xref: /linux/mm/swap_state.c (revision 4b660dbd9ee2059850fd30e0df420ca7a38a1856)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/swap_state.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  *
8  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
9  */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/mempolicy.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/init.h>
17 #include <linux/pagemap.h>
18 #include <linux/pagevec.h>
19 #include <linux/backing-dev.h>
20 #include <linux/blkdev.h>
21 #include <linux/migrate.h>
22 #include <linux/vmalloc.h>
23 #include <linux/swap_slots.h>
24 #include <linux/huge_mm.h>
25 #include <linux/shmem_fs.h>
26 #include "internal.h"
27 #include "swap.h"
28 
29 /*
30  * swapper_space is a fiction, retained to simplify the path through
31  * vmscan's shrink_page_list.
32  */
33 static const struct address_space_operations swap_aops = {
34 	.writepage	= swap_writepage,
35 	.dirty_folio	= noop_dirty_folio,
36 #ifdef CONFIG_MIGRATION
37 	.migrate_folio	= migrate_folio,
38 #endif
39 };
40 
41 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
42 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
43 static bool enable_vma_readahead __read_mostly = true;
44 
45 #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
46 #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
47 #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
48 #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
49 
50 #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
51 #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
52 #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
53 
54 #define SWAP_RA_VAL(addr, win, hits)				\
55 	(((addr) & PAGE_MASK) |					\
56 	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
57 	 ((hits) & SWAP_RA_HITS_MASK))
58 
59 /* Initial readahead hits is 4 to start up with a small window */
60 #define GET_SWAP_RA_VAL(vma)					\
61 	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
62 
63 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
64 
65 void show_swap_cache_info(void)
66 {
67 	printk("%lu pages in swap cache\n", total_swapcache_pages());
68 	printk("Free swap  = %ldkB\n", K(get_nr_swap_pages()));
69 	printk("Total swap = %lukB\n", K(total_swap_pages));
70 }
71 
72 void *get_shadow_from_swap_cache(swp_entry_t entry)
73 {
74 	struct address_space *address_space = swap_address_space(entry);
75 	pgoff_t idx = swp_offset(entry);
76 	struct page *page;
77 
78 	page = xa_load(&address_space->i_pages, idx);
79 	if (xa_is_value(page))
80 		return page;
81 	return NULL;
82 }
83 
84 /*
85  * add_to_swap_cache resembles filemap_add_folio on swapper_space,
86  * but sets SwapCache flag and private instead of mapping and index.
87  */
88 int add_to_swap_cache(struct folio *folio, swp_entry_t entry,
89 			gfp_t gfp, void **shadowp)
90 {
91 	struct address_space *address_space = swap_address_space(entry);
92 	pgoff_t idx = swp_offset(entry);
93 	XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio));
94 	unsigned long i, nr = folio_nr_pages(folio);
95 	void *old;
96 
97 	xas_set_update(&xas, workingset_update_node);
98 
99 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
100 	VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
101 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
102 
103 	folio_ref_add(folio, nr);
104 	folio_set_swapcache(folio);
105 	folio->swap = entry;
106 
107 	do {
108 		xas_lock_irq(&xas);
109 		xas_create_range(&xas);
110 		if (xas_error(&xas))
111 			goto unlock;
112 		for (i = 0; i < nr; i++) {
113 			VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio);
114 			if (shadowp) {
115 				old = xas_load(&xas);
116 				if (xa_is_value(old))
117 					*shadowp = old;
118 			}
119 			xas_store(&xas, folio);
120 			xas_next(&xas);
121 		}
122 		address_space->nrpages += nr;
123 		__node_stat_mod_folio(folio, NR_FILE_PAGES, nr);
124 		__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr);
125 unlock:
126 		xas_unlock_irq(&xas);
127 	} while (xas_nomem(&xas, gfp));
128 
129 	if (!xas_error(&xas))
130 		return 0;
131 
132 	folio_clear_swapcache(folio);
133 	folio_ref_sub(folio, nr);
134 	return xas_error(&xas);
135 }
136 
137 /*
138  * This must be called only on folios that have
139  * been verified to be in the swap cache.
