1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/swap_state.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 * 8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 9 */ 10 #include <linux/mm.h> 11 #include <linux/gfp.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/mempolicy.h> 14 #include <linux/swap.h> 15 #include <linux/swapops.h> 16 #include <linux/init.h> 17 #include <linux/pagemap.h> 18 #include <linux/backing-dev.h> 19 #include <linux/blkdev.h> 20 #include <linux/migrate.h> 21 #include <linux/vmalloc.h> 22 #include <linux/swap_slots.h> 23 #include <linux/huge_mm.h> 24 #include <linux/shmem_fs.h> 25 #include "internal.h" 26 #include "swap.h" 27 28 /* 29 * swapper_space is a fiction, retained to simplify the path through 30 * vmscan's shrink_page_list. 31 */ 32 static const struct address_space_operations swap_aops = { 33 .writepage = swap_writepage, 34 .dirty_folio = noop_dirty_folio, 35 #ifdef CONFIG_MIGRATION 36 .migrate_folio = migrate_folio, 37 #endif 38 }; 39 40 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly; 41 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly; 42 static bool enable_vma_readahead __read_mostly = true; 43 44 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2) 45 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1) 46 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK 47 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK) 48 49 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK) 50 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT) 51 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK) 52 53 #define SWAP_RA_VAL(addr, win, hits) \ 54 (((addr) & PAGE_MASK) | \ 55 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \ 56 ((hits) & SWAP_RA_HITS_MASK)) 57 58 /* Initial readahead hits is 4 to start up with a small window */ 59 #define GET_SWAP_RA_VAL(vma) \ 60 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4) 61 62 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); 63 64 void show_swap_cache_info(void) 65 { 66 printk("%lu pages in swap cache\n", total_swapcache_pages()); 67 printk("Free swap = %ldkB\n", K(get_nr_swap_pages())); 68 printk("Total swap = %lukB\n", K(total_swap_pages)); 69 } 70 71 void *get_shadow_from_swap_cache(swp_entry_t entry) 72 { 73 struct address_space *address_space = swap_address_space(entry); 74 pgoff_t idx = swp_offset(entry); 75 struct page *page; 76 77 page = xa_load(&address_space->i_pages, idx); 78 if (xa_is_value(page)) 79 return page; 80 return NULL; 81 } 82 83 /* 84 * add_to_swap_cache resembles filemap_add_folio on swapper_space, 85 * but sets SwapCache flag and private instead of mapping and index. 86 */ 87 int add_to_swap_cache(struct folio *folio, swp_entry_t entry, 88 gfp_t gfp, void **shadowp) 89 { 90 struct address_space *address_space = swap_address_space(entry); 91 pgoff_t idx = swp_offset(entry); 92 XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio)); 93 unsigned long i, nr = folio_nr_pages(folio); 94 void *old; 95 96 xas_set_update(&xas, workingset_update_node); 97 98 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 99 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 100 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 101 102 folio_ref_add(folio, nr); 103 folio_set_swapcache(folio); 104 folio->swap = entry; 105 106 do { 107 xas_lock_irq(&xas); 108 xas_create_range(&xas); 109 if (xas_error(&xas)) 110 goto unlock; 111 for (i = 0; i < nr; i++) { 112 VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio); 113 if (shadowp) { 114 old = xas_load(&xas); 115 if (xa_is_value(old)) 116 *shadowp = old; 117 } 118 xas_store(&xas, folio); 119 xas_next(&xas); 120 } 121 address_space->nrpages += nr; 122 __node_stat_mod_folio(folio, NR_FILE_PAGES, nr); 123 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr); 124 unlock: 125 xas_unlock_irq(&xas); 126 } while (xas_nomem(&xas, gfp)); 127 128 if (!xas_error(&xas)) 129 return 0; 130 131 folio_clear_swapcache(folio); 132 folio_ref_sub(folio, nr); 133 return xas_error(&xas); 134 } 135 136 /* 137 * This must be called only on folios that have 138 * been verified to be in the swap cache. 