xref: /linux/mm/swap_state.c (revision 656fe3ee455e8d8dfa1c18292c508da26b29a39c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/swap_state.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  *
8  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
9  */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/mempolicy.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/init.h>
17 #include <linux/pagemap.h>
18 #include <linux/pagevec.h>
19 #include <linux/backing-dev.h>
20 #include <linux/blkdev.h>
21 #include <linux/migrate.h>
22 #include <linux/vmalloc.h>
23 #include <linux/swap_slots.h>
24 #include <linux/huge_mm.h>
25 #include <linux/shmem_fs.h>
26 #include "internal.h"
27 #include "swap.h"
28 
29 /*
30  * swapper_space is a fiction, retained to simplify the path through
31  * vmscan's shrink_folio_list.
32  */
33 static const struct address_space_operations swap_aops = {
34 	.writepage	= swap_writepage,
35 	.dirty_folio	= noop_dirty_folio,
36 #ifdef CONFIG_MIGRATION
37 	.migrate_folio	= migrate_folio,
38 #endif
39 };
40 
41 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
42 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
43 static bool enable_vma_readahead __read_mostly = true;
44 
45 #define SWAP_RA_ORDER_CEILING	5
46 
47 #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
48 #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
49 #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
50 #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
51 
52 #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
53 #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
54 #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
55 
56 #define SWAP_RA_VAL(addr, win, hits)				\
57 	(((addr) & PAGE_MASK) |					\
58 	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
59 	 ((hits) & SWAP_RA_HITS_MASK))
60 
61 /* Initial readahead hits is 4 to start up with a small window */
62 #define GET_SWAP_RA_VAL(vma)					\
63 	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
64 
65 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
66 
67 void show_swap_cache_info(void)
68 {
69 	printk("%lu pages in swap cache\n", total_swapcache_pages());
70 	printk("Free swap  = %ldkB\n", K(get_nr_swap_pages()));
71 	printk("Total swap = %lukB\n", K(total_swap_pages));
72 }
73 
74 void *get_shadow_from_swap_cache(swp_entry_t entry)
75 {
76 	struct address_space *address_space = swap_address_space(entry);
77 	pgoff_t idx = swap_cache_index(entry);
78 	void *shadow;
79 
80 	shadow = xa_load(&address_space->i_pages, idx);
81 	if (xa_is_value(shadow))
82 		return shadow;
83 	return NULL;
84 }
85 
86 /*
87  * add_to_swap_cache resembles filemap_add_folio on swapper_space,
88  * but sets SwapCache flag and private instead of mapping and index.
89  */
90 int add_to_swap_cache(struct folio *folio, swp_entry_t entry,
91 			gfp_t gfp, void **shadowp)
92 {
93 	struct address_space *address_space = swap_address_space(entry);
94 	pgoff_t idx = swap_cache_index(entry);
95 	XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio));
96 	unsigned long i, nr = folio_nr_pages(folio);
97 	void *old;
98 
99 	xas_set_update(&xas, workingset_update_node);
100 
101 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
102 	VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
103 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
104 
105 	folio_ref_add(folio, nr);
106 	folio_set_swapcache(folio);
107 	folio->swap = entry;
108 
109 	do {
110 		xas_lock_irq(&xas);
111 		xas_create_range(&xas);
112 		if (xas_error(&xas))
113 			goto unlock;
114 		for (i = 0; i < nr; i++) {
115 			VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio);
116 			if (shadowp) {
117 				old = xas_load(&xas);
118 				if (xa_is_value(old))
119 					*shadowp = old;
120 			}
121 			xas_store(&xas, folio);
122 			xas_next(&xas);
123 		}
124 		address_space->nrpages += nr;
125 		__node_stat_mod_folio(folio, NR_FILE_PAGES, nr);
126 		__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr);
127 unlock:
128 		xas_unlock_irq(&xas);
129 	} while (xas_nomem(&xas, gfp));
130 
131 	if (!xas_error(&xas))
132 		return 0;
133 
134 	folio_clear_swapcache(folio);
135 	folio_ref_sub(folio, nr);
136 	return xas_error(&xas);
137 }
138 
139 /*
140  * This must be called only on folios that have
141  * been verified to be in the swap cache.
