xref: /linux/mm/swap_state.c (revision 6000fc4d6f3e55ad52cce8d76317187fe01af2aa)
1 /*
2  *  linux/mm/swap_state.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  *
7  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
8  */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/buffer_head.h>
17 #include <linux/backing-dev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 #include <linux/page_cgroup.h>
21 
22 #include <asm/pgtable.h>
23 
24 /*
25  * swapper_space is a fiction, retained to simplify the path through
26  * vmscan's shrink_page_list, to make sync_page look nicer, and to allow
27  * future use of radix_tree tags in the swap cache.
28  */
29 static const struct address_space_operations swap_aops = {
30 	.writepage	= swap_writepage,
31 	.sync_page	= block_sync_page,
32 	.set_page_dirty	= __set_page_dirty_nobuffers,
33 	.migratepage	= migrate_page,
34 };
35 
36 static struct backing_dev_info swap_backing_dev_info = {
37 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
38 	.unplug_io_fn	= swap_unplug_io_fn,
39 };
40 
41 struct address_space swapper_space = {
42 	.page_tree	= RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
43 	.tree_lock	= __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
44 	.a_ops		= &swap_aops,
45 	.i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
46 	.backing_dev_info = &swap_backing_dev_info,
47 };
48 
49 #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
50 
51 static struct {
52 	unsigned long add_total;
53 	unsigned long del_total;
54 	unsigned long find_success;
55 	unsigned long find_total;
56 } swap_cache_info;
57 
58 void show_swap_cache_info(void)
59 {
60 	printk("%lu pages in swap cache\n", total_swapcache_pages);
61 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
62 		swap_cache_info.add_total, swap_cache_info.del_total,
63 		swap_cache_info.find_success, swap_cache_info.find_total);
64 	printk("Free swap  = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
65 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
66 }
67 
68 /*
69  * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
70  * but sets SwapCache flag and private instead of mapping and index.
71  */
72 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
73 {
74 	int error;
75 
76 	VM_BUG_ON(!PageLocked(page));
77 	VM_BUG_ON(PageSwapCache(page));
78 	VM_BUG_ON(!PageSwapBacked(page));
79 
80 	error = radix_tree_preload(gfp_mask);
81 	if (!error) {
82 		page_cache_get(page);
83 		SetPageSwapCache(page);
84 		set_page_private(page, entry.val);
85 
86 		spin_lock_irq(&swapper_space.tree_lock);
87 		error = radix_tree_insert(&swapper_space.page_tree,
88 						entry.val, page);
89 		if (likely(!error)) {
90 			total_swapcache_pages++;
91 			__inc_zone_page_state(page, NR_FILE_PAGES);
92 			INC_CACHE_INFO(add_total);
93 		}
94 		spin_unlock_irq(&swapper_space.tree_lock);
95 		radix_tree_preload_end();
96 
97 		if (unlikely(error)) {
98 			set_page_private(page, 0UL);
99 			ClearPageSwapCache(page);
100 			page_cache_release(page);
101 		}
102 	}
103 	return error;
104 }
105 
106 /*
107  * This must be called only on pages that have
108  * been verified to be in the swap cache.
109  */
110 void __delete_from_swap_cache(struct page *page)
111 {
112 	VM_BUG_ON(!PageLocked(page));
113 	VM_BUG_ON(!PageSwapCache(page));
114 	VM_BUG_ON(PageWriteback(page));
115 
116 	radix_tree_delete(&swapper_space.page_tree, page_private(page));
117 	set_page_private(page, 0);
118 	ClearPageSwapCache(page);
119 	total_swapcache_pages--;
120 	__dec_zone_page_state(page, NR_FILE_PAGES);
121 	INC_CACHE_INFO(del_total);
122 }
123 
124 /**
125  * add_to_swap - allocate swap space for a page
126  * @page: page we want to move to swap
127  *
128  * Allocate swap space for the page and add the page to the
129  * swap cache.  Caller needs to hold the page lock.