139 */ 140 void __delete_from_swap_cache(struct folio *folio, 141 swp_entry_t entry, void *shadow) 142 { 143 struct address_space *address_space = swap_address_space(entry); 144 int i; 145 long nr = folio_nr_pages(folio); 146 pgoff_t idx = swp_offset(entry); 147 XA_STATE(xas, &address_space->i_pages, idx); 148 149 xas_set_update(&xas, workingset_update_node); 150 151 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 152 VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio); 153 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 154 155 for (i = 0; i < nr; i++) { 156 void *entry = xas_store(&xas, shadow); 157 VM_BUG_ON_PAGE(entry != folio, entry); 158 xas_next(&xas); 159 } 160 folio->swap.val = 0; 161 folio_clear_swapcache(folio); 162 address_space->nrpages -= nr; 163 __node_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 164 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr); 165 } 166 167 /** 168 * add_to_swap - allocate swap space for a folio 169 * @folio: folio we want to move to swap 170 * 171 * Allocate swap space for the folio and add the folio to the 172 * swap cache. 173 * 174 * Context: Caller needs to hold the folio lock. 175 * Return: Whether the folio was added to the swap cache. 176 */ 177 bool add_to_swap(struct folio *folio) 178 { 179 swp_entry_t entry; 180 int err; 181 182 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 183 VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio); 184 185 entry = folio_alloc_swap(folio); 186 if (!entry.val) 187 return false; 188 189 /* 190 * XArray node allocations from PF_MEMALLOC contexts could 191 * completely exhaust the page allocator. __GFP_NOMEMALLOC 192 * stops emergency reserves from being allocated. 193 * 194 * TODO: this could cause a theoretical memory reclaim 195 * deadlock in the swap out path. 196 */ 197 /* 198 * Add it to the swap cache. 199 */ 200 err = add_to_swap_cache(folio, entry, 201 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL); 202 if (err) 203 /* 204 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 205 * clear SWAP_HAS_CACHE flag. 206 */ 207 goto fail; 208 /* 209 * Normally the folio will be dirtied in unmap because its 210 * pte should be dirty. A special case is MADV_FREE page. The 211 * page's pte could have dirty bit cleared but the folio's 212 * SwapBacked flag is still set because clearing the dirty bit 213 * and SwapBacked flag has no lock protected. For such folio, 214 * unmap will not set dirty bit for it, so folio reclaim will 215 * not write the folio out. This can cause data corruption when 216 * the folio is swapped in later. Always setting the dirty flag 217 * for the folio solves the problem. 218 */ 219 folio_mark_dirty(folio); 220 221 return true; 222 223 fail: 224 put_swap_folio(folio, entry); 225 return false; 226 } 227 228 /* 229 * This must be called only on folios that have 230 * been verified to be in the swap cache and locked. 231 * It will never put the folio into the free list, 232 * the caller has a reference on the folio. 233 */ 234 void delete_from_swap_cache(struct folio *folio) 235 { 236 swp_entry_t entry = folio->swap; 237 struct address_space *address_space = swap_address_space(entry); 238 239 xa_lock_irq(&address_space->i_pages); 240 __delete_from_swap_cache(folio, entry, NULL); 241 xa_unlock_irq(&address_space->i_pages); 242 243 put_swap_folio(folio, entry); 244 folio_ref_sub(folio, folio_nr_pages(folio)); 245 } 246 247 void clear_shadow_from_swap_cache(int type, unsigned long begin, 248 unsigned long end) 249 { 250 unsigned long curr = begin; 251 void *old; 252 253 for (;;) { 254 swp_entry_t entry = swp_entry(type, curr); 255 struct address_space *address_space = swap_address_space(entry); 256 XA_STATE(xas, &address_space->i_pages, curr); 257 258 xas_set_update(&xas, workingset_update_node); 259 260 xa_lock_irq(&address_space->i_pages); 261 xas_for_each(&xas, old, end) { 262 if (!xa_is_value(old)) 263 continue; 264 xas_store(&xas, NULL); 265 } 266 xa_unlock_irq(&address_space->i_pages); 267 268 /* search the next swapcache until we meet end */ 269 curr >>= SWAP_ADDRESS_SPACE_SHIFT; 270 curr++; 271 curr <<= SWAP_ADDRESS_SPACE_SHIFT; 272 if (curr > end) 273 break; 274 } 275 } 276 277 /* 278 * If we are the only user, then try to free up the swap cache. 