140  */
141 void __delete_from_swap_cache(struct folio *folio,
142 			swp_entry_t entry, void *shadow)
143 {
144 	struct address_space *address_space = swap_address_space(entry);
145 	int i;
146 	long nr = folio_nr_pages(folio);
147 	pgoff_t idx = swp_offset(entry);
148 	XA_STATE(xas, &address_space->i_pages, idx);
149 
150 	xas_set_update(&xas, workingset_update_node);
151 
152 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
153 	VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
154 	VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
155 
156 	for (i = 0; i < nr; i++) {
157 		void *entry = xas_store(&xas, shadow);
158 		VM_BUG_ON_PAGE(entry != folio, entry);
159 		xas_next(&xas);
160 	}
161 	folio->swap.val = 0;
162 	folio_clear_swapcache(folio);
163 	address_space->nrpages -= nr;
164 	__node_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
165 	__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr);
166 }
167 
168 /**
169  * add_to_swap - allocate swap space for a folio
170  * @folio: folio we want to move to swap
171  *
172  * Allocate swap space for the folio and add the folio to the
173  * swap cache.
174  *
175  * Context: Caller needs to hold the folio lock.
176  * Return: Whether the folio was added to the swap cache.
177  */
178 bool add_to_swap(struct folio *folio)
179 {
180 	swp_entry_t entry;
181 	int err;
182 
183 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
184 	VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
185 
186 	entry = folio_alloc_swap(folio);
187 	if (!entry.val)
188 		return false;
189 
190 	/*
191 	 * XArray node allocations from PF_MEMALLOC contexts could
192 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
193 	 * stops emergency reserves from being allocated.
194 	 *
195 	 * TODO: this could cause a theoretical memory reclaim
196 	 * deadlock in the swap out path.
197 	 */
198 	/*
199 	 * Add it to the swap cache.
200 	 */
201 	err = add_to_swap_cache(folio, entry,
202 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
203 	if (err)
204 		/*
205 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
206 		 * clear SWAP_HAS_CACHE flag.
207 		 */
208 		goto fail;
209 	/*
210 	 * Normally the folio will be dirtied in unmap because its
211 	 * pte should be dirty. A special case is MADV_FREE page. The
212 	 * page's pte could have dirty bit cleared but the folio's
213 	 * SwapBacked flag is still set because clearing the dirty bit
214 	 * and SwapBacked flag has no lock protected. For such folio,
215 	 * unmap will not set dirty bit for it, so folio reclaim will
216 	 * not write the folio out. This can cause data corruption when
217 	 * the folio is swapped in later. Always setting the dirty flag
218 	 * for the folio solves the problem.
219 	 */
220 	folio_mark_dirty(folio);
221 
222 	return true;
223 
224 fail:
225 	put_swap_folio(folio, entry);
226 	return false;
227 }
228 
229 /*
230  * This must be called only on folios that have
231  * been verified to be in the swap cache and locked.
232  * It will never put the folio into the free list,
233  * the caller has a reference on the folio.
234  */
235 void delete_from_swap_cache(struct folio *folio)
236 {
237 	swp_entry_t entry = folio->swap;
238 	struct address_space *address_space = swap_address_space(entry);
239 
240 	xa_lock_irq(&address_space->i_pages);
241 	__delete_from_swap_cache(folio, entry, NULL);
242 	xa_unlock_irq(&address_space->i_pages);
243 
244 	put_swap_folio(folio, entry);
245 	folio_ref_sub(folio, folio_nr_pages(folio));
246 }
247 
248 void clear_shadow_from_swap_cache(int type, unsigned long begin,
249 				unsigned long end)
250 {
251 	unsigned long curr = begin;
252 	void *old;
253 
254 	for (;;) {
255 		swp_entry_t entry = swp_entry(type, curr);
256 		struct address_space *address_space = swap_address_space(entry);
257 		XA_STATE(xas, &address_space->i_pages, curr);
258 
259 		xas_set_update(&xas, workingset_update_node);
260 
261 		xa_lock_irq(&address_space->i_pages);
262 		xas_for_each(&xas, old, end) {
263 			if (!xa_is_value(old))
264 				continue;
265 			xas_store(&xas, NULL);
266 		}
267 		xa_unlock_irq(&address_space->i_pages);
268 
269 		/* search the next swapcache until we meet end */
270 		curr >>= SWAP_ADDRESS_SPACE_SHIFT;
271 		curr++;
272 		curr <<= SWAP_ADDRESS_SPACE_SHIFT;
273 		if (curr > end)
274 			break;
275 	}
276 }
277 
278 /*
279  * If we are the only user, then try to free up the swap cache.