142  */
143 void __delete_from_swap_cache(struct folio *folio,
144 			swp_entry_t entry, void *shadow)
145 {
146 	struct address_space *address_space = swap_address_space(entry);
147 	int i;
148 	long nr = folio_nr_pages(folio);
149 	pgoff_t idx = swap_cache_index(entry);
150 	XA_STATE(xas, &address_space->i_pages, idx);
151 
152 	xas_set_update(&xas, workingset_update_node);
153 
154 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
155 	VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
156 	VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
157 
158 	for (i = 0; i < nr; i++) {
159 		void *entry = xas_store(&xas, shadow);
160 		VM_BUG_ON_PAGE(entry != folio, entry);
161 		xas_next(&xas);
162 	}
163 	folio->swap.val = 0;
164 	folio_clear_swapcache(folio);
165 	address_space->nrpages -= nr;
166 	__node_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
167 	__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr);
168 }
169 
170 /**
171  * add_to_swap - allocate swap space for a folio
172  * @folio: folio we want to move to swap
173  *
174  * Allocate swap space for the folio and add the folio to the
175  * swap cache.
176  *
177  * Context: Caller needs to hold the folio lock.
178  * Return: Whether the folio was added to the swap cache.
179  */
180 bool add_to_swap(struct folio *folio)
181 {
182 	swp_entry_t entry;
183 	int err;
184 
185 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
186 	VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
187 
188 	entry = folio_alloc_swap(folio);
189 	if (!entry.val)
190 		return false;
191 
192 	/*
193 	 * XArray node allocations from PF_MEMALLOC contexts could
194 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
195 	 * stops emergency reserves from being allocated.
196 	 *
197 	 * TODO: this could cause a theoretical memory reclaim
198 	 * deadlock in the swap out path.
199 	 */
200 	/*
201 	 * Add it to the swap cache.
202 	 */
203 	err = add_to_swap_cache(folio, entry,
204 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
205 	if (err)
206 		/*
207 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
208 		 * clear SWAP_HAS_CACHE flag.
209 		 */
210 		goto fail;
211 	/*
212 	 * Normally the folio will be dirtied in unmap because its
213 	 * pte should be dirty. A special case is MADV_FREE page. The
214 	 * page's pte could have dirty bit cleared but the folio's
215 	 * SwapBacked flag is still set because clearing the dirty bit
216 	 * and SwapBacked flag has no lock protected. For such folio,
217 	 * unmap will not set dirty bit for it, so folio reclaim will
218 	 * not write the folio out. This can cause data corruption when
219 	 * the folio is swapped in later. Always setting the dirty flag
220 	 * for the folio solves the problem.
221 	 */
222 	folio_mark_dirty(folio);
223 
224 	return true;
225 
226 fail:
227 	put_swap_folio(folio, entry);
228 	return false;
229 }
230 
231 /*
232  * This must be called only on folios that have
233  * been verified to be in the swap cache and locked.
234  * It will never put the folio into the free list,
235  * the caller has a reference on the folio.
236  */
237 void delete_from_swap_cache(struct folio *folio)
238 {
239 	swp_entry_t entry = folio->swap;
240 	struct address_space *address_space = swap_address_space(entry);
241 
242 	xa_lock_irq(&address_space->i_pages);
243 	__delete_from_swap_cache(folio, entry, NULL);
244 	xa_unlock_irq(&address_space->i_pages);
245 
246 	put_swap_folio(folio, entry);
247 	folio_ref_sub(folio, folio_nr_pages(folio));
248 }
249 
250 void clear_shadow_from_swap_cache(int type, unsigned long begin,
251 				unsigned long end)
252 {
253 	unsigned long curr = begin;
254 	void *old;
255 
256 	for (;;) {
257 		swp_entry_t entry = swp_entry(type, curr);
258 		unsigned long index = curr & SWAP_ADDRESS_SPACE_MASK;
259 		struct address_space *address_space = swap_address_space(entry);
260 		XA_STATE(xas, &address_space->i_pages, index);
261 
262 		xas_set_update(&xas, workingset_update_node);
263 
264 		xa_lock_irq(&address_space->i_pages);
265 		xas_for_each(&xas, old, min(index + (end - curr), SWAP_ADDRESS_SPACE_PAGES)) {
266 			if (!xa_is_value(old))
267 				continue;
268 			xas_store(&xas, NULL);
269 		}
270 		xa_unlock_irq(&address_space->i_pages);
271 
272 		/* search the next swapcache until we meet end */
273 		curr >>= SWAP_ADDRESS_SPACE_SHIFT;
274 		curr++;
275 		curr <<= SWAP_ADDRESS_SPACE_SHIFT;
276 		if (curr > end)
277 			break;
278 	}
279 }
280 
281 /*
282  * If we are the only user, then try to free up the swap cache.
