xref: /linux/mm/swap_state.c (revision 4246b92cf9fb32da8d8b060c92d8302797c6fbea)
1 /*
2  *  linux/mm/swap_state.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  *
7  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
8  */
9 #include <linux/mm.h>
10 #include <linux/gfp.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 #include <linux/vmalloc.h>
21 #include <linux/swap_slots.h>
22 #include <linux/huge_mm.h>
23 
24 #include <asm/pgtable.h>
25 
26 /*
27  * swapper_space is a fiction, retained to simplify the path through
28  * vmscan's shrink_page_list.
29  */
30 static const struct address_space_operations swap_aops = {
31 	.writepage	= swap_writepage,
32 	.set_page_dirty	= swap_set_page_dirty,
33 #ifdef CONFIG_MIGRATION
34 	.migratepage	= migrate_page,
35 #endif
36 };
37 
38 struct address_space *swapper_spaces[MAX_SWAPFILES];
39 static unsigned int nr_swapper_spaces[MAX_SWAPFILES];
40 bool swap_vma_readahead = true;
41 
42 #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
43 #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
44 #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
45 #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
46 
47 #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
48 #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
49 #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
50 
51 #define SWAP_RA_VAL(addr, win, hits)				\
52 	(((addr) & PAGE_MASK) |					\
53 	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
54 	 ((hits) & SWAP_RA_HITS_MASK))
55 
56 /* Initial readahead hits is 4 to start up with a small window */
57 #define GET_SWAP_RA_VAL(vma)					\
58 	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
59 
60 #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
61 #define ADD_CACHE_INFO(x, nr)	do { swap_cache_info.x += (nr); } while (0)
62 
63 static struct {
64 	unsigned long add_total;
65 	unsigned long del_total;
66 	unsigned long find_success;
67 	unsigned long find_total;
68 } swap_cache_info;
69 
70 unsigned long total_swapcache_pages(void)
71 {
72 	unsigned int i, j, nr;
73 	unsigned long ret = 0;
74 	struct address_space *spaces;
75 
76 	rcu_read_lock();
77 	for (i = 0; i < MAX_SWAPFILES; i++) {
78 		/*
79 		 * The corresponding entries in nr_swapper_spaces and
80 		 * swapper_spaces will be reused only after at least
81 		 * one grace period.  So it is impossible for them
82 		 * belongs to different usage.
83 		 */
84 		nr = nr_swapper_spaces[i];
85 		spaces = rcu_dereference(swapper_spaces[i]);
86 		if (!nr || !spaces)
87 			continue;
88 		for (j = 0; j < nr; j++)
89 			ret += spaces[j].nrpages;
90 	}
91 	rcu_read_unlock();
92 	return ret;
93 }
94 
95 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
96 
97 void show_swap_cache_info(void)
98 {
99 	printk("%lu pages in swap cache\n", total_swapcache_pages());
100 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
101 		swap_cache_info.add_total, swap_cache_info.del_total,
102 		swap_cache_info.find_success, swap_cache_info.find_total);
103 	printk("Free swap  = %ldkB\n",
104 		get_nr_swap_pages() << (PAGE_SHIFT - 10));
105 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
106 }
107 
108 /*
109  * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
110  * but sets SwapCache flag and private instead of mapping and index.
111  */
112 int __add_to_swap_cache(struct page *page, swp_entry_t entry)
113 {
114 	int error, i, nr = hpage_nr_pages(page);
115 	struct address_space *address_space;
116 	pgoff_t idx = swp_offset(entry);
117 
118 	VM_BUG_ON_PAGE(!PageLocked(page), page);
119 	VM_BUG_ON_PAGE(PageSwapCache(page), page);
120 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
121 
122 	page_ref_add(page, nr);
123 	SetPageSwapCache(page);
124 
125 	address_space = swap_address_space(entry);
126 	spin_lock_irq(&address_space->tree_lock);
127 	for (i = 0; i < nr; i++) {
128 		set_page_private(page + i, entry.val + i);
129 		error = radix_tree_insert(&address_space->page_tree,
130 					  idx + i, page + i);
131 		if (unlikely(error))
132 			break;
133 	}
134 	if (likely(!error)) {
135 		address_space->nrpages += nr;
136 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
137 		ADD_CACHE_INFO(add_total, nr);
138 	} else {
139 		/*
140 		 * Only the context which have set SWAP_HAS_CACHE flag
141 		 * would call add_to_swap_cache().
