xref: /linux/mm/swap_state.c (revision 74ce1896c6c65b2f8cccbf59162d542988835835)
1 /*
2  *  linux/mm/swap_state.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  *
7  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
8  */
9 #include <linux/mm.h>
10 #include <linux/gfp.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 #include <linux/vmalloc.h>
21 #include <linux/swap_slots.h>
22 #include <linux/huge_mm.h>
23 
24 #include <asm/pgtable.h>
25 
26 /*
27  * swapper_space is a fiction, retained to simplify the path through
28  * vmscan's shrink_page_list.
29  */
30 static const struct address_space_operations swap_aops = {
31 	.writepage	= swap_writepage,
32 	.set_page_dirty	= swap_set_page_dirty,
33 #ifdef CONFIG_MIGRATION
34 	.migratepage	= migrate_page,
35 #endif
36 };
37 
38 struct address_space *swapper_spaces[MAX_SWAPFILES];
39 static unsigned int nr_swapper_spaces[MAX_SWAPFILES];
40 bool swap_vma_readahead = true;
41 
42 #define SWAP_RA_MAX_ORDER_DEFAULT	3
43 
44 static int swap_ra_max_order = SWAP_RA_MAX_ORDER_DEFAULT;
45 
46 #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
47 #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
48 #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
49 #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
50 
51 #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
52 #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
53 #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
54 
55 #define SWAP_RA_VAL(addr, win, hits)				\
56 	(((addr) & PAGE_MASK) |					\
57 	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
58 	 ((hits) & SWAP_RA_HITS_MASK))
59 
60 /* Initial readahead hits is 4 to start up with a small window */
61 #define GET_SWAP_RA_VAL(vma)					\
62 	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
63 
64 #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
65 #define ADD_CACHE_INFO(x, nr)	do { swap_cache_info.x += (nr); } while (0)
66 
67 static struct {
68 	unsigned long add_total;
69 	unsigned long del_total;
70 	unsigned long find_success;
71 	unsigned long find_total;
72 } swap_cache_info;
73 
74 unsigned long total_swapcache_pages(void)
75 {
76 	unsigned int i, j, nr;
77 	unsigned long ret = 0;
78 	struct address_space *spaces;
79 
80 	rcu_read_lock();
81 	for (i = 0; i < MAX_SWAPFILES; i++) {
82 		/*
83 		 * The corresponding entries in nr_swapper_spaces and
84 		 * swapper_spaces will be reused only after at least
85 		 * one grace period.  So it is impossible for them
86 		 * belongs to different usage.
87 		 */
88 		nr = nr_swapper_spaces[i];
89 		spaces = rcu_dereference(swapper_spaces[i]);
90 		if (!nr || !spaces)
91 			continue;
92 		for (j = 0; j < nr; j++)
93 			ret += spaces[j].nrpages;
94 	}
95 	rcu_read_unlock();
96 	return ret;
97 }
98 
99 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
100 
101 void show_swap_cache_info(void)
102 {
103 	printk("%lu pages in swap cache\n", total_swapcache_pages());
104 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
105 		swap_cache_info.add_total, swap_cache_info.del_total,
106 		swap_cache_info.find_success, swap_cache_info.find_total);
107 	printk("Free swap  = %ldkB\n",
108 		get_nr_swap_pages() << (PAGE_SHIFT - 10));
109 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
110 }
111 
112 /*
113  * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
114  * but sets SwapCache flag and private instead of mapping and index.