283  *
284  * Its ok to check the swapcache flag without the folio lock
285  * here because we are going to recheck again inside
286  * folio_free_swap() _with_ the lock.
287  * 					- Marcelo
288  */
289 void free_swap_cache(struct folio *folio)
290 {
291 	if (folio_test_swapcache(folio) && !folio_mapped(folio) &&
292 	    folio_trylock(folio)) {
293 		folio_free_swap(folio);
294 		folio_unlock(folio);
295 	}
296 }
297 
298 /*
299  * Perform a free_page(), also freeing any swap cache associated with
300  * this page if it is the last user of the page.
301  */
302 void free_page_and_swap_cache(struct page *page)
303 {
304 	struct folio *folio = page_folio(page);
305 
306 	free_swap_cache(folio);
307 	if (!is_huge_zero_folio(folio))
308 		folio_put(folio);
309 }
310 
311 /*
312  * Passed an array of pages, drop them all from swapcache and then release
313  * them.  They are removed from the LRU and freed if this is their last use.
314  */
315 void free_pages_and_swap_cache(struct encoded_page **pages, int nr)
316 {
317 	struct folio_batch folios;
318 	unsigned int refs[PAGEVEC_SIZE];
319 
320 	lru_add_drain();
321 	folio_batch_init(&folios);
322 	for (int i = 0; i < nr; i++) {
323 		struct folio *folio = page_folio(encoded_page_ptr(pages[i]));
324 
325 		free_swap_cache(folio);
326 		refs[folios.nr] = 1;
327 		if (unlikely(encoded_page_flags(pages[i]) &
328 			     ENCODED_PAGE_BIT_NR_PAGES_NEXT))
329 			refs[folios.nr] = encoded_nr_pages(pages[++i]);
330 
331 		if (folio_batch_add(&folios, folio) == 0)
332 			folios_put_refs(&folios, refs);
333 	}
334 	if (folios.nr)
335 		folios_put_refs(&folios, refs);
336 }
337 
338 static inline bool swap_use_vma_readahead(void)
339 {
340 	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
341 }
342 
343 /*
344  * Lookup a swap entry in the swap cache. A found folio will be returned
345  * unlocked and with its refcount incremented - we rely on the kernel
346  * lock getting page table operations atomic even if we drop the folio
347  * lock before returning.
348  *
349  * Caller must lock the swap device or hold a reference to keep it valid.
350  */
351 struct folio *swap_cache_get_folio(swp_entry_t entry,
352 		struct vm_area_struct *vma, unsigned long addr)
353 {
354 	struct folio *folio;
355 
356 	folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
357 	if (!IS_ERR(folio)) {
358 		bool vma_ra = swap_use_vma_readahead();
359 		bool readahead;
360 
361 		/*
362 		 * At the moment, we don't support PG_readahead for anon THP
363 		 * so let's bail out rather than confusing the readahead stat.
