1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/swap_state.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 * 8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 9 */ 10 #include <linux/mm.h> 11 #include <linux/gfp.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/mempolicy.h> 14 #include <linux/swap.h> 15 #include <linux/swapops.h> 16 #include <linux/init.h> 17 #include <linux/pagemap.h> 18 #include <linux/pagevec.h> 19 #include <linux/backing-dev.h> 20 #include <linux/blkdev.h> 21 #include <linux/migrate.h> 22 #include <linux/vmalloc.h> 23 #include <linux/huge_mm.h> 24 #include <linux/shmem_fs.h> 25 #include "internal.h" 26 #include "swap_table.h" 27 #include "swap.h" 28 29 /* 30 * swapper_space is a fiction, retained to simplify the path through 31 * vmscan's shrink_folio_list. 32 */ 33 static const struct address_space_operations swap_aops = { 34 .dirty_folio = noop_dirty_folio, 35 #ifdef CONFIG_MIGRATION 36 .migrate_folio = migrate_folio, 37 #endif 38 }; 39 40 /* Set swap_space as read only as swap cache is handled by swap table */ 41 struct address_space swap_space __ro_after_init = { 42 .a_ops = &swap_aops, 43 }; 44 45 static bool enable_vma_readahead __read_mostly = true; 46 47 #define SWAP_RA_ORDER_CEILING 5 48 49 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2) 50 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1) 51 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK 52 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK) 53 54 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK) 55 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT) 56 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK) 57 58 #define SWAP_RA_VAL(addr, win, hits) \ 59 (((addr) & PAGE_MASK) | \ 60 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \ 61 ((hits) & SWAP_RA_HITS_MASK)) 62 63 /* Initial readahead hits is 4 to start up with a small window */ 64 #define GET_SWAP_RA_VAL(vma) \ 65 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4) 66 67 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); 68 69 void show_swap_cache_info(void) 70 { 71 printk("%lu pages in swap cache\n", total_swapcache_pages()); 72 printk("Free swap = %ldkB\n", K(get_nr_swap_pages())); 73 printk("Total swap = %lukB\n", K(total_swap_pages)); 74 } 75 76 /** 77 * swap_cache_get_folio - Looks up a folio in the swap cache. 78 * @entry: swap entry used for the lookup. 79 * 80 * A found folio will be returned unlocked and with its refcount increased. 81 * 82 * Context: Caller must ensure @entry is valid and protect the swap device 83 * with reference count or locks. 84 * Return: Returns the found folio on success, NULL otherwise. The caller 85 * must lock nd check if the folio still matches the swap entry before 86 * use (e.g., folio_matches_swap_entry). 87 */ 88 struct folio *swap_cache_get_folio(swp_entry_t entry) 89 { 90 unsigned long swp_tb; 91 struct folio *folio; 92 93 for (;;) { 94 swp_tb = swap_table_get(__swap_entry_to_cluster(entry), 95 swp_cluster_offset(entry)); 96 if (!swp_tb_is_folio(swp_tb)) 97 return NULL; 98 folio = swp_tb_to_folio(swp_tb); 99 if (likely(folio_try_get(folio))) 100 return folio; 101 } 102 103 return NULL; 104 } 105 106 /** 107 * swap_cache_get_shadow - Looks up a shadow in the swap cache. 108 * @entry: swap entry used for the lookup. 109 * 110 * Context: Caller must ensure @entry is valid and protect the swap device 111 * with reference count or locks. 