115  */
116 int __add_to_swap_cache(struct page *page, swp_entry_t entry)
117 {
118 	int error, i, nr = hpage_nr_pages(page);
119 	struct address_space *address_space;
120 	pgoff_t idx = swp_offset(entry);
121 
122 	VM_BUG_ON_PAGE(!PageLocked(page), page);
123 	VM_BUG_ON_PAGE(PageSwapCache(page), page);
124 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
125 
126 	page_ref_add(page, nr);
127 	SetPageSwapCache(page);
128 
129 	address_space = swap_address_space(entry);
130 	spin_lock_irq(&address_space->tree_lock);
131 	for (i = 0; i < nr; i++) {
132 		set_page_private(page + i, entry.val + i);
133 		error = radix_tree_insert(&address_space->page_tree,
134 					  idx + i, page + i);
135 		if (unlikely(error))
136 			break;
137 	}
138 	if (likely(!error)) {
139 		address_space->nrpages += nr;
140 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
141 		ADD_CACHE_INFO(add_total, nr);
142 	} else {
143 		/*
144 		 * Only the context which have set SWAP_HAS_CACHE flag
145 		 * would call add_to_swap_cache().
146 		 * So add_to_swap_cache() doesn't returns -EEXIST.
147 		 */
148 		VM_BUG_ON(error == -EEXIST);
149 		set_page_private(page + i, 0UL);
150 		while (i--) {
151 			radix_tree_delete(&address_space->page_tree, idx + i);
152 			set_page_private(page + i, 0UL);
153 		}
154 		ClearPageSwapCache(page);
155 		page_ref_sub(page, nr);
156 	}
157 	spin_unlock_irq(&address_space->tree_lock);
158 
159 	return error;
160 }
161 
162 
163 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
164 {
165 	int error;
166 
167 	error = radix_tree_maybe_preload_order(gfp_mask, compound_order(page));
168 	if (!error) {
169 		error = __add_to_swap_cache(page, entry);
170 		radix_tree_preload_end();
171 	}
172 	return error;
173 }
174 
175 /*
176  * This must be called only on pages that have
177  * been verified to be in the swap cache.
178  */
179 void __delete_from_swap_cache(struct page *page)
180 {
181 	struct address_space *address_space;
182 	int i, nr = hpage_nr_pages(page);
183 	swp_entry_t entry;
184 	pgoff_t idx;
185 
186 	VM_BUG_ON_PAGE(!PageLocked(page), page);
187 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
188 	VM_BUG_ON_PAGE(PageWriteback(page), page);
189 
190 	entry.val = page_private(page);
191 	address_space = swap_address_space(entry);
192 	idx = swp_offset(entry);
193 	for (i = 0; i < nr; i++) {
194 		radix_tree_delete(&address_space->page_tree, idx + i);
195 		set_page_private(page + i, 0);
196 	}
197 	ClearPageSwapCache(page);
198 	address_space->nrpages -= nr;
199 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
200 	ADD_CACHE_INFO(del_total, nr);
201 }
202 
203 /**
204  * add_to_swap - allocate swap space for a page
205  * @page: page we want to move to swap
206  *
207  * Allocate swap space for the page and add the page to the
208  * swap cache.  Caller needs to hold the page lock.
209  */
210 int add_to_swap(struct page *page)
211 {
212 	swp_entry_t entry;
213 	int err;
214 
215 	VM_BUG_ON_PAGE(!PageLocked(page), page);
216 	VM_BUG_ON_PAGE(!PageUptodate(page), page);
217 
218 	entry = get_swap_page(page);
219 	if (!entry.val)
220 		return 0;
221 
222 	if (mem_cgroup_try_charge_swap(page, entry))
223 		goto fail;
224 
225 	/*
226 	 * Radix-tree node allocations from PF_MEMALLOC contexts could
227 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
228 	 * stops emergency reserves from being allocated.
229 	 *
230 	 * TODO: this could cause a theoretical memory reclaim
231 	 * deadlock in the swap out path.
232 	 */
233 	/*
234 	 * Add it to the swap cache.
235 	 */
236 	err = add_to_swap_cache(page, entry,
237 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
238 	/* -ENOMEM radix-tree allocation failure */
239 	if (err)
240 		/*
241 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
242 		 * clear SWAP_HAS_CACHE flag.