364 		 */
365 		if (unlikely(folio_test_large(folio)))
366 			return folio;
367 
368 		readahead = folio_test_clear_readahead(folio);
369 		if (vma && vma_ra) {
370 			unsigned long ra_val;
371 			int win, hits;
372 
373 			ra_val = GET_SWAP_RA_VAL(vma);
374 			win = SWAP_RA_WIN(ra_val);
375 			hits = SWAP_RA_HITS(ra_val);
376 			if (readahead)
377 				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
378 			atomic_long_set(&vma->swap_readahead_info,
379 					SWAP_RA_VAL(addr, win, hits));
380 		}
381 
382 		if (readahead) {
383 			count_vm_event(SWAP_RA_HIT);
384 			if (!vma || !vma_ra)
385 				atomic_inc(&swapin_readahead_hits);
386 		}
387 	} else {
388 		folio = NULL;
389 	}
390 
391 	return folio;
392 }
393 
394 /**
395  * filemap_get_incore_folio - Find and get a folio from the page or swap caches.
396  * @mapping: The address_space to search.
397  * @index: The page cache index.
398  *
399  * This differs from filemap_get_folio() in that it will also look for the
400  * folio in the swap cache.
401  *
402  * Return: The found folio or %NULL.
403  */
404 struct folio *filemap_get_incore_folio(struct address_space *mapping,
405 		pgoff_t index)
406 {
407 	swp_entry_t swp;
408 	struct swap_info_struct *si;
409 	struct folio *folio = filemap_get_entry(mapping, index);
410 
411 	if (!folio)
412 		return ERR_PTR(-ENOENT);
413 	if (!xa_is_value(folio))
414 		return folio;
415 	if (!shmem_mapping(mapping))
416 		return ERR_PTR(-ENOENT);
417 
418 	swp = radix_to_swp_entry(folio);
419 	/* There might be swapin error entries in shmem mapping. */
420 	if (non_swap_entry(swp))
421 		return ERR_PTR(-ENOENT);
422 	/* Prevent swapoff from happening to us */
423 	si = get_swap_device(swp);
424 	if (!si)
425 		return ERR_PTR(-ENOENT);
426 	index = swap_cache_index(swp);
427 	folio = filemap_get_folio(swap_address_space(swp), index);
428 	put_swap_device(si);
429 	return folio;
430 }
431 
432 struct folio *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
433 		struct mempolicy *mpol, pgoff_t ilx, bool *new_page_allocated,
434 		bool skip_if_exists)
435 {
436 	struct swap_info_struct *si;
437 	struct folio *folio;
438 	void *shadow = NULL;
439 
440 	*new_page_allocated = false;
441 	si = get_swap_device(entry);
442 	if (!si)
443 		return NULL;
444 
445 	for (;;) {
446 		int err;
447 		/*
448 		 * First check the swap cache.  Since this is normally
449 		 * called after swap_cache_get_folio() failed, re-calling
450 		 * that would confuse statistics.
451 		 */
452 		folio = filemap_get_folio(swap_address_space(entry),
453 					  swap_cache_index(entry));
454 		if (!IS_ERR(folio))
455 			goto got_folio;
456 
457 		/*
458 		 * Just skip read ahead for unused swap slot.
459 		 * During swap_off when swap_slot_cache is disabled,
460 		 * we have to handle the race between putting
461 		 * swap entry in swap cache and marking swap slot
462 		 * as SWAP_HAS_CACHE.  That's done in later part of code or
463 		 * else swap_off will be aborted if we return NULL.
464 		 */
465 		if (!swap_swapcount(si, entry) && swap_slot_cache_enabled)
466 			goto fail_put_swap;
467 
468 		/*
469 		 * Get a new folio to read into from swap.  Allocate it now,
470 		 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
471 		 * cause any racers to loop around until we add it to cache.
472 		 */
473 		folio = (struct folio *)alloc_pages_mpol(gfp_mask, 0,
474 						mpol, ilx, numa_node_id());
475 		if (!folio)
476                         goto fail_put_swap;
477 
478 		/*
479 		 * Swap entry may have been freed since our caller observed it.