142 		 * So add_to_swap_cache() doesn't returns -EEXIST.
143 		 */
144 		VM_BUG_ON(error == -EEXIST);
145 		set_page_private(page + i, 0UL);
146 		while (i--) {
147 			radix_tree_delete(&address_space->page_tree, idx + i);
148 			set_page_private(page + i, 0UL);
149 		}
150 		ClearPageSwapCache(page);
151 		page_ref_sub(page, nr);
152 	}
153 	spin_unlock_irq(&address_space->tree_lock);
154 
155 	return error;
156 }
157 
158 
159 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
160 {
161 	int error;
162 
163 	error = radix_tree_maybe_preload_order(gfp_mask, compound_order(page));
164 	if (!error) {
165 		error = __add_to_swap_cache(page, entry);
166 		radix_tree_preload_end();
167 	}
168 	return error;
169 }
170 
171 /*
172  * This must be called only on pages that have
173  * been verified to be in the swap cache.
174  */
175 void __delete_from_swap_cache(struct page *page)
176 {
177 	struct address_space *address_space;
178 	int i, nr = hpage_nr_pages(page);
179 	swp_entry_t entry;
180 	pgoff_t idx;
181 
182 	VM_BUG_ON_PAGE(!PageLocked(page), page);
183 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
184 	VM_BUG_ON_PAGE(PageWriteback(page), page);
185 
186 	entry.val = page_private(page);
187 	address_space = swap_address_space(entry);
188 	idx = swp_offset(entry);
189 	for (i = 0; i < nr; i++) {
190 		radix_tree_delete(&address_space->page_tree, idx + i);
191 		set_page_private(page + i, 0);
192 	}
193 	ClearPageSwapCache(page);
194 	address_space->nrpages -= nr;
195 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
196 	ADD_CACHE_INFO(del_total, nr);
197 }
198 
199 /**
200  * add_to_swap - allocate swap space for a page
201  * @page: page we want to move to swap
202  *
203  * Allocate swap space for the page and add the page to the
204  * swap cache.  Caller needs to hold the page lock.
205  */
206 int add_to_swap(struct page *page)
207 {
208 	swp_entry_t entry;
209 	int err;
210 
211 	VM_BUG_ON_PAGE(!PageLocked(page), page);
212 	VM_BUG_ON_PAGE(!PageUptodate(page), page);
213 
214 	entry = get_swap_page(page);
215 	if (!entry.val)
216 		return 0;
217 
218 	if (mem_cgroup_try_charge_swap(page, entry))
219 		goto fail;
220 
221 	/*
222 	 * Radix-tree node allocations from PF_MEMALLOC contexts could
223 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
224 	 * stops emergency reserves from being allocated.
225 	 *
226 	 * TODO: this could cause a theoretical memory reclaim
227 	 * deadlock in the swap out path.
228 	 */
229 	/*
230 	 * Add it to the swap cache.
231 	 */
232 	err = add_to_swap_cache(page, entry,
233 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
234 	/* -ENOMEM radix-tree allocation failure */
235 	if (err)
236 		/*
237 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
238 		 * clear SWAP_HAS_CACHE flag.
239 		 */
240 		goto fail;
241 	/*
242 	 * Normally the page will be dirtied in unmap because its pte should be
243 	 * dirty. A special case is MADV_FREE page. The page'e pte could have
244 	 * dirty bit cleared but the page's SwapBacked bit is still set because
245 	 * clearing the dirty bit and SwapBacked bit has no lock protected. For
246 	 * such page, unmap will not set dirty bit for it, so page reclaim will
247 	 * not write the page out. This can cause data corruption when the page
248 	 * is swap in later. Always setting the dirty bit for the page solves
249 	 * the problem.
250 	 */
251 	set_page_dirty(page);
252 
253 	return 1;
254 
255 fail:
256 	put_swap_page(page, entry);
257 	return 0;
258 }
259 
260 /*
261  * This must be called only on pages that have
262  * been verified to be in the swap cache and locked.
263  * It will never put the page into the free list,
264  * the caller has a reference on the page.
