memory allocation policy to be applied 575 * @ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE 576 * 577 * Returns the struct folio for entry and addr, after queueing swapin. 578 * 579 * Primitive swap readahead code. We simply read an aligned block of 580 * (1 << page_cluster) entries in the swap area. This method is chosen 581 * because it doesn't cost us any seek time. We also make sure to queue 582 * the 'original' request together with the readahead ones... 583 * 584 * Note: it is intentional that the same NUMA policy and interleave index 585 * are used for every page of the readahead: neighbouring pages on swap 586 * are fairly likely to have been swapped out from the same node. 587 */ 588 struct folio *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, 589 struct mempolicy *mpol, pgoff_t ilx) 590 { 591 struct folio *folio; 592 unsigned long entry_offset = swp_offset(entry); 593 unsigned long offset = entry_offset; 594 unsigned long start_offset, end_offset; 595 unsigned long mask; 596 struct swap_info_struct *si = swp_swap_info(entry); 597 struct blk_plug plug; 598 struct swap_iocb *splug = NULL; 599 bool page_allocated; 600 601 mask = swapin_nr_pages(offset) - 1; 602 if (!mask) 603 goto skip; 604 605 /* Read a page_cluster sized and aligned cluster around offset. */ 606 start_offset = offset & ~mask; 607 end_offset = offset | mask; 608 if (!start_offset) /* First page is swap header. */ 609 start_offset++; 610 if (end_offset >= si->max) 611 end_offset = si->max - 1; 612 613 blk_start_plug(&plug); 614 for (offset = start_offset; offset <= end_offset ; offset++) { 615 /* Ok, do the async read-ahead now */ 616 folio = __read_swap_cache_async( 617 swp_entry(swp_type(entry), offset), 618 gfp_mask, mpol, ilx, &page_allocated, false); 619 if (!folio) 620 continue; 621 if (page_allocated) { 622 swap_read_folio(folio, &splug); 623 if (offset != entry_offset) { 624 folio_set_readahead(folio); 625 count_vm_event(SWAP_RA); 626 } 627 } 628 folio_put(folio); 629 } 630 blk_finish_plug(&plug); 631 swap_read_unplug(splug); 632 lru_add_drain(); /* Push any new pages onto the LRU now */ 633 skip: 634 /* The page was likely read above, so no need for plugging here */ 635 folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx, 636 &page_allocated, false); 637 if (unlikely(page_allocated)) 638 swap_read_folio(folio, NULL); 639 return folio; 640 } 641 642 int init_swap_address_space(unsigned int type, unsigned long nr_pages) 643 { 644 struct address_space *spaces, *space; 645 unsigned int i, nr; 646 647 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); 648 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL); 649 if (!spaces) 650 return -ENOMEM; 651 for (i = 0; i < nr; i++) { 652 space = spaces + i; 653 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ); 654 atomic_set(&space->i_mmap_writable, 0); 655 space->a_ops = &swap_aops; 656 /* swap cache doesn't use writeback related tags */ 657 mapping_set_no_writeback_tags(space); 658 } 659 nr_swapper_spaces[type] = nr; 660 swapper_spaces[type] = spaces; 661 662 return 0; 663 } 664 665 void exit_swap_address_space(unsigned int type) 666 { 667 int i; 668 struct address_space *spaces = swapper_spaces[type]; 669 670 for (i = 0; i < nr_swapper_spaces[type]; i++) 671 VM_WARN_ON_ONCE(!mapping_empty(&spaces[i])); 672 kvfree(spaces); 673 nr_swapper_spaces[type] = 0; 674 swapper_spaces[type] = NULL; 675 } 676 677 static int swap_vma_ra_win(struct vm_fault *vmf, unsigned long *start, 678 unsigned long *end) 679 { 680 struct vm_area_struct *vma = vmf->vma; 681 unsigned long ra_val; 682 unsigned long faddr, prev_faddr, left, right; 683 unsigned int max_win, hits, prev_win, win; 684 685 max_win = 1 << min(READ_ONCE(page_cluster), SWAP_RA_ORDER_CEILING); 686 if (max_win == 1) 687 return 1; 688 689 faddr = vmf->address; 690 ra_val = GET_SWAP_RA_VAL(vma); 691 prev_faddr = SWAP_RA_ADDR(ra_val); 692 prev_win = SWAP_RA_WIN(ra_val); 693 hits = SWAP_RA_HITS(ra_val); 694 win = __swapin_nr_pages(PFN_DOWN(prev_faddr), PFN_DOWN(faddr), hits, 695 max_win, prev_win); 696 atomic_long_set(&vma->swap_readahead_info, SWAP_RA_VAL(faddr, win, 0)); 697 if (win == 1) 698 return 1; 699 700 if (faddr == prev_faddr + PAGE_SIZE) 701 left = faddr; 702 else if (prev_faddr == faddr + PAGE_SIZE) 703 left = faddr - (win << PAGE_SHIFT) + PAGE_SIZE; 704 else 705 left = faddr - (((win - 1) / 2) << PAGE_SHIFT); 706 right = left + (win << PAGE_SHIFT); 707 if ((long)left < 0) 708 left = 0; 709 *start = max3(left, vma->vm_start, faddr & PMD_MASK); 710 *end = min3(right, vma->vm_end, (faddr & PMD_MASK) + PMD_SIZE); 711 712 return win; 713 } 714 715 /** 716 * swap_vma_readahead - swap in pages in hope we need them soon 717 * @targ_entry: swap entry of the targeted memory 718 * @gfp_mask: memory allocation flags 719 * @mpol: NUMA memory allocation policy to be applied 720 * @targ_ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE 721 * @vmf: fault information 722 * 723 * Returns the struct folio for entry and addr, after queueing swapin. 