480 		 */
481 		err = swapcache_prepare(entry);
482 		if (!err)
483 			break;
484 
485 		folio_put(folio);
486 		if (err != -EEXIST)
487 			goto fail_put_swap;
488 
489 		/*
490 		 * Protect against a recursive call to __read_swap_cache_async()
491 		 * on the same entry waiting forever here because SWAP_HAS_CACHE
492 		 * is set but the folio is not the swap cache yet. This can
493 		 * happen today if mem_cgroup_swapin_charge_folio() below
494 		 * triggers reclaim through zswap, which may call
495 		 * __read_swap_cache_async() in the writeback path.
496 		 */
497 		if (skip_if_exists)
498 			goto fail_put_swap;
499 
500 		/*
501 		 * We might race against __delete_from_swap_cache(), and
502 		 * stumble across a swap_map entry whose SWAP_HAS_CACHE
503 		 * has not yet been cleared.  Or race against another
504 		 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
505 		 * in swap_map, but not yet added its folio to swap cache.
506 		 */
507 		schedule_timeout_uninterruptible(1);
508 	}
509 
510 	/*
511 	 * The swap entry is ours to swap in. Prepare the new folio.
512 	 */
513 
514 	__folio_set_locked(folio);
515 	__folio_set_swapbacked(folio);
516 
517 	if (mem_cgroup_swapin_charge_folio(folio, NULL, gfp_mask, entry))
518 		goto fail_unlock;
519 
520 	/* May fail (-ENOMEM) if XArray node allocation failed. */
521 	if (add_to_swap_cache(folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
522 		goto fail_unlock;
523 
524 	mem_cgroup_swapin_uncharge_swap(entry);
525 
526 	if (shadow)
527 		workingset_refault(folio, shadow);
528 
529 	/* Caller will initiate read into locked folio */
530 	folio_add_lru(folio);
531 	*new_page_allocated = true;
532 got_folio:
533 	put_swap_device(si);
534 	return folio;
535 
536 fail_unlock:
537 	put_swap_folio(folio, entry);
538 	folio_unlock(folio);
539 	folio_put(folio);
540 fail_put_swap:
541 	put_swap_device(si);
542 	return NULL;
543 }
544 
545 /*
546  * Locate a page of swap in physical memory, reserving swap cache space
547  * and reading the disk if it is not already cached.
548  * A failure return means that either the page allocation failed or that
549  * the swap entry is no longer in use.
550  *
551  * get/put_swap_device() aren't needed to call this function, because
552  * __read_swap_cache_async() call them and swap_read_folio() holds the
553  * swap cache folio lock.
554  */
555 struct folio *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
556 		struct vm_area_struct *vma, unsigned long addr,
557 		struct swap_iocb **plug)
558 {
559 	bool page_allocated;
560 	struct mempolicy *mpol;
561 	pgoff_t ilx;
562 	struct folio *folio;
563 
564 	mpol = get_vma_policy(vma, addr, 0, &ilx);
565 	folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
566 					&page_allocated, false);
567 	mpol_cond_put(mpol);
568 
569 	if (page_allocated)
570 		swap_read_folio(folio, false, plug);
571 	return folio;
572 }
573 
574 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
575 				      unsigned long offset,
576 				      int hits,
577 				      int max_pages,
578 				      int prev_win)
579 {
580 	unsigned int pages, last_ra;
581 
582 	/*
583 	 * This heuristic has been found to work well on both sequential and
584 	 * random loads, swapping to hard disk or to SSD: please don't ask
585 	 * what the "+ 2" means, it just happens to work well, that's all.
586 	 */
587 	pages = hits + 2;
588 	if (pages == 2) {
589 		/*
590 		 * We can have no readahead hits to judge by: but must not get
591 		 * stuck here forever, so check for an adjacent offset instead
592 		 * (and don't even bother to check whether swap type is same).