243 		 */
244 		goto fail;
245 
246 	return 1;
247 
248 fail:
249 	put_swap_page(page, entry);
250 	return 0;
251 }
252 
253 /*
254  * This must be called only on pages that have
255  * been verified to be in the swap cache and locked.
256  * It will never put the page into the free list,
257  * the caller has a reference on the page.
258  */
259 void delete_from_swap_cache(struct page *page)
260 {
261 	swp_entry_t entry;
262 	struct address_space *address_space;
263 
264 	entry.val = page_private(page);
265 
266 	address_space = swap_address_space(entry);
267 	spin_lock_irq(&address_space->tree_lock);
268 	__delete_from_swap_cache(page);
269 	spin_unlock_irq(&address_space->tree_lock);
270 
271 	put_swap_page(page, entry);
272 	page_ref_sub(page, hpage_nr_pages(page));
273 }
274 
275 /*
276  * If we are the only user, then try to free up the swap cache.
277  *
278  * Its ok to check for PageSwapCache without the page lock
279  * here because we are going to recheck again inside
280  * try_to_free_swap() _with_ the lock.
281  * 					- Marcelo
282  */
283 static inline void free_swap_cache(struct page *page)
284 {
285 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
286 		try_to_free_swap(page);
287 		unlock_page(page);
288 	}
289 }
290 
291 /*
292  * Perform a free_page(), also freeing any swap cache associated with
293  * this page if it is the last user of the page.
294  */
295 void free_page_and_swap_cache(struct page *page)
296 {
297 	free_swap_cache(page);
298 	if (!is_huge_zero_page(page))
299 		put_page(page);
300 }
301 
302 /*
303  * Passed an array of pages, drop them all from swapcache and then release
304  * them.  They are removed from the LRU and freed if this is their last use.
305  */
306 void free_pages_and_swap_cache(struct page **pages, int nr)
307 {
308 	struct page **pagep = pages;
309 	int i;
310 
311 	lru_add_drain();
312 	for (i = 0; i < nr; i++)
313 		free_swap_cache(pagep[i]);
314 	release_pages(pagep, nr, false);
315 }
316 
317 /*
318  * Lookup a swap entry in the swap cache. A found page will be returned
319  * unlocked and with its refcount incremented - we rely on the kernel
320  * lock getting page table operations atomic even if we drop the page
321  * lock before returning.
322  */
323 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
324 			       unsigned long addr)
325 {
326 	struct page *page;
327 	unsigned long ra_info;
328 	int win, hits, readahead;
329 
330 	page = find_get_page(swap_address_space(entry), swp_offset(entry));
331 
332 	INC_CACHE_INFO(find_total);
333 	if (page) {
334 		INC_CACHE_INFO(find_success);
335 		if (unlikely(PageTransCompound(page)))
336 			return page;
337 		readahead = TestClearPageReadahead(page);
338 		if (vma) {
339 			ra_info = GET_SWAP_RA_VAL(vma);
340 			win = SWAP_RA_WIN(ra_info);
341 			hits = SWAP_RA_HITS(ra_info);
342 			if (readahead)
343 				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
344 			atomic_long_set(&vma->swap_readahead_info,
345 					SWAP_RA_VAL(addr, win, hits));
346 		}
347 		if (readahead) {
348 			count_vm_event(SWAP_RA_HIT);
349 			if (!vma)
350 				atomic_inc(&swapin_readahead_hits);
351 		}
352 	}
353 	return page;
354 }
355 
356 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
357 			struct vm_area_struct *vma, unsigned long addr,
358 			bool *new_page_allocated)
359 {
360 	struct page *found_page, *new_page = NULL;
361 	struct address_space *swapper_space = swap_address_space(entry);
362 	int err;
363 	*new_page_allocated = false;
364 
365 	do {
366 		/*
367 		 * First check the swap cache.  Since this is normally
368 		 * called after lookup_swap_cache() failed, re-calling
369 		 * that would confuse statistics.