112 * Return: Returns either NULL or an XA_VALUE (shadow). 113 */ 114 void *swap_cache_get_shadow(swp_entry_t entry) 115 { 116 unsigned long swp_tb; 117 118 swp_tb = swap_table_get(__swap_entry_to_cluster(entry), 119 swp_cluster_offset(entry)); 120 if (swp_tb_is_shadow(swp_tb)) 121 return swp_tb_to_shadow(swp_tb); 122 return NULL; 123 } 124 125 /** 126 * swap_cache_add_folio - Add a folio into the swap cache. 127 * @folio: The folio to be added. 128 * @entry: The swap entry corresponding to the folio. 129 * @gfp: gfp_mask for XArray node allocation. 130 * @shadowp: If a shadow is found, return the shadow. 131 * 132 * Context: Caller must ensure @entry is valid and protect the swap device 133 * with reference count or locks. 134 * The caller also needs to update the corresponding swap_map slots with 135 * SWAP_HAS_CACHE bit to avoid race or conflict. 136 */ 137 void swap_cache_add_folio(struct folio *folio, swp_entry_t entry, void **shadowp) 138 { 139 void *shadow = NULL; 140 unsigned long old_tb, new_tb; 141 struct swap_cluster_info *ci; 142 unsigned int ci_start, ci_off, ci_end; 143 unsigned long nr_pages = folio_nr_pages(folio); 144 145 VM_WARN_ON_ONCE_FOLIO(!folio_test_locked(folio), folio); 146 VM_WARN_ON_ONCE_FOLIO(folio_test_swapcache(folio), folio); 147 VM_WARN_ON_ONCE_FOLIO(!folio_test_swapbacked(folio), folio); 148 149 new_tb = folio_to_swp_tb(folio); 150 ci_start = swp_cluster_offset(entry); 151 ci_end = ci_start + nr_pages; 152 ci_off = ci_start; 153 ci = swap_cluster_lock(__swap_entry_to_info(entry), swp_offset(entry)); 154 do { 155 old_tb = __swap_table_xchg(ci, ci_off, new_tb); 156 WARN_ON_ONCE(swp_tb_is_folio(old_tb)); 157 if (swp_tb_is_shadow(old_tb)) 158 shadow = swp_tb_to_shadow(old_tb); 159 } while (++ci_off < ci_end); 160 161 folio_ref_add(folio, nr_pages); 162 folio_set_swapcache(folio); 163 folio->swap = entry; 164 swap_cluster_unlock(ci); 165 166 node_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages); 167 lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr_pages); 168 169 if (shadowp) 170 *shadowp = shadow; 171 } 172 173 /** 174 * __swap_cache_del_folio - Removes a folio from the swap cache. 175 * @ci: The locked swap cluster. 176 * @folio: The folio. 177 * @entry: The first swap entry that the folio corresponds to. 178 * @shadow: shadow value to be filled in the swap cache. 179 * 180 * Removes a folio from the swap cache and fills a shadow in place. 181 * This won't put the folio's refcount. The caller has to do that. 182 * 183 * Context: Caller must ensure the folio is locked and in the swap cache 184 * using the index of @entry, and lock the cluster that holds the entries. 185 */ 186 void __swap_cache_del_folio(struct swap_cluster_info *ci, struct folio *folio, 187 swp_entry_t entry, void *shadow) 188 { 189 unsigned long old_tb, new_tb; 190 unsigned int ci_start, ci_off, ci_end; 191 unsigned long nr_pages = folio_nr_pages(folio); 192 193 VM_WARN_ON_ONCE(__swap_entry_to_cluster(entry) != ci); 194 VM_WARN_ON_ONCE_FOLIO(!folio_test_locked(folio), folio); 195 VM_WARN_ON_ONCE_FOLIO(!folio_test_swapcache(folio), folio); 196 VM_WARN_ON_ONCE_FOLIO(folio_test_writeback(folio), folio); 197 198 new_tb = shadow_swp_to_tb(shadow); 199 ci_start = swp_cluster_offset(entry); 200 ci_end = ci_start + nr_pages; 201 ci_off = ci_start; 202 do { 203 /* If shadow is NULL, we sets an empty shadow */ 204 old_tb = __swap_table_xchg(ci, ci_off, new_tb); 205 WARN_ON_ONCE(!swp_tb_is_folio(old_tb) || 206 swp_tb_to_folio(old_tb) != folio); 207 } while (++ci_off < ci_end); 208 209 folio->swap.val = 0; 210 folio_clear_swapcache(folio); 211 node_stat_mod_folio(folio, NR_FILE_PAGES, -nr_pages); 212 lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr_pages); 213 } 214 215 /** 216 * swap_cache_del_folio - Removes a folio from the swap cache. 