279 * 280 * Its ok to check the swapcache flag without the folio lock 281 * here because we are going to recheck again inside 282 * folio_free_swap() _with_ the lock. 283 * - Marcelo 284 */ 285 void free_swap_cache(struct page *page) 286 { 287 struct folio *folio = page_folio(page); 288 289 if (folio_test_swapcache(folio) && !folio_mapped(folio) && 290 folio_trylock(folio)) { 291 folio_free_swap(folio); 292 folio_unlock(folio); 293 } 294 } 295 296 /* 297 * Perform a free_page(), also freeing any swap cache associated with 298 * this page if it is the last user of the page. 299 */ 300 void free_page_and_swap_cache(struct page *page) 301 { 302 free_swap_cache(page); 303 if (!is_huge_zero_page(page)) 304 put_page(page); 305 } 306 307 /* 308 * Passed an array of pages, drop them all from swapcache and then release 309 * them. They are removed from the LRU and freed if this is their last use. 310 */ 311 void free_pages_and_swap_cache(struct encoded_page **pages, int nr) 312 { 313 lru_add_drain(); 314 for (int i = 0; i < nr; i++) 315 free_swap_cache(encoded_page_ptr(pages[i])); 316 release_pages(pages, nr); 317 } 318 319 static inline bool swap_use_vma_readahead(void) 320 { 321 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap); 322 } 323 324 /* 325 * Lookup a swap entry in the swap cache. A found folio will be returned 326 * unlocked and with its refcount incremented - we rely on the kernel 327 * lock getting page table operations atomic even if we drop the folio 328 * lock before returning. 329 * 330 * Caller must lock the swap device or hold a reference to keep it valid. 331 */ 332 struct folio *swap_cache_get_folio(swp_entry_t entry, 333 struct vm_area_struct *vma, unsigned long addr) 334 { 335 struct folio *folio; 336 337 folio = filemap_get_folio(swap_address_space(entry), swp_offset(entry)); 338 if (!IS_ERR(folio)) { 339 bool vma_ra = swap_use_vma_readahead(); 340 bool readahead; 341 342 /* 343 * At the moment, we don't support PG_readahead for anon THP 344 * so let's bail out rather than confusing the readahead stat. 345 */ 346 if (unlikely(folio_test_large(folio))) 347 return folio; 348 349 readahead = folio_test_clear_readahead(folio); 350 if (vma && vma_ra) { 351 unsigned long ra_val; 352 int win, hits; 353 354 ra_val = GET_SWAP_RA_VAL(vma); 355 win = SWAP_RA_WIN(ra_val); 356 hits = SWAP_RA_HITS(ra_val); 357 if (readahead) 358 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX); 359 atomic_long_set(&vma->swap_readahead_info, 360 SWAP_RA_VAL(addr, win, hits)); 361 } 362 363 if (readahead) { 364 count_vm_event(SWAP_RA_HIT); 365 if (!vma || !vma_ra) 366 atomic_inc(&swapin_readahead_hits); 367 } 368 } else { 369 folio = NULL; 370 } 371 372 return folio; 373 } 374 375 /** 376 * filemap_get_incore_folio - Find and get a folio from the page or swap caches. 377 * @mapping: The address_space to search. 378 * @index: The page cache index. 379 * 380 * This differs from filemap_get_folio() in that it will also look for the 381 * folio in the swap cache. 