724 * 725 * Primitive swap readahead code. We simply read in a few pages whose 726 * virtual addresses are around the fault address in the same vma. 727 * 728 * Caller must hold read mmap_lock if vmf->vma is not NULL. 729 * 730 */ 731 static struct folio *swap_vma_readahead(swp_entry_t targ_entry, gfp_t gfp_mask, 732 struct mempolicy *mpol, pgoff_t targ_ilx, struct vm_fault *vmf) 733 { 734 struct blk_plug plug; 735 struct swap_iocb *splug = NULL; 736 struct folio *folio; 737 pte_t *pte = NULL, pentry; 738 int win; 739 unsigned long start, end, addr; 740 swp_entry_t entry; 741 pgoff_t ilx; 742 bool page_allocated; 743 744 win = swap_vma_ra_win(vmf, &start, &end); 745 if (win == 1) 746 goto skip; 747 748 ilx = targ_ilx - PFN_DOWN(vmf->address - start); 749 750 blk_start_plug(&plug); 751 for (addr = start; addr < end; ilx++, addr += PAGE_SIZE) { 752 if (!pte++) { 753 pte = pte_offset_map(vmf->pmd, addr); 754 if (!pte) 755 break; 756 } 757 pentry = ptep_get_lockless(pte); 758 if (!is_swap_pte(pentry)) 759 continue; 760 entry = pte_to_swp_entry(pentry); 761 if (unlikely(non_swap_entry(entry))) 762 continue; 763 pte_unmap(pte); 764 pte = NULL; 765 folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx, 766 &page_allocated, false); 767 if (!folio) 768 continue; 769 if (page_allocated) { 770 swap_read_folio(folio, &splug); 771 if (addr != vmf->address) { 772 folio_set_readahead(folio); 773 count_vm_event(SWAP_RA); 774 } 775 } 776 folio_put(folio); 777 } 778 if (pte) 779 pte_unmap(pte); 780 blk_finish_plug(&plug); 781 swap_read_unplug(splug); 782 lru_add_drain(); 783 skip: 784 /* The folio was likely read above, so no need for plugging here */ 785 folio = __read_swap_cache_async(targ_entry, gfp_mask, mpol, targ_ilx, 786 &page_allocated, false); 787 if (unlikely(page_allocated)) 788 swap_read_folio(folio, NULL); 789 return folio; 790 } 791 792 /** 793 * swapin_readahead - swap in pages in hope we need them soon 794 * @entry: swap entry of this memory 795 * @gfp_mask: memory allocation flags 796 * @vmf: fault information 797 * 798 * Returns the struct folio for entry and addr, after queueing swapin. 799 * 800 * It's a main entry function for swap readahead. By the configuration, 801 * it will read ahead blocks by cluster-based(ie, physical disk based) 802 * or vma-based(ie, virtual address based on faulty address) readahead. 803 */ 804 struct folio *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 805 struct vm_fault *vmf) 806 { 807 struct mempolicy *mpol; 808 pgoff_t ilx; 809 struct folio *folio; 810 811 mpol = get_vma_policy(vmf->vma, vmf->address, 0, &ilx); 812 folio = swap_use_vma_readahead() ? 813 swap_vma_readahead(entry, gfp_mask, mpol, ilx, vmf) : 814 swap_cluster_readahead(entry, gfp_mask, mpol, ilx); 815 mpol_cond_put(mpol); 816 817 return folio; 818 } 819 820 #ifdef CONFIG_SYSFS 821 static ssize_t vma_ra_enabled_show(struct kobject *kobj, 822 struct kobj_attribute *attr, char *buf) 823 { 824 return sysfs_emit(buf, "%s\n", str_true_false(enable_vma_readahead)); 825 } 826 static ssize_t vma_ra_enabled_store(struct kobject *kobj, 827 struct kobj_attribute *attr, 828 const char *buf, size_t count) 829 { 830 ssize_t ret; 831 832 ret = kstrtobool(buf, &enable_vma_readahead); 833 if (ret) 834 return ret; 835 836 return count; 837 } 838 static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled); 839 840 static struct attribute *swap_attrs[] = { 841 &vma_ra_enabled_attr.attr, 842 NULL, 843 }; 844 845 static const struct attribute_group swap_attr_group = { 846 .attrs = swap_attrs, 847 }; 848 849 static int __init swap_init_sysfs(void) 850 { 851 int err; 852 struct kobject *swap_kobj; 853 854 swap_kobj = kobject_create_and_add("swap", mm_kobj); 855 if (!swap_kobj) { 856 pr_err("failed to create swap kobject\n"); 857 return -ENOMEM; 858 } 859 err = sysfs_create_group(swap_kobj, &swap_attr_group); 860 if (err) { 861 pr_err("failed to register swap group\n"); 862 goto delete_obj; 863 } 864 return 0; 865 866 delete_obj: 867 kobject_put(swap_kobj); 868 return err; 869 } 870 subsys_initcall(swap_init_sysfs); 871 #endif 872