217 * @folio: The folio. 218 * 219 * Same as __swap_cache_del_folio, but handles lock and refcount. The 220 * caller must ensure the folio is either clean or has a swap count 221 * equal to zero, or it may cause data loss. 222 * 223 * Context: Caller must ensure the folio is locked and in the swap cache. 224 */ 225 void swap_cache_del_folio(struct folio *folio) 226 { 227 struct swap_cluster_info *ci; 228 swp_entry_t entry = folio->swap; 229 230 ci = swap_cluster_lock(__swap_entry_to_info(entry), swp_offset(entry)); 231 __swap_cache_del_folio(ci, folio, entry, NULL); 232 swap_cluster_unlock(ci); 233 234 put_swap_folio(folio, entry); 235 folio_ref_sub(folio, folio_nr_pages(folio)); 236 } 237 238 /** 239 * __swap_cache_replace_folio - Replace a folio in the swap cache. 240 * @ci: The locked swap cluster. 241 * @old: The old folio to be replaced. 242 * @new: The new folio. 243 * 244 * Replace an existing folio in the swap cache with a new folio. The 245 * caller is responsible for setting up the new folio's flag and swap 246 * entries. Replacement will take the new folio's swap entry value as 247 * the starting offset to override all slots covered by the new folio. 248 * 249 * Context: Caller must ensure both folios are locked, and lock the 250 * cluster that holds the old folio to be replaced. 251 */ 252 void __swap_cache_replace_folio(struct swap_cluster_info *ci, 253 struct folio *old, struct folio *new) 254 { 255 swp_entry_t entry = new->swap; 256 unsigned long nr_pages = folio_nr_pages(new); 257 unsigned int ci_off = swp_cluster_offset(entry); 258 unsigned int ci_end = ci_off + nr_pages; 259 unsigned long old_tb, new_tb; 260 261 VM_WARN_ON_ONCE(!folio_test_swapcache(old) || !folio_test_swapcache(new)); 262 VM_WARN_ON_ONCE(!folio_test_locked(old) || !folio_test_locked(new)); 263 VM_WARN_ON_ONCE(!entry.val); 264 265 /* Swap cache still stores N entries instead of a high-order entry */ 266 new_tb = folio_to_swp_tb(new); 267 do { 268 old_tb = __swap_table_xchg(ci, ci_off, new_tb); 269 WARN_ON_ONCE(!swp_tb_is_folio(old_tb) || swp_tb_to_folio(old_tb) != old); 270 } while (++ci_off < ci_end); 271 272 /* 273 * If the old folio is partially replaced (e.g., splitting a large 274 * folio, the old folio is shrunk, and new split sub folios replace 275 * the shrunk part), ensure the new folio doesn't overlap it. 276 */ 277 if (IS_ENABLED(CONFIG_DEBUG_VM) && 278 folio_order(old) != folio_order(new)) { 279 ci_off = swp_cluster_offset(old->swap); 280 ci_end = ci_off + folio_nr_pages(old); 281 while (ci_off++ < ci_end) 282 WARN_ON_ONCE(swp_tb_to_folio(__swap_table_get(ci, ci_off)) != old); 283 } 284 } 285 286 /** 287 * swap_cache_clear_shadow - Clears a set of shadows in the swap cache. 288 * @entry: The starting index entry. 289 * @nr_ents: How many slots need to be cleared. 290 * 291 * Context: Caller must ensure the range is valid, all in one single cluster, 292 * not occupied by any folio, and lock the cluster. 