370 		 */
371 		found_page = find_get_page(swapper_space, swp_offset(entry));
372 		if (found_page)
373 			break;
374 
375 		/*
376 		 * Just skip read ahead for unused swap slot.
377 		 * During swap_off when swap_slot_cache is disabled,
378 		 * we have to handle the race between putting
379 		 * swap entry in swap cache and marking swap slot
380 		 * as SWAP_HAS_CACHE.  That's done in later part of code or
381 		 * else swap_off will be aborted if we return NULL.
382 		 */
383 		if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
384 			break;
385 
386 		/*
387 		 * Get a new page to read into from swap.
388 		 */
389 		if (!new_page) {
390 			new_page = alloc_page_vma(gfp_mask, vma, addr);
391 			if (!new_page)
392 				break;		/* Out of memory */
393 		}
394 
395 		/*
396 		 * call radix_tree_preload() while we can wait.
397 		 */
398 		err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
399 		if (err)
400 			break;
401 
402 		/*
403 		 * Swap entry may have been freed since our caller observed it.
404 		 */
405 		err = swapcache_prepare(entry);
406 		if (err == -EEXIST) {
407 			radix_tree_preload_end();
408 			/*
409 			 * We might race against get_swap_page() and stumble
410 			 * across a SWAP_HAS_CACHE swap_map entry whose page
411 			 * has not been brought into the swapcache yet.
412 			 */
413 			cond_resched();
414 			continue;
415 		}
416 		if (err) {		/* swp entry is obsolete ? */
417 			radix_tree_preload_end();
418 			break;
419 		}
420 
421 		/* May fail (-ENOMEM) if radix-tree node allocation failed. */
422 		__SetPageLocked(new_page);
423 		__SetPageSwapBacked(new_page);
424 		err = __add_to_swap_cache(new_page, entry);
425 		if (likely(!err)) {
426 			radix_tree_preload_end();
427 			/*
428 			 * Initiate read into locked page and return.
429 			 */
430 			lru_cache_add_anon(new_page);
431 			*new_page_allocated = true;
432 			return new_page;
433 		}
434 		radix_tree_preload_end();
435 		__ClearPageLocked(new_page);
436 		/*
437 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
438 		 * clear SWAP_HAS_CACHE flag.
439 		 */
440 		put_swap_page(new_page, entry);
441 	} while (err != -ENOMEM);
442 
443 	if (new_page)
444 		put_page(new_page);
445 	return found_page;
446 }
447 
448 /*
449  * Locate a page of swap in physical memory, reserving swap cache space
450  * and reading the disk if it is not already cached.
451  * A failure return means that either the page allocation failed or that
452  * the swap entry is no longer in use.
453  */
454 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
455 		struct vm_area_struct *vma, unsigned long addr, bool do_poll)
456 {
457 	bool page_was_allocated;
458 	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
459 			vma, addr, &page_was_allocated);
460 
461 	if (page_was_allocated)
462 		swap_readpage(retpage, do_poll);
463 
464 	return retpage;
465 }
466 
467 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
468 				      unsigned long offset,
469 				      int hits,
470 				      int max_pages,
471 				      int prev_win)
472 {
473 	unsigned int pages, last_ra;
474 
475 	/*
476 	 * This heuristic has been found to work well on both sequential and
477 	 * random loads, swapping to hard disk or to SSD: please don't ask
478 	 * what the "+ 2" means, it just happens to work well, that's all.
479 	 */
480 	pages = hits + 2;
481 	if (pages == 2) {
482 		/*
483 		 * We can have no readahead hits to judge by: but must not get
484 		 * stuck here forever, so check for an adjacent offset instead
485 		 * (and don't even bother to check whether swap type is same).