280  *
281  * Its ok to check the swapcache flag without the folio lock
282  * here because we are going to recheck again inside
283  * folio_free_swap() _with_ the lock.
284  * 					- Marcelo
285  */
286 void free_swap_cache(struct folio *folio)
287 {
288 	if (folio_test_swapcache(folio) && !folio_mapped(folio) &&
289 	    folio_trylock(folio)) {
290 		folio_free_swap(folio);
291 		folio_unlock(folio);
292 	}
293 }
294 
295 /*
296  * Perform a free_page(), also freeing any swap cache associated with
297  * this page if it is the last user of the page.
298  */
299 void free_page_and_swap_cache(struct page *page)
300 {
301 	struct folio *folio = page_folio(page);
302 
303 	free_swap_cache(folio);
304 	if (!is_huge_zero_page(page))
305 		folio_put(folio);
306 }
307 
308 /*
309  * Passed an array of pages, drop them all from swapcache and then release
310  * them.  They are removed from the LRU and freed if this is their last use.
311  */
312 void free_pages_and_swap_cache(struct encoded_page **pages, int nr)
313 {
314 	struct folio_batch folios;
315 	unsigned int refs[PAGEVEC_SIZE];
316 
317 	lru_add_drain();
318 	folio_batch_init(&folios);
319 	for (int i = 0; i < nr; i++) {
320 		struct folio *folio = page_folio(encoded_page_ptr(pages[i]));
321 
322 		free_swap_cache(folio);
323 		refs[folios.nr] = 1;
324 		if (unlikely(encoded_page_flags(pages[i]) &
325 			     ENCODED_PAGE_BIT_NR_PAGES_NEXT))
326 			refs[folios.nr] = encoded_nr_pages(pages[++i]);
327 
328 		if (folio_batch_add(&folios, folio) == 0)
329 			folios_put_refs(&folios, refs);
330 	}
331 	if (folios.nr)
332 		folios_put_refs(&folios, refs);
333 }
334 
335 static inline bool swap_use_vma_readahead(void)
336 {
337 	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
338 }
339 
340 /*
341  * Lookup a swap entry in the swap cache. A found folio will be returned
342  * unlocked and with its refcount incremented - we rely on the kernel
343  * lock getting page table operations atomic even if we drop the folio
344  * lock before returning.
345  *
346  * Caller must lock the swap device or hold a reference to keep it valid.
347  */
348 struct folio *swap_cache_get_folio(swp_entry_t entry,
349 		struct vm_area_struct *vma, unsigned long addr)
350 {
351 	struct folio *folio;
352 
353 	folio = filemap_get_folio(swap_address_space(entry), swp_offset(entry));
354 	if (!IS_ERR(folio)) {
355 		bool vma_ra = swap_use_vma_readahead();
356 		bool readahead;
357 
358 		/*
359 		 * At the moment, we don't support PG_readahead for anon THP
360 		 * so let's bail out rather than confusing the readahead stat.
361 		 */
362 		if (unlikely(folio_test_large(folio)))
363 			return folio;
364 
365 		readahead = folio_test_clear_readahead(folio);
366 		if (vma && vma_ra) {
367 			unsigned long ra_val;
368 			int win, hits;
369 
370 			ra_val = GET_SWAP_RA_VAL(vma);
371 			win = SWAP_RA_WIN(ra_val);
372 			hits = SWAP_RA_HITS(ra_val);
373 			if (readahead)
374 				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
375 			atomic_long_set(&vma->swap_readahead_info,
376 					SWAP_RA_VAL(addr, win, hits));
377 		}
378 
379 		if (readahead) {
380 			count_vm_event(SWAP_RA_HIT);
381 			if (!vma || !vma_ra)
382 				atomic_inc(&swapin_readahead_hits);
383 		}
384 	} else {
385 		folio = NULL;
386 	}
387 
388 	return folio;
389 }
390 
391 /**
392  * filemap_get_incore_folio - Find and get a folio from the page or swap caches.