382 * 383 * Return: The found folio or %NULL. 384 */ 385 struct folio *filemap_get_incore_folio(struct address_space *mapping, 386 pgoff_t index) 387 { 388 swp_entry_t swp; 389 struct swap_info_struct *si; 390 struct folio *folio = filemap_get_entry(mapping, index); 391 392 if (!folio) 393 return ERR_PTR(-ENOENT); 394 if (!xa_is_value(folio)) 395 return folio; 396 if (!shmem_mapping(mapping)) 397 return ERR_PTR(-ENOENT); 398 399 swp = radix_to_swp_entry(folio); 400 /* There might be swapin error entries in shmem mapping. */ 401 if (non_swap_entry(swp)) 402 return ERR_PTR(-ENOENT); 403 /* Prevent swapoff from happening to us */ 404 si = get_swap_device(swp); 405 if (!si) 406 return ERR_PTR(-ENOENT); 407 index = swp_offset(swp); 408 folio = filemap_get_folio(swap_address_space(swp), index); 409 put_swap_device(si); 410 return folio; 411 } 412 413 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 414 struct mempolicy *mpol, pgoff_t ilx, 415 bool *new_page_allocated) 416 { 417 struct swap_info_struct *si; 418 struct folio *folio; 419 struct page *page; 420 void *shadow = NULL; 421 422 *new_page_allocated = false; 423 si = get_swap_device(entry); 424 if (!si) 425 return NULL; 426 427 for (;;) { 428 int err; 429 /* 430 * First check the swap cache. Since this is normally 431 * called after swap_cache_get_folio() failed, re-calling 432 * that would confuse statistics. 433 */ 434 folio = filemap_get_folio(swap_address_space(entry), 435 swp_offset(entry)); 436 if (!IS_ERR(folio)) { 437 page = folio_file_page(folio, swp_offset(entry)); 438 goto got_page; 439 } 440 441 /* 442 * Just skip read ahead for unused swap slot. 443 * During swap_off when swap_slot_cache is disabled, 444 * we have to handle the race between putting 445 * swap entry in swap cache and marking swap slot 446 * as SWAP_HAS_CACHE. That's done in later part of code or 447 * else swap_off will be aborted if we return NULL. 448 */ 449 if (!swap_swapcount(si, entry) && swap_slot_cache_enabled) 450 goto fail_put_swap; 451 452 /* 453 * Get a new page to read into from swap. Allocate it now, 454 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will 455 * cause any racers to loop around until we add it to cache. 456 */ 457 folio = (struct folio *)alloc_pages_mpol(gfp_mask, 0, 458 mpol, ilx, numa_node_id()); 459 if (!folio) 460 goto fail_put_swap; 461 462 /* 463 * Swap entry may have been freed since our caller observed it. 464 */ 465 err = swapcache_prepare(entry); 466 if (!err) 467 break; 468 469 folio_put(folio); 470 if (err != -EEXIST) 471 goto fail_put_swap; 472 473 /* 474 * We might race against __delete_from_swap_cache(), and 475 * stumble across a swap_map entry whose SWAP_HAS_CACHE 476 * has not yet been cleared. Or race against another 477 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE 478 * in swap_map, but not yet added its page to swap cache. 479 */ 480 schedule_timeout_uninterruptible(1); 481 } 482 483 /* 484 * The swap entry is ours to swap in. Prepare the new page. 485 */ 486 487 __folio_set_locked(folio); 488 __folio_set_swapbacked(folio); 489 490 if (mem_cgroup_swapin_charge_folio(folio, NULL, gfp_mask, entry)) 491 goto fail_unlock; 492 493 /* May fail (-ENOMEM) if XArray node allocation failed. */ 494 if (add_to_swap_cache(folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow)) 495 goto fail_unlock; 496 497 mem_cgroup_swapin_uncharge_swap(entry); 498 499 if (shadow) 500 workingset_refault(folio, shadow); 501 502 /* Caller will initiate read into locked folio */ 503 folio_add_lru(folio); 504 *new_page_allocated = true; 505 page = &folio->page; 506 got_page: 507 put_swap_device(si); 508 return page; 509 510 fail_unlock: 511 put_swap_folio(folio, entry); 512 folio_unlock(folio); 513 folio_put(folio); 514 fail_put_swap: 515 put_swap_device(si); 516 return NULL; 517 } 518 519 /* 520 * Locate a page of swap in physical memory, reserving swap cache space 521 * and reading the disk if it is not already cached. 