265  */
266 void delete_from_swap_cache(struct page *page)
267 {
268 	swp_entry_t entry;
269 	struct address_space *address_space;
270 
271 	entry.val = page_private(page);
272 
273 	address_space = swap_address_space(entry);
274 	spin_lock_irq(&address_space->tree_lock);
275 	__delete_from_swap_cache(page);
276 	spin_unlock_irq(&address_space->tree_lock);
277 
278 	put_swap_page(page, entry);
279 	page_ref_sub(page, hpage_nr_pages(page));
280 }
281 
282 /*
283  * If we are the only user, then try to free up the swap cache.
284  *
285  * Its ok to check for PageSwapCache without the page lock
286  * here because we are going to recheck again inside
287  * try_to_free_swap() _with_ the lock.
288  * 					- Marcelo
289  */
290 static inline void free_swap_cache(struct page *page)
291 {
292 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
293 		try_to_free_swap(page);
294 		unlock_page(page);
295 	}
296 }
297 
298 /*
299  * Perform a free_page(), also freeing any swap cache associated with
300  * this page if it is the last user of the page.
301  */
302 void free_page_and_swap_cache(struct page *page)
303 {
304 	free_swap_cache(page);
305 	if (!is_huge_zero_page(page))
306 		put_page(page);
307 }
308 
309 /*
310  * Passed an array of pages, drop them all from swapcache and then release
311  * them.  They are removed from the LRU and freed if this is their last use.
312  */
313 void free_pages_and_swap_cache(struct page **pages, int nr)
314 {
315 	struct page **pagep = pages;
316 	int i;
317 
318 	lru_add_drain();
319 	for (i = 0; i < nr; i++)
320 		free_swap_cache(pagep[i]);
321 	release_pages(pagep, nr, false);
322 }
323 
324 /*
325  * Lookup a swap entry in the swap cache. A found page will be returned
326  * unlocked and with its refcount incremented - we rely on the kernel
327  * lock getting page table operations atomic even if we drop the page
328  * lock before returning.
329  */
330 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
331 			       unsigned long addr)
332 {
333 	struct page *page;
334 	unsigned long ra_info;
335 	int win, hits, readahead;
336 
337 	page = find_get_page(swap_address_space(entry), swp_offset(entry));
338 
339 	INC_CACHE_INFO(find_total);
340 	if (page) {
341 		INC_CACHE_INFO(find_success);
342 		if (unlikely(PageTransCompound(page)))
343 			return page;
344 		readahead = TestClearPageReadahead(page);
345 		if (vma) {
346 			ra_info = GET_SWAP_RA_VAL(vma);
347 			win = SWAP_RA_WIN(ra_info);
348 			hits = SWAP_RA_HITS(ra_info);
349 			if (readahead)
350 				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
351 			atomic_long_set(&vma->swap_readahead_info,
352 					SWAP_RA_VAL(addr, win, hits));
353 		}
354 		if (readahead) {
355 			count_vm_event(SWAP_RA_HIT);
356 			if (!vma)
357 				atomic_inc(&swapin_readahead_hits);
358 		}
359 	}
360 	return page;
361 }
362 
363 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
364 			struct vm_area_struct *vma, unsigned long addr,
365 			bool *new_page_allocated)
366 {
367 	struct page *found_page, *new_page = NULL;
368 	struct address_space *swapper_space = swap_address_space(entry);
369 	int err;
370 	*new_page_allocated = false;
371 
372 	do {
373 		/*
374 		 * First check the swap cache.  Since this is normally
375 		 * called after lookup_swap_cache() failed, re-calling
376 		 * that would confuse statistics.
377 		 */
378 		found_page = find_get_page(swapper_space, swp_offset(entry));
379 		if (found_page)
380 			break;
381 
382 		/*
383 		 * Just skip read ahead for unused swap slot.
384 		 * During swap_off when swap_slot_cache is disabled,
385 		 * we have to handle the race between putting
386 		 * swap entry in swap cache and marking swap slot
387 		 * as SWAP_HAS_CACHE.  That's done in later part of code or
388 		 * else swap_off will be aborted if we return NULL.
389 		 */
390 		if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
391 			break;
392 
393 		/*
394 		 * Get a new page to read into from swap.
395 		 */
396 		if (!new_page) {
397 			new_page = alloc_page_vma(gfp_mask, vma, addr);
398 			if (!new_page)
399 				break;		/* Out of memory */
400 		}
401 
402 		/*
403 		 * call radix_tree_preload() while we can wait.