293 */ 294 void __swap_cache_clear_shadow(swp_entry_t entry, int nr_ents) 295 { 296 struct swap_cluster_info *ci = __swap_entry_to_cluster(entry); 297 unsigned int ci_off = swp_cluster_offset(entry), ci_end; 298 unsigned long old; 299 300 ci_end = ci_off + nr_ents; 301 do { 302 old = __swap_table_xchg(ci, ci_off, null_to_swp_tb()); 303 WARN_ON_ONCE(swp_tb_is_folio(old)); 304 } while (++ci_off < ci_end); 305 } 306 307 /* 308 * If we are the only user, then try to free up the swap cache. 309 * 310 * Its ok to check the swapcache flag without the folio lock 311 * here because we are going to recheck again inside 312 * folio_free_swap() _with_ the lock. 313 * - Marcelo 314 */ 315 void free_swap_cache(struct folio *folio) 316 { 317 if (folio_test_swapcache(folio) && !folio_mapped(folio) && 318 folio_trylock(folio)) { 319 folio_free_swap(folio); 320 folio_unlock(folio); 321 } 322 } 323 324 /* 325 * Freeing a folio and also freeing any swap cache associated with 326 * this folio if it is the last user. 327 */ 328 void free_folio_and_swap_cache(struct folio *folio) 329 { 330 free_swap_cache(folio); 331 if (!is_huge_zero_folio(folio)) 332 folio_put(folio); 333 } 334 335 /* 336 * Passed an array of pages, drop them all from swapcache and then release 337 * them. They are removed from the LRU and freed if this is their last use. 338 */ 339 void free_pages_and_swap_cache(struct encoded_page **pages, int nr) 340 { 341 struct folio_batch folios; 342 unsigned int refs[PAGEVEC_SIZE]; 343 344 folio_batch_init(&folios); 345 for (int i = 0; i < nr; i++) { 346 struct folio *folio = page_folio(encoded_page_ptr(pages[i])); 347 348 free_swap_cache(folio); 349 refs[folios.nr] = 1; 350 if (unlikely(encoded_page_flags(pages[i]) & 351 ENCODED_PAGE_BIT_NR_PAGES_NEXT)) 352 refs[folios.nr] = encoded_nr_pages(pages[++i]); 353 354 if (folio_batch_add(&folios, folio) == 0) 355 folios_put_refs(&folios, refs); 356 } 357 if (folios.nr) 358 folios_put_refs(&folios, refs); 359 } 360 361 static inline bool swap_use_vma_readahead(void) 362 { 363 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap); 364 } 365 366 /** 367 * swap_update_readahead - Update the readahead statistics of VMA or globally. 368 * @folio: the swap cache folio that just got hit. 369 * @vma: the VMA that should be updated, could be NULL for global update. 370 * @addr: the addr that triggered the swapin, ignored if @vma is NULL. 371 */ 372 void swap_update_readahead(struct folio *folio, struct vm_area_struct *vma, 373 unsigned long addr) 374 { 375 bool readahead, vma_ra = swap_use_vma_readahead(); 376 377 /* 378 * At the moment, we don't support PG_readahead for anon THP 379 * so let's bail out rather than confusing the readahead stat. 380 */ 381 if (unlikely(folio_test_large(folio))) 382 return; 383 384 readahead = folio_test_clear_readahead(folio); 385 if (vma && vma_ra) { 386 unsigned long ra_val; 387 int win, hits; 388 389 ra_val = GET_SWAP_RA_VAL(vma); 390 win = SWAP_RA_WIN(ra_val); 391 hits = SWAP_RA_HITS(ra_val); 392 if (readahead) 393 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX); 394 atomic_long_set(&vma->swap_readahead_info, 395 SWAP_RA_VAL(addr, win, hits)); 396 } 397 398 if (readahead) { 399 count_vm_event(SWAP_RA_HIT); 400 if (!vma || !vma_ra) 401 atomic_inc(&swapin_readahead_hits); 402 } 403 } 404 405 struct folio *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 406 struct mempolicy *mpol, pgoff_t ilx, bool *new_page_allocated, 407 bool skip_if_exists) 408 { 409 struct swap_info_struct *si = __swap_entry_to_info(entry); 410 struct folio *folio; 411 struct folio *new_folio = NULL; 412 struct folio *result = NULL; 413 void *shadow = NULL; 414 415 *new_page_allocated = false; 416 for (;;) { 417 int err; 418 419 /* 420 * Check the swap cache first, if a cached folio is found, 421 * return it unlocked. The caller will lock and check it. 422 */ 423 folio = swap_cache_get_folio(entry); 424 if (folio) 425 goto got_folio; 426 427 /* 428 * Just skip read ahead for unused swap slot. 429 */ 430 if (!swap_entry_swapped(si, entry)) 431 goto put_and_return; 432 433 /* 434 * Get a new folio to read into from swap. Allocate it now if 435 * new_folio not exist, before marking swap_map SWAP_HAS_CACHE, 436 * when -EEXIST will cause any racers to loop around until we 437 * add it to cache. 438 */ 439 if (!new_folio) { 440 new_folio = folio_alloc_mpol(gfp_mask, 0, mpol, ilx, numa_node_id()); 441 if (!new_folio) 442 goto put_and_return; 443 } 444 445 /* 446 * Swap entry may have been freed since our caller observed it. 447 */ 448 err = swapcache_prepare(entry, 1); 449 if (!err) 450 break; 451 else if (err != -EEXIST) 452 goto put_and_return; 453 454 /* 455 * Protect against a recursive call to __read_swap_cache_async() 456 * on the same entry waiting forever here because SWAP_HAS_CACHE 457 * is set but the folio is not the swap cache yet. This can 458 * happen today if mem_cgroup_swapin_charge_folio() below 459 * triggers reclaim through zswap, which may call 460 * __read_swap_cache_async() in the writeback path. 461 */ 462 if (skip_if_exists) 463 goto put_and_return; 464 465 /* 466 * We might race against __swap_cache_del_folio(), and 467 * stumble across a swap_map entry whose SWAP_HAS_CACHE 468 * has not yet been cleared. Or race against another 469 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE 470 * in swap_map, but not yet added its folio to swap cache. 471 */ 472 schedule_timeout_uninterruptible(1); 473 } 474 475 /* 476 * The swap entry is ours to swap in. Prepare the new folio. 477 */ 478 __folio_set_locked(new_folio); 479 __folio_set_swapbacked(new_folio); 480 481 if (mem_cgroup_swapin_charge_folio(new_folio, NULL, gfp_mask, entry)) 482 goto fail_unlock; 483 484 swap_cache_add_folio(new_folio, entry, &shadow); 485 memcg1_swapin(entry, 1); 486 487 if (shadow) 488 workingset_refault(new_folio, shadow); 489 490 /* Caller will initiate read into locked new_folio */ 491 folio_add_lru(new_folio); 492 *new_page_allocated = true; 493 folio = new_folio; 494 got_folio: 495 result = folio; 496 goto put_and_return; 497 498 fail_unlock: 499 put_swap_folio(new_folio, entry); 500 folio_unlock(new_folio); 501 put_and_return: 502 if (!(*new_page_allocated) && new_folio) 503 folio_put(new_folio); 504 return result; 505 } 506 507 /* 508 * Locate a page of swap in physical memory, reserving swap cache space 509 * and reading the disk if it is not already cached. 510 * A failure return means that either the page allocation failed or that 511 * the swap entry is no longer in use. 512 * 513 * get/put_swap_device() aren't needed to call this function, because 514 * __read_swap_cache_async() call them and swap_read_folio() holds the 515 * swap cache folio lock. 516 */ 517 struct folio *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 518 struct vm_area_struct *vma, unsigned long addr, 519 struct swap_iocb **plug) 520 { 521 struct swap_info_struct *si; 522 bool page_allocated; 523 struct mempolicy *mpol; 524 pgoff_t ilx; 525 struct folio *folio; 526 527 si = get_swap_device(entry); 