393  * @mapping: The address_space to search.
394  * @index: The page cache index.
395  *
396  * This differs from filemap_get_folio() in that it will also look for the
397  * folio in the swap cache.
398  *
399  * Return: The found folio or %NULL.
400  */
401 struct folio *filemap_get_incore_folio(struct address_space *mapping,
402 		pgoff_t index)
403 {
404 	swp_entry_t swp;
405 	struct swap_info_struct *si;
406 	struct folio *folio = filemap_get_entry(mapping, index);
407 
408 	if (!folio)
409 		return ERR_PTR(-ENOENT);
410 	if (!xa_is_value(folio))
411 		return folio;
412 	if (!shmem_mapping(mapping))
413 		return ERR_PTR(-ENOENT);
414 
415 	swp = radix_to_swp_entry(folio);
416 	/* There might be swapin error entries in shmem mapping. */
417 	if (non_swap_entry(swp))
418 		return ERR_PTR(-ENOENT);
419 	/* Prevent swapoff from happening to us */
420 	si = get_swap_device(swp);
421 	if (!si)
422 		return ERR_PTR(-ENOENT);
423 	index = swp_offset(swp);
424 	folio = filemap_get_folio(swap_address_space(swp), index);
425 	put_swap_device(si);
426 	return folio;
427 }
428 
429 struct folio *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
430 		struct mempolicy *mpol, pgoff_t ilx, bool *new_page_allocated,
431 		bool skip_if_exists)
432 {
433 	struct swap_info_struct *si;
434 	struct folio *folio;
435 	void *shadow = NULL;
436 
437 	*new_page_allocated = false;
438 	si = get_swap_device(entry);
439 	if (!si)
440 		return NULL;
441 
442 	for (;;) {
443 		int err;
444 		/*
445 		 * First check the swap cache.  Since this is normally
446 		 * called after swap_cache_get_folio() failed, re-calling
447 		 * that would confuse statistics.
448 		 */
449 		folio = filemap_get_folio(swap_address_space(entry),
450 						swp_offset(entry));
451 		if (!IS_ERR(folio))
452 			goto got_folio;
453 
454 		/*
455 		 * Just skip read ahead for unused swap slot.
456 		 * During swap_off when swap_slot_cache is disabled,
457 		 * we have to handle the race between putting
458 		 * swap entry in swap cache and marking swap slot
459 		 * as SWAP_HAS_CACHE.  That's done in later part of code or
460 		 * else swap_off will be aborted if we return NULL.
461 		 */
462 		if (!swap_swapcount(si, entry) && swap_slot_cache_enabled)
463 			goto fail_put_swap;
464 
465 		/*
466 		 * Get a new folio to read into from swap.  Allocate it now,
467 		 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
468 		 * cause any racers to loop around until we add it to cache.
469 		 */
470 		folio = (struct folio *)alloc_pages_mpol(gfp_mask, 0,
471 						mpol, ilx, numa_node_id());
472 		if (!folio)
473                         goto fail_put_swap;
474 
475 		/*
476 		 * Swap entry may have been freed since our caller observed it.
477 		 */
478 		err = swapcache_prepare(entry);
479 		if (!err)
480 			break;
481 
482 		folio_put(folio);
483 		if (err != -EEXIST)
484 			goto fail_put_swap;
485 
486 		/*
487 		 * Protect against a recursive call to __read_swap_cache_async()
488 		 * on the same entry waiting forever here because SWAP_HAS_CACHE
489 		 * is set but the folio is not the swap cache yet. This can
490 		 * happen today if mem_cgroup_swapin_charge_folio() below
491 		 * triggers reclaim through zswap, which may call
492 		 * __read_swap_cache_async() in the writeback path.