486 		 */
487 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
488 			pages = 1;
489 	} else {
490 		unsigned int roundup = 4;
491 		while (roundup < pages)
492 			roundup <<= 1;
493 		pages = roundup;
494 	}
495 
496 	if (pages > max_pages)
497 		pages = max_pages;
498 
499 	/* Don't shrink readahead too fast */
500 	last_ra = prev_win / 2;
501 	if (pages < last_ra)
502 		pages = last_ra;
503 
504 	return pages;
505 }
506 
507 static unsigned long swapin_nr_pages(unsigned long offset)
508 {
509 	static unsigned long prev_offset;
510 	unsigned int hits, pages, max_pages;
511 	static atomic_t last_readahead_pages;
512 
513 	max_pages = 1 << READ_ONCE(page_cluster);
514 	if (max_pages <= 1)
515 		return 1;
516 
517 	hits = atomic_xchg(&swapin_readahead_hits, 0);
518 	pages = __swapin_nr_pages(prev_offset, offset, hits, max_pages,
519 				  atomic_read(&last_readahead_pages));
520 	if (!hits)
521 		prev_offset = offset;
522 	atomic_set(&last_readahead_pages, pages);
523 
524 	return pages;
525 }
526 
527 /**
528  * swapin_readahead - swap in pages in hope we need them soon
529  * @entry: swap entry of this memory
530  * @gfp_mask: memory allocation flags
531  * @vma: user vma this address belongs to
532  * @addr: target address for mempolicy
533  *
534  * Returns the struct page for entry and addr, after queueing swapin.
535  *
536  * Primitive swap readahead code. We simply read an aligned block of
537  * (1 << page_cluster) entries in the swap area. This method is chosen
538  * because it doesn't cost us any seek time.  We also make sure to queue
539  * the 'original' request together with the readahead ones...
540  *
541  * This has been extended to use the NUMA policies from the mm triggering
542  * the readahead.
543  *
544  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
545  */
546 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
547 			struct vm_area_struct *vma, unsigned long addr)
548 {
549 	struct page *page;
550 	unsigned long entry_offset = swp_offset(entry);
551 	unsigned long offset = entry_offset;
552 	unsigned long start_offset, end_offset;
553 	unsigned long mask;
554 	struct blk_plug plug;
555 	bool do_poll = true, page_allocated;
556 
557 	mask = swapin_nr_pages(offset) - 1;
558 	if (!mask)
559 		goto skip;
560 
561 	do_poll = false;
562 	/* Read a page_cluster sized and aligned cluster around offset. */
563 	start_offset = offset & ~mask;
564 	end_offset = offset | mask;
565 	if (!start_offset)	/* First page is swap header. */
566 		start_offset++;
567 
568 	blk_start_plug(&plug);
569 	for (offset = start_offset; offset <= end_offset ; offset++) {
570 		/* Ok, do the async read-ahead now */
571 		page = __read_swap_cache_async(
572 			swp_entry(swp_type(entry), offset),
573 			gfp_mask, vma, addr, &page_allocated);
574 		if (!page)
575 			continue;
576 		if (page_allocated) {
577 			swap_readpage(page, false);
578 			if (offset != entry_offset &&
579 			    likely(!PageTransCompound(page))) {
580 				SetPageReadahead(page);
581 				count_vm_event(SWAP_RA);
582 			}
583 		}
584 		put_page(page);
585 	}
586 	blk_finish_plug(&plug);
587 
588 	lru_add_drain();	/* Push any new pages onto the LRU now */
589 skip:
590 	return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
591 }
592 
593 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
594 {
595 	struct address_space *spaces, *space;
596 	unsigned int i, nr;
597 