130  */
131 int add_to_swap(struct page *page)
132 {
133 	swp_entry_t entry;
134 	int err;
135 
136 	VM_BUG_ON(!PageLocked(page));
137 	VM_BUG_ON(!PageUptodate(page));
138 
139 	for (;;) {
140 		entry = get_swap_page();
141 		if (!entry.val)
142 			return 0;
143 
144 		/*
145 		 * Radix-tree node allocations from PF_MEMALLOC contexts could
146 		 * completely exhaust the page allocator. __GFP_NOMEMALLOC
147 		 * stops emergency reserves from being allocated.
148 		 *
149 		 * TODO: this could cause a theoretical memory reclaim
150 		 * deadlock in the swap out path.
151 		 */
152 		/*
153 		 * Add it to the swap cache and mark it dirty
154 		 */
155 		err = add_to_swap_cache(page, entry,
156 				__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
157 
158 		switch (err) {
159 		case 0:				/* Success */
160 			SetPageDirty(page);
161 			return 1;
162 		case -EEXIST:
163 			/* Raced with "speculative" read_swap_cache_async */
164 			swapcache_free(entry, NULL);
165 			continue;
166 		default:
167 			/* -ENOMEM radix-tree allocation failure */
168 			swapcache_free(entry, NULL);
169 			return 0;
170 		}
171 	}
172 }
173 
174 /*
175  * This must be called only on pages that have
176  * been verified to be in the swap cache and locked.
177  * It will never put the page into the free list,
178  * the caller has a reference on the page.
179  */
180 void delete_from_swap_cache(struct page *page)
181 {
182 	swp_entry_t entry;
183 
184 	entry.val = page_private(page);
185 
186 	spin_lock_irq(&swapper_space.tree_lock);
187 	__delete_from_swap_cache(page);
188 	spin_unlock_irq(&swapper_space.tree_lock);
189 
190 	swapcache_free(entry, page);
191 	page_cache_release(page);
192 }
193 
194 /*
195  * If we are the only user, then try to free up the swap cache.
196  *
197  * Its ok to check for PageSwapCache without the page lock
198  * here because we are going to recheck again inside
199  * try_to_free_swap() _with_ the lock.
200  * 					- Marcelo
201  */
202 static inline void free_swap_cache(struct page *page)
203 {
204 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
205 		try_to_free_swap(page);
206 		unlock_page(page);
207 	}
208 }
209 
210 /*
211  * Perform a free_page(), also freeing any swap cache associated with
212  * this page if it is the last user of the page.
213  */
214 void free_page_and_swap_cache(struct page *page)
215 {
216 	free_swap_cache(page);
217 	page_cache_release(page);
218 }
219 
220 /*
221  * Passed an array of pages, drop them all from swapcache and then release
222  * them.  They are removed from the LRU and freed if this is their last use.
223  */
224 void free_pages_and_swap_cache(struct page **pages, int nr)
225 {
226 	struct page **pagep = pages;
227 
228 	lru_add_drain();
229 	while (nr) {
230 		int todo = min(nr, PAGEVEC_SIZE);
231 		int i;
232 
233 		for (i = 0; i < todo; i++)
234 			free_swap_cache(pagep[i]);
235 		release_pages(pagep, todo, 0);
236 		pagep += todo;
237 		nr -= todo;
238 	}
239 }
240 
241 /*
242  * Lookup a swap entry in the swap cache. A found page will be returned
243  * unlocked and with its refcount incremented - we rely on the kernel
244  * lock getting page table operations atomic even if we drop the page
245  * lock before returning.
246  */
247 struct page * lookup_swap_cache(swp_entry_t entry)
248 {
249 	struct page *page;
250 
251 	page = find_get_page(&swapper_space, entry.val);
252 
253 	if (page)
254 		INC_CACHE_INFO(find_success);
255 
256 	INC_CACHE_INFO(find_total);
257 	return page;
258 }
259 
260 /*
261  * Locate a page of swap in physical memory, reserving swap cache space
262  * and reading the disk if it is not already cached.