593 		 */
594 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
595 			pages = 1;
596 	} else {
597 		unsigned int roundup = 4;
598 		while (roundup < pages)
599 			roundup <<= 1;
600 		pages = roundup;
601 	}
602 
603 	if (pages > max_pages)
604 		pages = max_pages;
605 
606 	/* Don't shrink readahead too fast */
607 	last_ra = prev_win / 2;
608 	if (pages < last_ra)
609 		pages = last_ra;
610 
611 	return pages;
612 }
613 
614 static unsigned long swapin_nr_pages(unsigned long offset)
615 {
616 	static unsigned long prev_offset;
617 	unsigned int hits, pages, max_pages;
618 	static atomic_t last_readahead_pages;
619 
620 	max_pages = 1 << READ_ONCE(page_cluster);
621 	if (max_pages <= 1)
622 		return 1;
623 
624 	hits = atomic_xchg(&swapin_readahead_hits, 0);
625 	pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
626 				  max_pages,
627 				  atomic_read(&last_readahead_pages));
628 	if (!hits)
629 		WRITE_ONCE(prev_offset, offset);
630 	atomic_set(&last_readahead_pages, pages);
631 
632 	return pages;
633 }
634 
635 /**
636  * swap_cluster_readahead - swap in pages in hope we need them soon
637  * @entry: swap entry of this memory
638  * @gfp_mask: memory allocation flags
639  * @mpol: NUMA memory allocation policy to be applied
640  * @ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
641  *
642  * Returns the struct folio for entry and addr, after queueing swapin.
643  *
644  * Primitive swap readahead code. We simply read an aligned block of
645  * (1 << page_cluster) entries in the swap area. This method is chosen
646  * because it doesn't cost us any seek time.  We also make sure to queue
647  * the 'original' request together with the readahead ones...
648  *
649  * Note: it is intentional that the same NUMA policy and interleave index
650  * are used for every page of the readahead: neighbouring pages on swap
651  * are fairly likely to have been swapped out from the same node.
652  */
653 struct folio *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
654 				    struct mempolicy *mpol, pgoff_t ilx)
655 {
656 	struct folio *folio;
657 	unsigned long entry_offset = swp_offset(entry);
658 	unsigned long offset = entry_offset;
659 	unsigned long start_offset, end_offset;
660 	unsigned long mask;
661 	struct swap_info_struct *si = swp_swap_info(entry);
662 	struct blk_plug plug;
663 	struct swap_iocb *splug = NULL;
664 	bool page_allocated;
665 
666 	mask = swapin_nr_pages(offset) - 1;
667 	if (!mask)
668 		goto skip;
669 
670 	/* Read a page_cluster sized and aligned cluster around offset. */
671 	start_offset = offset & ~mask;
672 	end_offset = offset | mask;
673 	if (!start_offset)	/* First page is swap header. */
674 		start_offset++;
675 	if (end_offset >= si->max)
676 		end_offset = si->max - 1;
677 
678 	blk_start_plug(&plug);
679 	for (offset = start_offset; offset <= end_offset ; offset++) {
680 		/* Ok, do the async read-ahead now */
681 		folio = __read_swap_cache_async(
682 				swp_entry(swp_type(entry), offset),
683 				gfp_mask, mpol, ilx, &page_allocated, false);
684 		if (!folio)
685 			continue;
686 		if (page_allocated) {
687 			swap_read_folio(folio, false, &splug);
688 			if (offset != entry_offset) {
689 				folio_set_readahead(folio);
690 				count_vm_event(SWAP_RA);
691 			}
692 		}
693 		folio_put(folio);
694 	}
695 	blk_finish_plug(&plug);