493 		 */
494 		if (skip_if_exists)
495 			goto fail_put_swap;
496 
497 		/*
498 		 * We might race against __delete_from_swap_cache(), and
499 		 * stumble across a swap_map entry whose SWAP_HAS_CACHE
500 		 * has not yet been cleared.  Or race against another
501 		 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
502 		 * in swap_map, but not yet added its folio to swap cache.
503 		 */
504 		schedule_timeout_uninterruptible(1);
505 	}
506 
507 	/*
508 	 * The swap entry is ours to swap in. Prepare the new folio.
509 	 */
510 
511 	__folio_set_locked(folio);
512 	__folio_set_swapbacked(folio);
513 
514 	if (mem_cgroup_swapin_charge_folio(folio, NULL, gfp_mask, entry))
515 		goto fail_unlock;
516 
517 	/* May fail (-ENOMEM) if XArray node allocation failed. */
518 	if (add_to_swap_cache(folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
519 		goto fail_unlock;
520 
521 	mem_cgroup_swapin_uncharge_swap(entry);
522 
523 	if (shadow)
524 		workingset_refault(folio, shadow);
525 
526 	/* Caller will initiate read into locked folio */
527 	folio_add_lru(folio);
528 	*new_page_allocated = true;
529 got_folio:
530 	put_swap_device(si);
531 	return folio;
532 
533 fail_unlock:
534 	put_swap_folio(folio, entry);
535 	folio_unlock(folio);
536 	folio_put(folio);
537 fail_put_swap:
538 	put_swap_device(si);
539 	return NULL;
540 }
541 
542 /*
543  * Locate a page of swap in physical memory, reserving swap cache space
544  * and reading the disk if it is not already cached.
545  * A failure return means that either the page allocation failed or that
546  * the swap entry is no longer in use.
547  *
548  * get/put_swap_device() aren't needed to call this function, because
549  * __read_swap_cache_async() call them and swap_read_folio() holds the
550  * swap cache folio lock.
551  */
552 struct folio *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
553 		struct vm_area_struct *vma, unsigned long addr,
554 		struct swap_iocb **plug)
555 {
556 	bool page_allocated;
557 	struct mempolicy *mpol;
558 	pgoff_t ilx;
559 	struct folio *folio;
560 
561 	mpol = get_vma_policy(vma, addr, 0, &ilx);
562 	folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
563 					&page_allocated, false);
564 	mpol_cond_put(mpol);
565 
566 	if (page_allocated)
567 		swap_read_folio(folio, false, plug);
568 	return folio;
569 }
570 
571 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
572 				      unsigned long offset,
573 				      int hits,
574 				      int max_pages,
575 				      int prev_win)
576 {
577 	unsigned int pages, last_ra;
578 
579 	/*
580 	 * This heuristic has been found to work well on both sequential and
581 	 * random loads, swapping to hard disk or to SSD: please don't ask
582 	 * what the "+ 2" means, it just happens to work well, that's all.
583 	 */
584 	pages = hits + 2;
585 	if (pages == 2) {
586 		/*
587 		 * We can have no readahead hits to judge by: but must not get
588 		 * stuck here forever, so check for an adjacent offset instead
589 		 * (and don't even bother to check whether swap type is same).
590 		 */
591 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
592 			pages = 1;
593 	} else {
594 		unsigned int roundup = 4;
595 		while (roundup < pages)
596 			roundup <<= 1;
597 		pages = roundup;
598 	}
599 
600 	if (pages > max_pages)
601 		pages = max_pages;
602 
603 	/* Don't shrink readahead too fast */
604 	last_ra = prev_win / 2;
605 	if (pages < last_ra)
606 		pages = last_ra;
607 
608 	return pages;
609 }
610 
611 static unsigned long swapin_nr_pages(unsigned long offset)
612 {
613 	static unsigned long prev_offset;
614 	unsigned int hits, pages, max_pages;
615 	static atomic_t last_readahead_pages;
616 
617 	max_pages = 1 << READ_ONCE(page_cluster);
618 	if (max_pages <= 1)
619 		return 1;
620 
621 	hits = atomic_xchg(&swapin_readahead_hits, 0);
622 	pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
623 				  max_pages,
624 				  atomic_read(&last_readahead_pages));
625 	if (!hits)
626 		WRITE_ONCE(prev_offset, offset);
627 	atomic_set(&last_readahead_pages, pages);
628 
629 	return pages;
630 }
631 
632 /**
633  * swap_cluster_readahead - swap in pages in hope we need them soon
634  * @entry: swap entry of this memory
635  * @gfp_mask: memory allocation flags
636  * @mpol: NUMA memory allocation policy to be applied
637  * @ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
638  *
639  * Returns the struct folio for entry and addr, after queueing swapin.