522 * A failure return means that either the page allocation failed or that 523 * the swap entry is no longer in use. 524 * 525 * get/put_swap_device() aren't needed to call this function, because 526 * __read_swap_cache_async() call them and swap_readpage() holds the 527 * swap cache folio lock. 528 */ 529 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 530 struct vm_area_struct *vma, 531 unsigned long addr, struct swap_iocb **plug) 532 { 533 bool page_allocated; 534 struct mempolicy *mpol; 535 pgoff_t ilx; 536 struct page *page; 537 538 mpol = get_vma_policy(vma, addr, 0, &ilx); 539 page = __read_swap_cache_async(entry, gfp_mask, mpol, ilx, 540 &page_allocated); 541 mpol_cond_put(mpol); 542 543 if (page_allocated) 544 swap_readpage(page, false, plug); 545 return page; 546 } 547 548 static unsigned int __swapin_nr_pages(unsigned long prev_offset, 549 unsigned long offset, 550 int hits, 551 int max_pages, 552 int prev_win) 553 { 554 unsigned int pages, last_ra; 555 556 /* 557 * This heuristic has been found to work well on both sequential and 558 * random loads, swapping to hard disk or to SSD: please don't ask 559 * what the "+ 2" means, it just happens to work well, that's all. 560 */ 561 pages = hits + 2; 562 if (pages == 2) { 563 /* 564 * We can have no readahead hits to judge by: but must not get 565 * stuck here forever, so check for an adjacent offset instead 566 * (and don't even bother to check whether swap type is same). 567 */ 568 if (offset != prev_offset + 1 && offset != prev_offset - 1) 569 pages = 1; 570 } else { 571 unsigned int roundup = 4; 572 while (roundup < pages) 573 roundup <<= 1; 574 pages = roundup; 575 } 576 577 if (pages > max_pages) 578 pages = max_pages; 579 580 /* Don't shrink readahead too fast */ 581 last_ra = prev_win / 2; 582 if (pages < last_ra) 583 pages = last_ra; 584 585 return pages; 586 } 587 588 static unsigned long swapin_nr_pages(unsigned long offset) 589 { 590 static unsigned long prev_offset; 591 unsigned int hits, pages, max_pages; 592 static atomic_t last_readahead_pages; 593 594 max_pages = 1 << READ_ONCE(page_cluster); 595 if (max_pages <= 1) 596 return 1; 597 598 hits = atomic_xchg(&swapin_readahead_hits, 0); 599 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits, 600 max_pages, 601 atomic_read(&last_readahead_pages)); 602 if (!hits) 603 WRITE_ONCE(prev_offset, offset); 604 atomic_set(&last_readahead_pages, pages); 605 606 return pages; 607 } 608 609 /** 610 * swap_cluster_readahead - swap in pages in hope we need them soon 611 * @entry: swap entry of this memory 612 * @gfp_mask: memory allocation flags 613 * @mpol: NUMA memory allocation policy to be applied 614 * @ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE 615 * 616 * Returns the struct page for entry and addr, after queueing swapin. 617 * 618 * Primitive swap readahead code. We simply read an aligned block of 619 * (1 << page_cluster) entries in the swap area. This method is chosen 620 * because it doesn't cost us any seek time. We also make sure to queue 621 * the 'original' request together with the readahead ones... 622 * 623 * Note: it is intentional that the same NUMA policy and interleave index 624 * are used for every page of the readahead: neighbouring pages on swap 625 * are fairly likely to have been swapped out from the same node. 626 */ 627 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, 628 struct mempolicy *mpol, pgoff_t ilx) 629 { 630 struct page *page; 631 unsigned long entry_offset = swp_offset(entry); 632 unsigned long offset = entry_offset; 633 unsigned long start_offset, end_offset; 634 unsigned long mask; 635 struct swap_info_struct *si = swp_swap_info(entry); 636 struct blk_plug plug; 637 struct swap_iocb *splug = NULL; 638 bool page_allocated; 639 640 mask = swapin_nr_pages(offset) - 1; 641 if (!mask) 642 goto skip; 643 644 /* Read a page_cluster sized and aligned cluster around offset. */ 645 start_offset = offset & ~mask; 646 end_offset = offset | mask; 647 if (!start_offset) /* First page is swap header. */ 648 start_offset++; 649 if (end_offset >= si->max) 650 end_offset = si->max - 1; 651 652 blk_start_plug(&plug); 653 for (offset = start_offset; offset <= end_offset ; offset++) { 654 /* Ok, do the async read-ahead now */ 655 page = __read_swap_cache_async( 656 swp_entry(swp_type(entry), offset), 657 gfp_mask, mpol, ilx, &page_allocated); 658 if (!page) 659 continue; 660 if (page_allocated) { 661 swap_readpage(page, false, &splug); 662 if (offset != entry_offset) { 663 SetPageReadahead(page); 664 count_vm_event(SWAP_RA); 665 } 666 } 667 put_page(page); 668 } 669 blk_finish_plug(&plug); 670 swap_read_unplug(splug); 671 lru_add_drain(); /* Push any new pages onto the LRU now */ 672 skip: 673 /* The page was likely read above, so no need for plugging here */ 674 page = __read_swap_cache_async(entry, gfp_mask, mpol, ilx, 675 &page_allocated); 676 if (unlikely(page_allocated)) 677 swap_readpage(page, false, NULL); 678 return page; 679 } 680 681 int init_swap_address_space(unsigned int type, unsigned long nr_pages) 682 { 683 struct address_space *spaces, *space; 684 unsigned int i, nr; 685 686 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); 687 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL); 688 if (!spaces) 689 return -ENOMEM; 690 for (i = 0; i < nr; i++) { 691 space = spaces + i; 692 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ); 693 atomic_set(&space->i_mmap_writable, 0); 694 space->a_ops = &swap_aops; 695 /* swap cache doesn't use writeback related tags */ 696 mapping_set_no_writeback_tags(space); 697 } 698 nr_swapper_spaces[type] = nr; 699 swapper_spaces[type] = spaces; 700 701 return 0; 702 } 703 704 void exit_swap_address_space(unsigned int type) 705 { 706 int i; 707 struct address_space *spaces = swapper_spaces[type]; 708 709 for (i = 0; i < nr_swapper_spaces[type]; i++) 710 VM_WARN_ON_ONCE(!mapping_empty(&spaces[i])); 711 kvfree(spaces); 712 nr_swapper_spaces[type] = 0; 713 swapper_spaces[type] = NULL; 714 } 715 716 #define SWAP_RA_ORDER_CEILING 5 717 718 struct vma_swap_readahead { 719 unsigned short win; 720 unsigned short offset; 721 unsigned short nr_pte; 722 }; 723 724 static void swap_ra_info(struct vm_fault *vmf, 725 struct vma_swap_readahead *ra_info) 726 { 727 struct vm_area_struct *vma = vmf->vma; 728 unsigned long ra_val; 729 unsigned long faddr, pfn, fpfn, lpfn, rpfn; 730 unsigned long start, end; 731 unsigned int max_win, hits, prev_win, win; 732 733 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster), 734 SWAP_RA_ORDER_CEILING); 735 if (max_win == 1) { 736 ra_info->win = 1; 737 return; 738 } 739 740 faddr = vmf->address; 741 fpfn = PFN_DOWN(faddr); 742 ra_val = GET_SWAP_RA_VAL(vma); 743 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val)); 744 prev_win = SWAP_RA_WIN(ra_val); 745 hits = SWAP_RA_HITS(ra_val); 746 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits, 747 max_win, prev_win); 748 atomic_long_set(&vma->swap_readahead_info, 749 SWAP_RA_VAL(faddr, win, 0)); 750 if (win == 1) 751 return; 752 753 if (fpfn == pfn + 1) { 754 lpfn = fpfn; 755 rpfn = fpfn + win; 756 } else if (pfn == fpfn + 1) { 757 lpfn = fpfn - win + 1; 758 rpfn = fpfn + 1; 759 } else { 760 unsigned int left = (win - 1) / 2; 761 762 lpfn = fpfn - left; 763 rpfn = fpfn + win - left; 764 } 765 start = max3(lpfn, PFN_DOWN(vma->vm_start), 766 PFN_DOWN(faddr & PMD_MASK)); 767 end = min3(rpfn, PFN_DOWN(vma->vm_end), 768 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE)); 769 770 ra_info->nr_pte = end - start; 771 ra_info->offset = fpfn - start; 772 } 773 774 /** 775 * swap_vma_readahead - swap in pages in hope we need them soon 776 * @targ_entry: swap entry of the targeted memory 777 * @gfp_mask: memory allocation flags 778 * @mpol: NUMA memory allocation policy to be applied 779 * @targ_ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE 780 * @vmf: fault information 781 * 782 * Returns the struct page for entry and addr, after queueing swapin. 