528 if (!si) 529 return NULL; 530 531 mpol = get_vma_policy(vma, addr, 0, &ilx); 532 folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx, 533 &page_allocated, false); 534 mpol_cond_put(mpol); 535 536 if (page_allocated) 537 swap_read_folio(folio, plug); 538 539 put_swap_device(si); 540 return folio; 541 } 542 543 static unsigned int __swapin_nr_pages(unsigned long prev_offset, 544 unsigned long offset, 545 int hits, 546 int max_pages, 547 int prev_win) 548 { 549 unsigned int pages, last_ra; 550 551 /* 552 * This heuristic has been found to work well on both sequential and 553 * random loads, swapping to hard disk or to SSD: please don't ask 554 * what the "+ 2" means, it just happens to work well, that's all. 555 */ 556 pages = hits + 2; 557 if (pages == 2) { 558 /* 559 * We can have no readahead hits to judge by: but must not get 560 * stuck here forever, so check for an adjacent offset instead 561 * (and don't even bother to check whether swap type is same). 562 */ 563 if (offset != prev_offset + 1 && offset != prev_offset - 1) 564 pages = 1; 565 } else { 566 unsigned int roundup = 4; 567 while (roundup < pages) 568 roundup <<= 1; 569 pages = roundup; 570 } 571 572 if (pages > max_pages) 573 pages = max_pages; 574 575 /* Don't shrink readahead too fast */ 576 last_ra = prev_win / 2; 577 if (pages < last_ra) 578 pages = last_ra; 579 580 return pages; 581 } 582 583 static unsigned long swapin_nr_pages(unsigned long offset) 584 { 585 static unsigned long prev_offset; 586 unsigned int hits, pages, max_pages; 587 static atomic_t last_readahead_pages; 588 589 max_pages = 1 << READ_ONCE(page_cluster); 590 if (max_pages <= 1) 591 return 1; 592 593 hits = atomic_xchg(&swapin_readahead_hits, 0); 594 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits, 595 max_pages, 596 atomic_read(&last_readahead_pages)); 597 if (!hits) 598 WRITE_ONCE(prev_offset, offset); 599 atomic_set(&last_readahead_pages, pages); 600 601 return pages; 602 } 603 604 /** 605 * swap_cluster_readahead - swap in pages in hope we need them soon 606 * @entry: swap entry of this memory 607 * @gfp_mask: memory allocation flags 608 * @mpol: NUMA memory allocation policy to be applied 609 * @ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE 610 * 611 * Returns the struct folio for entry and addr, after queueing swapin. 612 * 613 * Primitive swap readahead code. We simply read an aligned block of 614 * (1 << page_cluster) entries in the swap area. This method is chosen 615 * because it doesn't cost us any seek time. We also make sure to queue 616 * the 'original' request together with the readahead ones... 617 * 618 * Note: it is intentional that the same NUMA policy and interleave index 619 * are used for every page of the readahead: neighbouring pages on swap 620 * are fairly likely to have been swapped out from the same node. 621 */ 622 struct folio *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, 623 struct mempolicy *mpol, pgoff_t ilx) 624 { 625 struct folio *folio; 626 unsigned long entry_offset = swp_offset(entry); 627 unsigned long offset = entry_offset; 628 unsigned long start_offset, end_offset; 629 unsigned long mask; 630 struct swap_info_struct *si = __swap_entry_to_info(entry); 631 struct blk_plug plug; 632 struct swap_iocb *splug = NULL; 633 bool page_allocated; 634 635 mask = swapin_nr_pages(offset) - 1; 636 if (!mask) 637 goto skip; 638 639 /* Read a page_cluster sized and aligned cluster around