598 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
599 	spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL);
600 	if (!spaces)
601 		return -ENOMEM;
602 	for (i = 0; i < nr; i++) {
603 		space = spaces + i;
604 		INIT_RADIX_TREE(&space->page_tree, GFP_ATOMIC|__GFP_NOWARN);
605 		atomic_set(&space->i_mmap_writable, 0);
606 		space->a_ops = &swap_aops;
607 		/* swap cache doesn't use writeback related tags */
608 		mapping_set_no_writeback_tags(space);
609 		spin_lock_init(&space->tree_lock);
610 	}
611 	nr_swapper_spaces[type] = nr;
612 	rcu_assign_pointer(swapper_spaces[type], spaces);
613 
614 	return 0;
615 }
616 
617 void exit_swap_address_space(unsigned int type)
618 {
619 	struct address_space *spaces;
620 
621 	spaces = swapper_spaces[type];
622 	nr_swapper_spaces[type] = 0;
623 	rcu_assign_pointer(swapper_spaces[type], NULL);
624 	synchronize_rcu();
625 	kvfree(spaces);
626 }
627 
628 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
629 				     unsigned long faddr,
630 				     unsigned long lpfn,
631 				     unsigned long rpfn,
632 				     unsigned long *start,
633 				     unsigned long *end)
634 {
635 	*start = max3(lpfn, PFN_DOWN(vma->vm_start),
636 		      PFN_DOWN(faddr & PMD_MASK));
637 	*end = min3(rpfn, PFN_DOWN(vma->vm_end),
638 		    PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
639 }
640 
641 struct page *swap_readahead_detect(struct vm_fault *vmf,
642 				   struct vma_swap_readahead *swap_ra)
643 {
644 	struct vm_area_struct *vma = vmf->vma;
645 	unsigned long swap_ra_info;
646 	struct page *page;
647 	swp_entry_t entry;
648 	unsigned long faddr, pfn, fpfn;
649 	unsigned long start, end;
650 	pte_t *pte;
651 	unsigned int max_win, hits, prev_win, win, left;
652 #ifndef CONFIG_64BIT
653 	pte_t *tpte;
654 #endif
655 
656 	faddr = vmf->address;
657 	entry = pte_to_swp_entry(vmf->orig_pte);
658 	if ((unlikely(non_swap_entry(entry))))
659 		return NULL;
660 	page = lookup_swap_cache(entry, vma, faddr);
661 	if (page)
662 		return page;
663 
664 	max_win = 1 << READ_ONCE(swap_ra_max_order);
665 	if (max_win == 1) {
666 		swap_ra->win = 1;
667 		return NULL;
668 	}
669 
670 	fpfn = PFN_DOWN(faddr);
671 	swap_ra_info = GET_SWAP_RA_VAL(vma);
672 	pfn = PFN_DOWN(SWAP_RA_ADDR(swap_ra_info));
673 	prev_win = SWAP_RA_WIN(swap_ra_info);
674 	hits = SWAP_RA_HITS(swap_ra_info);
675 	swap_ra->win = win = __swapin_nr_pages(pfn, fpfn, hits,
676 					       max_win, prev_win);
677 	atomic_long_set(&vma->swap_readahead_info,
678 			SWAP_RA_VAL(faddr, win, 0));
679 
680 	if (win == 1)
681 		return NULL;
682 
683 	/* Copy the PTEs because the page table may be unmapped */
684 	if (fpfn == pfn + 1)
685 		swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
686 	else if (pfn == fpfn + 1)
687 		swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
688 				  &start, &end);
689 	else {
690 		left = (win - 1) / 2;
691 		swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
692 				  &start, &end);
693 	}
694 	swap_ra->nr_pte = end - start;
695 	swap_ra->offset = fpfn - start;
696 	pte = vmf->pte - swap_ra->offset;
697 #ifdef CONFIG_64BIT
698 	swap_ra->ptes = pte;
699 #else
700 	tpte = swap_ra->ptes;
701 	for (pfn = start; pfn != end; pfn++)
702 		*tpte++ = *pte++;
703 #endif
704 
705 	return NULL;
706 }
707 
708 struct page *do_swap_page_readahead(swp_entry_t fentry, gfp_t gfp_mask,
709 				    struct vm_fault *vmf,
710 				    struct vma_swap_readahead *swap_ra)