404 		 */
405 		err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
406 		if (err)
407 			break;
408 
409 		/*
410 		 * Swap entry may have been freed since our caller observed it.
411 		 */
412 		err = swapcache_prepare(entry);
413 		if (err == -EEXIST) {
414 			radix_tree_preload_end();
415 			/*
416 			 * We might race against get_swap_page() and stumble
417 			 * across a SWAP_HAS_CACHE swap_map entry whose page
418 			 * has not been brought into the swapcache yet.
419 			 */
420 			cond_resched();
421 			continue;
422 		}
423 		if (err) {		/* swp entry is obsolete ? */
424 			radix_tree_preload_end();
425 			break;
426 		}
427 
428 		/* May fail (-ENOMEM) if radix-tree node allocation failed. */
429 		__SetPageLocked(new_page);
430 		__SetPageSwapBacked(new_page);
431 		err = __add_to_swap_cache(new_page, entry);
432 		if (likely(!err)) {
433 			radix_tree_preload_end();
434 			/*
435 			 * Initiate read into locked page and return.
436 			 */
437 			lru_cache_add_anon(new_page);
438 			*new_page_allocated = true;
439 			return new_page;
440 		}
441 		radix_tree_preload_end();
442 		__ClearPageLocked(new_page);
443 		/*
444 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
445 		 * clear SWAP_HAS_CACHE flag.
446 		 */
447 		put_swap_page(new_page, entry);
448 	} while (err != -ENOMEM);
449 
450 	if (new_page)
451 		put_page(new_page);
452 	return found_page;
453 }
454 
455 /*
456  * Locate a page of swap in physical memory, reserving swap cache space
457  * and reading the disk if it is not already cached.
458  * A failure return means that either the page allocation failed or that
459  * the swap entry is no longer in use.
460  */
461 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
462 		struct vm_area_struct *vma, unsigned long addr, bool do_poll)
463 {
464 	bool page_was_allocated;
465 	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
466 			vma, addr, &page_was_allocated);
467 
468 	if (page_was_allocated)
469 		swap_readpage(retpage, do_poll);
470 
471 	return retpage;
472 }
473 
474 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
475 				      unsigned long offset,
476 				      int hits,
477 				      int max_pages,
478 				      int prev_win)
479 {
480 	unsigned int pages, last_ra;
481 
482 	/*
483 	 * This heuristic has been found to work well on both sequential and
484 	 * random loads, swapping to hard disk or to SSD: please don't ask
485 	 * what the "+ 2" means, it just happens to work well, that's all.
486 	 */
487 	pages = hits + 2;
488 	if (pages == 2) {
489 		/*
490 		 * We can have no readahead hits to judge by: but must not get
491 		 * stuck here forever, so check for an adjacent offset instead
492 		 * (and don't even bother to check whether swap type is same).
493 		 */
494 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
495 			pages = 1;
496 	} else {
497 		unsigned int roundup = 4;
498 		while (roundup < pages)
499 			roundup <<= 1;
500 		pages = roundup;
501 	}
502 
503 	if (pages > max_pages)
504 		pages = max_pages;
505 
506 	/* Don't shrink readahead too fast */
507 	last_ra = prev_win / 2;
508 	if (pages < last_ra)
509 		pages = last_ra;
510 
511 	return pages;
512 }
513 
514 static unsigned long swapin_nr_pages(unsigned long offset)
515 {
516 	static unsigned long prev_offset;
517 	unsigned int hits, pages, max_pages;
518 	static atomic_t last_readahead_pages;
519 
520 	max_pages = 1 << READ_ONCE(page_cluster);
521 	if (max_pages <= 1)
522 		return 1;
523 
524 	hits = atomic_xchg(&swapin_readahead_hits, 0);
525 	pages = __swapin_nr_pages(prev_offset, offset, hits, max_pages,
526 				  atomic_read(&last_readahead_pages));
527 	if (!hits)
528 		prev_offset = offset;
529 	atomic_set(&last_readahead_pages, pages);
530 
531 	return pages;
532 }
533 
534 /**
535  * swapin_readahead - swap in pages in hope we need them soon
536  * @entry: swap entry of this memory
537  * @gfp_mask: memory allocation flags
538  * @vma: user vma this address belongs to
539  * @addr: target address for mempolicy
540  *
541  * Returns the struct page for entry and addr, after queueing swapin.