783 * 784 * Primitive swap readahead code. We simply read in a few pages whose 785 * virtual addresses are around the fault address in the same vma. 786 * 787 * Caller must hold read mmap_lock if vmf->vma is not NULL. 788 * 789 */ 790 static struct page *swap_vma_readahead(swp_entry_t targ_entry, gfp_t gfp_mask, 791 struct mempolicy *mpol, pgoff_t targ_ilx, 792 struct vm_fault *vmf) 793 { 794 struct blk_plug plug; 795 struct swap_iocb *splug = NULL; 796 struct page *page; 797 pte_t *pte = NULL, pentry; 798 unsigned long addr; 799 swp_entry_t entry; 800 pgoff_t ilx; 801 unsigned int i; 802 bool page_allocated; 803 struct vma_swap_readahead ra_info = { 804 .win = 1, 805 }; 806 807 swap_ra_info(vmf, &ra_info); 808 if (ra_info.win == 1) 809 goto skip; 810 811 addr = vmf->address - (ra_info.offset * PAGE_SIZE); 812 ilx = targ_ilx - ra_info.offset; 813 814 blk_start_plug(&plug); 815 for (i = 0; i < ra_info.nr_pte; i++, ilx++, addr += PAGE_SIZE) { 816 if (!pte++) { 817 pte = pte_offset_map(vmf->pmd, addr); 818 if (!pte) 819 break; 820 } 821 pentry = ptep_get_lockless(pte); 822 if (!is_swap_pte(pentry)) 823 continue; 824 entry = pte_to_swp_entry(pentry); 825 if (unlikely(non_swap_entry(entry))) 826 continue; 827 pte_unmap(pte); 828 pte = NULL; 829 page = __read_swap_cache_async(entry, gfp_mask, mpol, ilx, 830 &page_allocated); 831 if (!page) 832 continue; 833 if (page_allocated) { 834 swap_readpage(page, false, &splug); 835 if (i != ra_info.offset) { 836 SetPageReadahead(page); 837 count_vm_event(SWAP_RA); 838 } 839 } 840 put_page(page); 841 } 842 if (pte) 843 pte_unmap(pte); 844 blk_finish_plug(&plug); 845 swap_read_unplug(splug); 846 lru_add_drain(); 847 skip: 848 /* The page was likely read above, so no need for plugging here */ 849 page = __read_swap_cache_async(targ_entry, gfp_mask, mpol, targ_ilx, 850 &page_allocated); 851 if (unlikely(page_allocated)) 852 swap_readpage(page, false, NULL); 853 return page; 854 } 855 856 /** 857 * swapin_readahead - swap in pages in hope we need them soon 858 * @entry: swap entry of this memory 859 * @gfp_mask: memory allocation flags 860 * @vmf: fault information 861 * 862 * Returns the struct page for entry and addr, after queueing swapin. 863 * 864 * It's a main entry function for swap readahead. By the configuration, 865 * it will read ahead blocks by cluster-based(ie, physical disk based) 866 * or vma-based(ie, virtual address based on faulty address) readahead. 867 */ 868 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 869 struct vm_fault *vmf) 870 { 871 struct mempolicy *mpol; 872 pgoff_t ilx; 873 struct page *page; 874 875 mpol = get_vma_policy(vmf->vma, vmf->address, 0, &ilx); 876 page = swap_use_vma_readahead() ? 877 swap_vma_readahead(entry, gfp_mask, mpol, ilx, vmf) : 878 swap_cluster_readahead(entry, gfp_mask, mpol, ilx); 879 mpol_cond_put(mpol); 880 return page; 881 } 882 883 #ifdef CONFIG_SYSFS 884 static ssize_t vma_ra_enabled_show(struct kobject *kobj, 885 struct kobj_attribute *attr, char *buf) 886 { 887 return sysfs_emit(buf, "%s\n", 888 enable_vma_readahead ? "true" : "false"); 889 } 890 static ssize_t vma_ra_enabled_store(struct kobject *kobj, 891 struct kobj_attribute *attr, 892 const char *buf, size_t count) 893 { 894 ssize_t ret; 895 896 ret = kstrtobool(buf, &enable_vma_readahead); 897 if (ret) 898 return ret; 899 900 return count; 901 } 902 static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled); 903 904 static struct attribute *swap_attrs[] = { 905 &vma_ra_enabled_attr.attr, 906 NULL, 907 }; 908 909 static const struct attribute_group swap_attr_group = { 910 .attrs = swap_attrs, 911 }; 912 913 static int __init swap_init_sysfs(void) 914 { 915 int err; 916 struct kobject *swap_kobj; 917 918 swap_kobj = kobject_create_and_add("swap", mm_kobj); 919 if (!swap_kobj) { 920 pr_err("failed to create swap kobject\n"); 921 return -ENOMEM; 922 } 923 err = sysfs_create_group(swap_kobj, &swap_attr_group); 924 if (err) { 925 pr_err("failed to register swap group\n"); 926 goto delete_obj; 927 } 928 return 0; 929 930 delete_obj: 931 kobject_put(swap_kobj); 932 return err; 933 } 934 subsys_initcall(swap_init_sysfs); 935 #endif 936