263  * A failure return means that either the page allocation failed or that
264  * the swap entry is no longer in use.
265  */
266 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
267 			struct vm_area_struct *vma, unsigned long addr)
268 {
269 	struct page *found_page, *new_page = NULL;
270 	int err;
271 
272 	do {
273 		/*
274 		 * First check the swap cache.  Since this is normally
275 		 * called after lookup_swap_cache() failed, re-calling
276 		 * that would confuse statistics.
277 		 */
278 		found_page = find_get_page(&swapper_space, entry.val);
279 		if (found_page)
280 			break;
281 
282 		/*
283 		 * Get a new page to read into from swap.
284 		 */
285 		if (!new_page) {
286 			new_page = alloc_page_vma(gfp_mask, vma, addr);
287 			if (!new_page)
288 				break;		/* Out of memory */
289 		}
290 
291 		/*
292 		 * Swap entry may have been freed since our caller observed it.
293 		 */
294 		err = swapcache_prepare(entry);
295 		if (err == -EEXIST) /* seems racy */
296 			continue;
297 		if (err)           /* swp entry is obsolete ? */
298 			break;
299 
300 		/*
301 		 * Associate the page with swap entry in the swap cache.
302 		 * May fail (-EEXIST) if there is already a page associated
303 		 * with this entry in the swap cache: added by a racing
304 		 * read_swap_cache_async, or add_to_swap or shmem_writepage
305 		 * re-using the just freed swap entry for an existing page.
306 		 * May fail (-ENOMEM) if radix-tree node allocation failed.
307 		 */
308 		__set_page_locked(new_page);
309 		SetPageSwapBacked(new_page);
310 		err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL);
311 		if (likely(!err)) {
312 			/*
313 			 * Initiate read into locked page and return.
314 			 */
315 			lru_cache_add_anon(new_page);
316 			swap_readpage(new_page);
317 			return new_page;
318 		}
319 		ClearPageSwapBacked(new_page);
320 		__clear_page_locked(new_page);
321 		swapcache_free(entry, NULL);
322 	} while (err != -ENOMEM);
323 
324 	if (new_page)
325 		page_cache_release(new_page);
326 	return found_page;
327 }
328 
329 /**
330  * swapin_readahead - swap in pages in hope we need them soon
331  * @entry: swap entry of this memory
332  * @gfp_mask: memory allocation flags
333  * @vma: user vma this address belongs to
334  * @addr: target address for mempolicy
335  *
336  * Returns the struct page for entry and addr, after queueing swapin.
337  *
338  * Primitive swap readahead code. We simply read an aligned block of
339  * (1 << page_cluster) entries in the swap area. This method is chosen
340  * because it doesn't cost us any seek time.  We also make sure to queue
341  * the 'original' request together with the readahead ones...
342  *
343  * This has been extended to use the NUMA policies from the mm triggering
344  * the readahead.
345  *
346  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
347  */
348 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
349 			struct vm_area_struct *vma, unsigned long addr)
350 {
351 	int nr_pages;
352 	struct page *page;
353 	unsigned long offset;
354 	unsigned long end_offset;
355 
356 	/*
357 	 * Get starting offset for readaround, and number of pages to read.
358 	 * Adjust starting address by readbehind (for NUMA interleave case)?
359 	 * No, it's very unlikely that swap layout would follow vma layout,
360 	 * more likely that neighbouring swap pages came from the same node:
361 	 * so use the same "addr" to choose the same node for each swap read.
362 	 */
363 	nr_pages = valid_swaphandles(entry, &offset);
364 	for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
365 		/* Ok, do the async read-ahead now */
366 		page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
367 						gfp_mask, vma, addr);
368 		if (!page)
369 			break;
370 		page_cache_release(page);
371 	}
372 	lru_add_drain();	/* Push any new pages onto the LRU now */
373 	return read_swap_cache_async(entry, gfp_mask, vma, addr);
374 }
375