offset. */ 640 start_offset = offset & ~mask; 641 end_offset = offset | mask; 642 if (!start_offset) /* First page is swap header. */ 643 start_offset++; 644 if (end_offset >= si->max) 645 end_offset = si->max - 1; 646 647 blk_start_plug(&plug); 648 for (offset = start_offset; offset <= end_offset ; offset++) { 649 /* Ok, do the async read-ahead now */ 650 folio = __read_swap_cache_async( 651 swp_entry(swp_type(entry), offset), 652 gfp_mask, mpol, ilx, &page_allocated, false); 653 if (!folio) 654 continue; 655 if (page_allocated) { 656 swap_read_folio(folio, &splug); 657 if (offset != entry_offset) { 658 folio_set_readahead(folio); 659 count_vm_event(SWAP_RA); 660 } 661 } 662 folio_put(folio); 663 } 664 blk_finish_plug(&plug); 665 swap_read_unplug(splug); 666 lru_add_drain(); /* Push any new pages onto the LRU now */ 667 skip: 668 /* The page was likely read above, so no need for plugging here */ 669 folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx, 670 &page_allocated, false); 671 if (unlikely(page_allocated)) 672 swap_read_folio(folio, NULL); 673 return folio; 674 } 675 676 static int swap_vma_ra_win(struct vm_fault *vmf, unsigned long *start, 677 unsigned long *end) 678 { 679 struct vm_area_struct *vma = vmf->vma; 680 unsigned long ra_val; 681 unsigned long faddr, prev_faddr, left, right; 682 unsigned int max_win, hits, prev_win, win; 683 684 max_win = 1 << min(READ_ONCE(page_cluster), SWAP_RA_ORDER_CEILING); 685 if (max_win == 1) 686 return 1; 687 688 faddr = vmf->address; 689 ra_val = GET_SWAP_RA_VAL(vma); 690 prev_faddr = SWAP_RA_ADDR(ra_val); 691 prev_win = SWAP_RA_WIN(ra_val); 692 hits = SWAP_RA_HITS(ra_val); 693 win = __swapin_nr_pages(PFN_DOWN(prev_faddr), PFN_DOWN(faddr), hits, 694 max_win, prev_win); 695 atomic_long_set(&vma->swap_readahead_info, SWAP_RA_VAL(faddr, win, 0)); 696 if (win == 1) 697 return 1; 698 699 if (faddr == prev_faddr + PAGE_SIZE) 700 left = faddr; 701 else if (prev_faddr == faddr + PAGE_SIZE) 702 left = faddr - (win << PAGE_SHIFT) + PAGE_SIZE; 703 else 704 left = faddr - (((win - 1) / 2) << PAGE_SHIFT); 705 right = left + (win << PAGE_SHIFT); 706 if ((long)left < 0) 707 left = 0; 708 *start = max3(left, vma->vm_start, faddr & PMD_MASK); 709 *end = min3(right, vma->vm_end, (faddr & PMD_MASK) + PMD_SIZE); 710 711 return win; 712 } 713 714 /** 715 * swap_vma_readahead - swap in pages in hope we need them soon 716 * @targ_entry: swap entry of the targeted memory 717 * @gfp_mask: memory allocation flags 718 * @mpol: NUMA memory allocation policy to be applied 719 * @targ_ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE 720 * @vmf: fault information 721 * 722 * Returns the struct folio for entry and addr, after queueing swapin. 723 * 724 * Primitive swap readahead code. We simply read in a few pages whose 725 * virtual addresses are around the fault address in the same vma. 726 * 727 * Caller must hold read mmap_lock if vmf->vma is not NULL. 728 * 729 */ 730 static struct folio *swap_vma_readahead(swp_entry_t targ_entry, gfp_t gfp_mask, 731 struct mempolicy *mpol, pgoff_t targ_ilx, struct vm_fault *vmf) 732 { 733 struct blk_plug plug; 734 struct swap_iocb *splug = NULL; 735 struct folio *folio; 736 pte_t *pte = NULL, pentry; 737 int win; 738 unsigned long start, end, addr; 739 swp_entry_t entry; 740 pgoff_t ilx; 741 bool page_allocated; 742 743 win = swap_vma_ra_win(vmf, &start, &end); 744 if (win == 1) 745 goto skip; 746 747 ilx = targ_ilx - PFN_DOWN(vmf->address - start); 748 749 blk_start_plug(&plug); 750 for (addr = start; addr < end; ilx++, addr += PAGE_SIZE) { 751 if (!pte++) { 752 pte = pte_offset_map(vmf->pmd, addr); 753 if (!pte) 754 break; 755 } 756 pentry = ptep_get_lockless(pte); 757 if (!is_swap_pte(pentry)) 758 continue; 759 entry = pte_to_swp_entry(pentry); 760 if (unlikely(non_swap_entry(entry))) 761 continue; 762 pte_unmap(pte); 763 pte = NULL; 764 folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx, 765 &page_allocated, false); 766 if (!folio) 767 continue; 768 if (page_allocated) { 769 swap_read_folio(folio, &splug); 770 if (addr != vmf->address) { 771 folio_set_readahead(folio); 772 count_vm_event(SWAP_RA); 773 } 774 } 775 folio_put(folio); 776 } 777 if (pte) 778 pte_unmap(pte); 779 blk_finish_plug(&plug); 780 swap_read_unplug(splug); 781 lru_add_drain(); 782 skip: 783 /* The folio was likely read above, so no need for plugging here */ 784 folio = __read_swap_cache_async(targ_entry, gfp_mask, mpol, targ_ilx, 785 &page_allocated, false); 786 if (unlikely(page_allocated)) 787 swap_read_folio(folio, NULL); 788 return folio; 789 } 790 791 /** 792 * swapin_readahead - swap in pages in hope we need them soon 793 * @entry: swap entry of this memory 794 * @gfp_mask: memory allocation flags 795 * @vmf: fault information 796 * 797 * Returns the struct folio for entry and addr, after queueing swapin. 798 * 799 * It's a main entry function for swap readahead. By the configuration, 800 * it will read ahead blocks by cluster-based(ie, physical disk based) 801 * or vma-based(ie, virtual address based on faulty address) readahead. 802 */ 803 struct folio *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 804 struct vm_fault *vmf) 805 { 806 struct mempolicy *mpol; 807 pgoff_t ilx; 808 struct folio *folio; 809 810 mpol = get_vma_policy(vmf->vma, vmf->address, 0, &ilx); 811 folio = swap_use_vma_readahead() ? 812 swap_vma_readahead(entry, gfp_mask, mpol, ilx, vmf) : 813 swap_cluster_readahead(entry, gfp_mask, mpol, ilx); 814 mpol_cond_put(mpol); 815 816 return folio; 817 } 818 819 #ifdef CONFIG_SYSFS 820 static ssize_t vma_ra_enabled_show(struct kobject *kobj, 821 struct kobj_attribute *attr, char *buf) 822 { 823 return sysfs_emit(buf, "%s\n", str_true_false(enable_vma_readahead)); 824 } 825 static ssize_t vma_ra_enabled_store(struct kobject *kobj, 826 struct kobj_attribute *attr, 827 const char *buf, size_t count) 828 { 829 ssize_t ret; 830 831 ret = kstrtobool(buf, &enable_vma_readahead); 832 if (ret) 833 return ret; 834 835 return count; 836 } 837 static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled); 838 839 static struct attribute *swap_attrs[] = { 840 &vma_ra_enabled_attr.attr, 841 NULL, 842 }; 843 844 static const struct attribute_group swap_attr_group = { 845 .attrs = swap_attrs, 846 }; 847 848 static int __init swap_init(void) 849 { 850 int err; 851 struct kobject *swap_kobj; 852 853 swap_kobj = kobject_create_and_add("swap", mm_kobj); 854 if (!swap_kobj) { 855 pr_err("failed to create swap kobject\n"); 856 return -ENOMEM; 857 } 858 err = sysfs_create_group(swap_kobj, &swap_attr_group); 859 if (err) { 860 pr_err("failed to register swap group\n"); 861 goto delete_obj; 862 } 863 /* Swap cache writeback is LRU based, no tags for it */ 864 mapping_set_no_writeback_tags(&swap_space); 865 return 0; 866 867 delete_obj: 868 kobject_put(swap_kobj); 869 return err; 870 } 871 subsys_initcall(swap_init); 872 #endif 873