640  *
641  * Primitive swap readahead code. We simply read an aligned block of
642  * (1 << page_cluster) entries in the swap area. This method is chosen
643  * because it doesn't cost us any seek time.  We also make sure to queue
644  * the 'original' request together with the readahead ones...
645  *
646  * Note: it is intentional that the same NUMA policy and interleave index
647  * are used for every page of the readahead: neighbouring pages on swap
648  * are fairly likely to have been swapped out from the same node.
649  */
650 struct folio *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
651 				    struct mempolicy *mpol, pgoff_t ilx)
652 {
653 	struct folio *folio;
654 	unsigned long entry_offset = swp_offset(entry);
655 	unsigned long offset = entry_offset;
656 	unsigned long start_offset, end_offset;
657 	unsigned long mask;
658 	struct swap_info_struct *si = swp_swap_info(entry);
659 	struct blk_plug plug;
660 	struct swap_iocb *splug = NULL;
661 	bool page_allocated;
662 
663 	mask = swapin_nr_pages(offset) - 1;
664 	if (!mask)
665 		goto skip;
666 
667 	/* Read a page_cluster sized and aligned cluster around offset. */
668 	start_offset = offset & ~mask;
669 	end_offset = offset | mask;
670 	if (!start_offset)	/* First page is swap header. */
671 		start_offset++;
672 	if (end_offset >= si->max)
673 		end_offset = si->max - 1;
674 
675 	blk_start_plug(&plug);
676 	for (offset = start_offset; offset <= end_offset ; offset++) {
677 		/* Ok, do the async read-ahead now */
678 		folio = __read_swap_cache_async(
679 				swp_entry(swp_type(entry), offset),
680 				gfp_mask, mpol, ilx, &page_allocated, false);
681 		if (!folio)
682 			continue;
683 		if (page_allocated) {
684 			swap_read_folio(folio, false, &splug);
685 			if (offset != entry_offset) {
686 				folio_set_readahead(folio);
687 				count_vm_event(SWAP_RA);
688 			}
689 		}
690 		folio_put(folio);
691 	}
692 	blk_finish_plug(&plug);
693 	swap_read_unplug(splug);
694 	lru_add_drain();	/* Push any new pages onto the LRU now */
695 skip:
696 	/* The page was likely read above, so no need for plugging here */
697 	folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
698 					&page_allocated, false);
699 	if (unlikely(page_allocated)) {
700 		zswap_folio_swapin(folio);
701 		swap_read_folio(folio, false, NULL);
702 	}
703 	return folio;
704 }
705 
706 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
707 {
708 	struct address_space *spaces, *space;
709 	unsigned int i, nr;
710 
711 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
712 	spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
713 	if (!spaces)
714 		return -ENOMEM;
715 	for (i = 0; i < nr; i++) {
716 		space = spaces + i;
717 		xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
718 		atomic_set(&space->i_mmap_writable, 0);
719 		space->a_ops = &swap_aops;