696 	swap_read_unplug(splug);
697 	lru_add_drain();	/* Push any new pages onto the LRU now */
698 skip:
699 	/* The page was likely read above, so no need for plugging here */
700 	folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
701 					&page_allocated, false);
702 	if (unlikely(page_allocated)) {
703 		zswap_folio_swapin(folio);
704 		swap_read_folio(folio, false, NULL);
705 	}
706 	return folio;
707 }
708 
709 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
710 {
711 	struct address_space *spaces, *space;
712 	unsigned int i, nr;
713 
714 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
715 	spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
716 	if (!spaces)
717 		return -ENOMEM;
718 	for (i = 0; i < nr; i++) {
719 		space = spaces + i;
720 		xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
721 		atomic_set(&space->i_mmap_writable, 0);
722 		space->a_ops = &swap_aops;
723 		/* swap cache doesn't use writeback related tags */
724 		mapping_set_no_writeback_tags(space);
725 	}
726 	nr_swapper_spaces[type] = nr;
727 	swapper_spaces[type] = spaces;
728 
729 	return 0;
730 }
731 
732 void exit_swap_address_space(unsigned int type)
733 {
734 	int i;
735 	struct address_space *spaces = swapper_spaces[type];
736 
737 	for (i = 0; i < nr_swapper_spaces[type]; i++)
738 		VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
739 	kvfree(spaces);
740 	nr_swapper_spaces[type] = 0;
741 	swapper_spaces[type] = NULL;
742 }
743 
744 static int swap_vma_ra_win(struct vm_fault *vmf, unsigned long *start,
745 			   unsigned long *end)
746 {
747 	struct vm_area_struct *vma = vmf->vma;
748 	unsigned long ra_val;
749 	unsigned long faddr, prev_faddr, left, right;
750 	unsigned int max_win, hits, prev_win, win;
751 
752 	max_win = 1 << min(READ_ONCE(page_cluster), SWAP_RA_ORDER_CEILING);
753 	if (max_win == 1)
754 		return 1;
755 
756 	faddr = vmf->address;
757 	ra_val = GET_SWAP_RA_VAL(vma);
758 	prev_faddr = SWAP_RA_ADDR(ra_val);
759 	prev_win = SWAP_RA_WIN(ra_val);
760 	hits = SWAP_RA_HITS(ra_val);
761 	win = __swapin_nr_pages(PFN_DOWN(prev_faddr), PFN_DOWN(faddr), hits,
762 				max_win, prev_win);
763 	atomic_long_set(&vma->swap_readahead_info, SWAP_RA_VAL(faddr, win, 0));
764 	if (win == 1)
765 		return 1;
766 
767 	if (faddr == prev_faddr + PAGE_SIZE)
768 		left = faddr;
769 	else if (prev_faddr == faddr + PAGE_SIZE)
770 		left = faddr - (win << PAGE_SHIFT) + PAGE_SIZE;
771 	else
772 		left = faddr - (((win - 1) / 2) << PAGE_SHIFT);
773 	right = left + (win << PAGE_SHIFT);
774 	if ((long)left < 0)
775 		left = 0;
776 	*start = max3(left, vma->vm_start, faddr & PMD_MASK);
777 	*end = min3(right, vma->vm_end, (faddr & PMD_MASK) + PMD_SIZE);
778 
779 	return win;
780 }
781 
782 /**
783  * swap_vma_readahead - swap in pages in hope we need them soon
784  * @targ_entry: swap entry of the targeted memory
785  * @gfp_mask: memory allocation flags
786  * @mpol: NUMA memory allocation policy to be applied
787  * @targ_ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
788  * @vmf: fault information
789  *
790  * Returns the struct folio for entry and addr, after queueing swapin.
791  *
792  * Primitive swap readahead code. We simply read in a few pages whose
793  * virtual addresses are around the fault address in the same vma.
794  *
795  * Caller must hold read mmap_lock if vmf->vma is not NULL.