711 {
712 	struct blk_plug plug;
713 	struct vm_area_struct *vma = vmf->vma;
714 	struct page *page;
715 	pte_t *pte, pentry;
716 	swp_entry_t entry;
717 	unsigned int i;
718 	bool page_allocated;
719 
720 	if (swap_ra->win == 1)
721 		goto skip;
722 
723 	blk_start_plug(&plug);
724 	for (i = 0, pte = swap_ra->ptes; i < swap_ra->nr_pte;
725 	     i++, pte++) {
726 		pentry = *pte;
727 		if (pte_none(pentry))
728 			continue;
729 		if (pte_present(pentry))
730 			continue;
731 		entry = pte_to_swp_entry(pentry);
732 		if (unlikely(non_swap_entry(entry)))
733 			continue;
734 		page = __read_swap_cache_async(entry, gfp_mask, vma,
735 					       vmf->address, &page_allocated);
736 		if (!page)
737 			continue;
738 		if (page_allocated) {
739 			swap_readpage(page, false);
740 			if (i != swap_ra->offset &&
741 			    likely(!PageTransCompound(page))) {
742 				SetPageReadahead(page);
743 				count_vm_event(SWAP_RA);
744 			}
745 		}
746 		put_page(page);
747 	}
748 	blk_finish_plug(&plug);
749 	lru_add_drain();
750 skip:
751 	return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
752 				     swap_ra->win == 1);
753 }
754 
755 #ifdef CONFIG_SYSFS
756 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
757 				     struct kobj_attribute *attr, char *buf)
758 {
759 	return sprintf(buf, "%s\n", swap_vma_readahead ? "true" : "false");
760 }
761 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
762 				      struct kobj_attribute *attr,
763 				      const char *buf, size_t count)
764 {
765 	if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
766 		swap_vma_readahead = true;
767 	else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
768 		swap_vma_readahead = false;
769 	else
770 		return -EINVAL;
771 
772 	return count;
773 }
774 static struct kobj_attribute vma_ra_enabled_attr =
775 	__ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
776 	       vma_ra_enabled_store);
777 
778 static ssize_t vma_ra_max_order_show(struct kobject *kobj,
779 				     struct kobj_attribute *attr, char *buf)
780 {
781 	return sprintf(buf, "%d\n", swap_ra_max_order);
782 }
783 static ssize_t vma_ra_max_order_store(struct kobject *kobj,
784 				      struct kobj_attribute *attr,
785 				      const char *buf, size_t count)
786 {
787 	int err, v;
788 
789 	err = kstrtoint(buf, 10, &v);
790 	if (err || v > SWAP_RA_ORDER_CEILING || v <= 0)
791 		return -EINVAL;
792 
793 	swap_ra_max_order = v;
794 
795 	return count;
796 }
797 static struct kobj_attribute vma_ra_max_order_attr =
798 	__ATTR(vma_ra_max_order, 0644, vma_ra_max_order_show,
799 	       vma_ra_max_order_store);
800 
801 static struct attribute *swap_attrs[] = {
802 	&vma_ra_enabled_attr.attr,
803 	&vma_ra_max_order_attr.attr,
804 	NULL,
805 };
806 
807 static struct attribute_group swap_attr_group = {
808 	.attrs = swap_attrs,
809 };
810 
811 static int __init swap_init_sysfs(void)
812 {
813 	int err;
814 	struct kobject *swap_kobj;
815 
816 	swap_kobj = kobject_create_and_add("swap", mm_kobj);
817 	if (!swap_kobj) {
818 		pr_err("failed to create swap kobject\n");
819 		return -ENOMEM;
820 	}
821 	err = sysfs_create_group(swap_kobj, &swap_attr_group);
822 	if (err) {
823 		pr_err("failed to register swap group\n");
824 		goto delete_obj;
825 	}
826 	return 0;
827 
828 delete_obj:
829 	kobject_put(swap_kobj);
830 	return err;
831 }
832 subsys_initcall(swap_init_sysfs);
833 #endif
834