720 		/* swap cache doesn't use writeback related tags */
721 		mapping_set_no_writeback_tags(space);
722 	}
723 	nr_swapper_spaces[type] = nr;
724 	swapper_spaces[type] = spaces;
725 
726 	return 0;
727 }
728 
729 void exit_swap_address_space(unsigned int type)
730 {
731 	int i;
732 	struct address_space *spaces = swapper_spaces[type];
733 
734 	for (i = 0; i < nr_swapper_spaces[type]; i++)
735 		VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
736 	kvfree(spaces);
737 	nr_swapper_spaces[type] = 0;
738 	swapper_spaces[type] = NULL;
739 }
740 
741 #define SWAP_RA_ORDER_CEILING	5
742 
743 struct vma_swap_readahead {
744 	unsigned short win;
745 	unsigned short offset;
746 	unsigned short nr_pte;
747 };
748 
749 static void swap_ra_info(struct vm_fault *vmf,
750 			 struct vma_swap_readahead *ra_info)
751 {
752 	struct vm_area_struct *vma = vmf->vma;
753 	unsigned long ra_val;
754 	unsigned long faddr, pfn, fpfn, lpfn, rpfn;
755 	unsigned long start, end;
756 	unsigned int max_win, hits, prev_win, win;
757 
758 	max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
759 			     SWAP_RA_ORDER_CEILING);
760 	if (max_win == 1) {
761 		ra_info->win = 1;
762 		return;
763 	}
764 
765 	faddr = vmf->address;
766 	fpfn = PFN_DOWN(faddr);
767 	ra_val = GET_SWAP_RA_VAL(vma);
768 	pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
769 	prev_win = SWAP_RA_WIN(ra_val);
770 	hits = SWAP_RA_HITS(ra_val);
771 	ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
772 					       max_win, prev_win);
773 	atomic_long_set(&vma->swap_readahead_info,
774 			SWAP_RA_VAL(faddr, win, 0));
775 	if (win == 1)
776 		return;
777 
778 	if (fpfn == pfn + 1) {
779 		lpfn = fpfn;
780 		rpfn = fpfn + win;
781 	} else if (pfn == fpfn + 1) {
782 		lpfn = fpfn - win + 1;
783 		rpfn = fpfn + 1;
784 	} else {
785 		unsigned int left = (win - 1) / 2;
786 
787 		lpfn = fpfn - left;
788 		rpfn = fpfn + win - left;
789 	}
790 	start = max3(lpfn, PFN_DOWN(vma->vm_start),
791 		     PFN_DOWN(faddr & PMD_MASK));
792 	end = min3(rpfn, PFN_DOWN(vma->vm_end),
793 		   PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
794 
795 	ra_info->nr_pte = end - start;
796 	ra_info->offset = fpfn - start;
797 }
798 
799 /**
800  * swap_vma_readahead - swap in pages in hope we need them soon
801  * @targ_entry: swap entry of the targeted memory
802  * @gfp_mask: memory allocation flags
803  * @mpol: NUMA memory allocation policy to be applied
804  * @targ_ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
805  * @vmf: fault information
806  *
807  * Returns the struct folio for entry and addr, after queueing swapin.
808  *
809  * Primitive swap readahead code. We simply read in a few pages whose
810  * virtual addresses are around the fault address in the same vma.
811  *
812  * Caller must hold read mmap_lock if vmf->vma is not NULL.