796  *
797  */
798 static struct folio *swap_vma_readahead(swp_entry_t targ_entry, gfp_t gfp_mask,
799 		struct mempolicy *mpol, pgoff_t targ_ilx, struct vm_fault *vmf)
800 {
801 	struct blk_plug plug;
802 	struct swap_iocb *splug = NULL;
803 	struct folio *folio;
804 	pte_t *pte = NULL, pentry;
805 	int win;
806 	unsigned long start, end, addr;
807 	swp_entry_t entry;
808 	pgoff_t ilx;
809 	bool page_allocated;
810 
811 	win = swap_vma_ra_win(vmf, &start, &end);
812 	if (win == 1)
813 		goto skip;
814 
815 	ilx = targ_ilx - PFN_DOWN(vmf->address - start);
816 
817 	blk_start_plug(&plug);
818 	for (addr = start; addr < end; ilx++, addr += PAGE_SIZE) {
819 		if (!pte++) {
820 			pte = pte_offset_map(vmf->pmd, addr);
821 			if (!pte)
822 				break;
823 		}
824 		pentry = ptep_get_lockless(pte);
825 		if (!is_swap_pte(pentry))
826 			continue;
827 		entry = pte_to_swp_entry(pentry);
828 		if (unlikely(non_swap_entry(entry)))
829 			continue;
830 		pte_unmap(pte);
831 		pte = NULL;
832 		folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
833 						&page_allocated, false);
834 		if (!folio)
835 			continue;
836 		if (page_allocated) {
837 			swap_read_folio(folio, false, &splug);
838 			if (addr != vmf->address) {
839 				folio_set_readahead(folio);
840 				count_vm_event(SWAP_RA);
841 			}
842 		}
843 		folio_put(folio);
844 	}
845 	if (pte)
846 		pte_unmap(pte);
847 	blk_finish_plug(&plug);
848 	swap_read_unplug(splug);
849 	lru_add_drain();
850 skip:
851 	/* The folio was likely read above, so no need for plugging here */
852 	folio = __read_swap_cache_async(targ_entry, gfp_mask, mpol, targ_ilx,
853 					&page_allocated, false);
854 	if (unlikely(page_allocated)) {
855 		zswap_folio_swapin(folio);
856 		swap_read_folio(folio, false, NULL);
857 	}
858 	return folio;
859 }
860 
861 /**
862  * swapin_readahead - swap in pages in hope we need them soon
863  * @entry: swap entry of this memory
864  * @gfp_mask: memory allocation flags
865  * @vmf: fault information
866  *
867  * Returns the struct page for entry and addr, after queueing swapin.
868  *
869  * It's a main entry function for swap readahead. By the configuration,
870  * it will read ahead blocks by cluster-based(ie, physical disk based)
871  * or vma-based(ie, virtual address based on faulty address) readahead.
872  */
873 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
874 				struct vm_fault *vmf)
875 {
876 	struct mempolicy *mpol;
877 	pgoff_t ilx;
878 	struct folio *folio;
879 
880 	mpol = get_vma_policy(vmf->vma, vmf->address, 0, &ilx);
881 	folio = swap_use_vma_readahead() ?
882 		swap_vma_readahead(entry, gfp_mask, mpol, ilx, vmf) :
883 		swap_cluster_readahead(entry, gfp_mask, mpol, ilx);
884 	mpol_cond_put(mpol);
885 
886 	if (!folio)
887 		return NULL;
888 	return folio_file_page(folio, swp_offset(entry));
889 }
890 
891 #ifdef CONFIG_SYSFS
892 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
893 				     struct kobj_attribute *attr, char *buf)
894 {
895 	return sysfs_emit(buf, "%s\n",
896 			  enable_vma_readahead ? "true" : "false");
897 }
898 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
899 				      struct kobj_attribute *attr,
900 				      const char *buf, size_t count)
901 {
902 	ssize_t ret;
903 
904 	ret = kstrtobool(buf, &enable_vma_readahead);
905 	if (ret)
906 		return ret;
907 
908 	return count;
909 }
910 static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
911 
912 static struct attribute *swap_attrs[] = {
913 	&vma_ra_enabled_attr.attr,
914 	NULL,
915 };
916 
917 static const struct attribute_group swap_attr_group = {
918 	.attrs = swap_attrs,
919 };
920 
921 static int __init swap_init_sysfs(void)
922 {
923 	int err;
924 	struct kobject *swap_kobj;
925 
926 	swap_kobj = kobject_create_and_add("swap", mm_kobj);
927 	if (!swap_kobj) {
928 		pr_err("failed to create swap kobject\n");
929 		return -ENOMEM;
930 	}
931 	err = sysfs_create_group(swap_kobj, &swap_attr_group);
932 	if (err) {
933 		pr_err("failed to register swap group\n");
934 		goto delete_obj;
935 	}
936 	return 0;
937 
938 delete_obj:
939 	kobject_put(swap_kobj);
940 	return err;
941 }
942 subsys_initcall(swap_init_sysfs);
943 #endif
944