813  *
814  */
815 static struct folio *swap_vma_readahead(swp_entry_t targ_entry, gfp_t gfp_mask,
816 		struct mempolicy *mpol, pgoff_t targ_ilx, struct vm_fault *vmf)
817 {
818 	struct blk_plug plug;
819 	struct swap_iocb *splug = NULL;
820 	struct folio *folio;
821 	pte_t *pte = NULL, pentry;
822 	unsigned long addr;
823 	swp_entry_t entry;
824 	pgoff_t ilx;
825 	unsigned int i;
826 	bool page_allocated;
827 	struct vma_swap_readahead ra_info = {
828 		.win = 1,
829 	};
830 
831 	swap_ra_info(vmf, &ra_info);
832 	if (ra_info.win == 1)
833 		goto skip;
834 
835 	addr = vmf->address - (ra_info.offset * PAGE_SIZE);
836 	ilx = targ_ilx - ra_info.offset;
837 
838 	blk_start_plug(&plug);
839 	for (i = 0; i < ra_info.nr_pte; i++, ilx++, addr += PAGE_SIZE) {
840 		if (!pte++) {
841 			pte = pte_offset_map(vmf->pmd, addr);
842 			if (!pte)
843 				break;
844 		}
845 		pentry = ptep_get_lockless(pte);
846 		if (!is_swap_pte(pentry))
847 			continue;
848 		entry = pte_to_swp_entry(pentry);
849 		if (unlikely(non_swap_entry(entry)))
850 			continue;
851 		pte_unmap(pte);
852 		pte = NULL;
853 		folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
854 						&page_allocated, false);
855 		if (!folio)
856 			continue;
857 		if (page_allocated) {
858 			swap_read_folio(folio, false, &splug);
859 			if (i != ra_info.offset) {
860 				folio_set_readahead(folio);
861 				count_vm_event(SWAP_RA);
862 			}
863 		}
864 		folio_put(folio);
865 	}
866 	if (pte)
867 		pte_unmap(pte);
868 	blk_finish_plug(&plug);
869 	swap_read_unplug(splug);
870 	lru_add_drain();
871 skip:
872 	/* The folio was likely read above, so no need for plugging here */
873 	folio = __read_swap_cache_async(targ_entry, gfp_mask, mpol, targ_ilx,
874 					&page_allocated, false);
875 	if (unlikely(page_allocated)) {
876 		zswap_folio_swapin(folio);
877 		swap_read_folio(folio, false, NULL);
878 	}
879 	return folio;
880 }
881 
882 /**
883  * swapin_readahead - swap in pages in hope we need them soon
884  * @entry: swap entry of this memory
885  * @gfp_mask: memory allocation flags
886  * @vmf: fault information
887  *
888  * Returns the struct page for entry and addr, after queueing swapin.
889  *
890  * It's a main entry function for swap readahead. By the configuration,
891  * it will read ahead blocks by cluster-based(ie, physical disk based)
892  * or vma-based(ie, virtual address based on faulty address) readahead.
893  */
894 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
895 				struct vm_fault *vmf)
896 {
897 	struct mempolicy *mpol;
898 	pgoff_t ilx;
899 	struct folio *folio;
900 
901 	mpol = get_vma_policy(vmf->vma, vmf->address, 0, &ilx);
902 	folio = swap_use_vma_readahead() ?
903 		swap_vma_readahead(entry, gfp_mask, mpol, ilx, vmf) :
904 		swap_cluster_readahead(entry, gfp_mask, mpol, ilx);
905 	mpol_cond_put(mpol);
906 
907 	if (!folio)
908 		return NULL;
909 	return folio_file_page(folio, swp_offset(entry));
910 }
911 
912 #ifdef CONFIG_SYSFS
913 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
914 				     struct kobj_attribute *attr, char *buf)
915 {
916 	return sysfs_emit(buf, "%s\n",
917 			  enable_vma_readahead ? "true" : "false");
918 }
919 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
920 				      struct kobj_attribute *attr,
921 				      const char *buf, size_t count)
922 {
923 	ssize_t ret;
924 
925 	ret = kstrtobool(buf, &enable_vma_readahead);
926 	if (ret)
927 		return ret;
928 
929 	return count;
930 }
931 static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
932 
933 static struct attribute *swap_attrs[] = {
934 	&vma_ra_enabled_attr.attr,
935 	NULL,
936 };
937 
938 static const struct attribute_group swap_attr_group = {
939 	.attrs = swap_attrs,
940 };
941 
942 static int __init swap_init_sysfs(void)
943 {
944 	int err;
945 	struct kobject *swap_kobj;
946 
947 	swap_kobj = kobject_create_and_add("swap", mm_kobj);
948 	if (!swap_kobj) {
949 		pr_err("failed to create swap kobject\n");
950 		return -ENOMEM;
951 	}
952 	err = sysfs_create_group(swap_kobj, &swap_attr_group);
953 	if (err) {
954 		pr_err("failed to register swap group\n");
955 		goto delete_obj;
956 	}
957 	return 0;
958 
959 delete_obj:
960 	kobject_put(swap_kobj);
961 	return err;
962 }
963 subsys_initcall(swap_init_sysfs);
964 #endif
965