542  *
543  * Primitive swap readahead code. We simply read an aligned block of
544  * (1 << page_cluster) entries in the swap area. This method is chosen
545  * because it doesn't cost us any seek time.  We also make sure to queue
546  * the 'original' request together with the readahead ones...
547  *
548  * This has been extended to use the NUMA policies from the mm triggering
549  * the readahead.
550  *
551  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
552  */
553 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
554 			struct vm_area_struct *vma, unsigned long addr)
555 {
556 	struct page *page;
557 	unsigned long entry_offset = swp_offset(entry);
558 	unsigned long offset = entry_offset;
559 	unsigned long start_offset, end_offset;
560 	unsigned long mask;
561 	struct blk_plug plug;
562 	bool do_poll = true, page_allocated;
563 
564 	mask = swapin_nr_pages(offset) - 1;
565 	if (!mask)
566 		goto skip;
567 
568 	do_poll = false;
569 	/* Read a page_cluster sized and aligned cluster around offset. */
570 	start_offset = offset & ~mask;
571 	end_offset = offset | mask;
572 	if (!start_offset)	/* First page is swap header. */
573 		start_offset++;
574 
575 	blk_start_plug(&plug);
576 	for (offset = start_offset; offset <= end_offset ; offset++) {
577 		/* Ok, do the async read-ahead now */
578 		page = __read_swap_cache_async(
579 			swp_entry(swp_type(entry), offset),
580 			gfp_mask, vma, addr, &page_allocated);
581 		if (!page)
582 			continue;
583 		if (page_allocated) {
584 			swap_readpage(page, false);
585 			if (offset != entry_offset &&
586 			    likely(!PageTransCompound(page))) {
587 				SetPageReadahead(page);
588 				count_vm_event(SWAP_RA);
589 			}
590 		}
591 		put_page(page);
592 	}
593 	blk_finish_plug(&plug);
594 
595 	lru_add_drain();	/* Push any new pages onto the LRU now */
596 skip:
597 	return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
598 }
599 
600 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
601 {
602 	struct address_space *spaces, *space;
603 	unsigned int i, nr;
604 
605 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
606 	spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL);
607 	if (!spaces)
608 		return -ENOMEM;
609 	for (i = 0; i < nr; i++) {
610 		space = spaces + i;
611 		INIT_RADIX_TREE(&space->page_tree, GFP_ATOMIC|__GFP_NOWARN);
612 		atomic_set(&space->i_mmap_writable, 0);
613 		space->a_ops = &swap_aops;
614 		/* swap cache doesn't use writeback related tags */
615 		mapping_set_no_writeback_tags(space);
616 		spin_lock_init(&space->tree_lock);
617 	}
618 	nr_swapper_spaces[type] = nr;
619 	rcu_assign_pointer(swapper_spaces[type], spaces);
620 
621 	return 0;
622 }
623 
624 void exit_swap_address_space(unsigned int type)
625 {
626 	struct address_space *spaces;
627 
628 	spaces = swapper_spaces[type];
629 	nr_swapper_spaces[type] = 0;
630 	rcu_assign_pointer(swapper_spaces[type], NULL);
631 	synchronize_rcu();
632 	kvfree(spaces);
633 }
634 
635 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
636 				     unsigned long faddr,
637 				     unsigned long lpfn,
638 				     unsigned long rpfn,
639 				     unsigned long *start,
640 				     unsigned long *end)
641 {
642 	*start = max3(lpfn, PFN_DOWN(vma->vm_start),
643 		      PFN_DOWN(faddr & PMD_MASK));
644 	*end = min3(rpfn, PFN_DOWN(vma->vm_end),
645 		    PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
646 }
647 
648 struct page *swap_readahead_detect(struct vm_fault *vmf,
649 				   struct vma_swap_readahead *swap_ra)
650 {
651 	struct vm_area_struct *vma = vmf->vma;
652 	unsigned long swap_ra_info;
653 	struct page *page;
654 	swp_entry_t entry;
655 	unsigned long faddr, pfn, fpfn;
656 	unsigned long start, end;
657 	pte_t *pte;
658 	unsigned int max_win, hits, prev_win, win, left;
659 #ifndef CONFIG_64BIT
660 	pte_t *tpte;
661 #endif
662 
663 	max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
664 			     SWAP_RA_ORDER_CEILING);
665 	if (max_win == 1) {
666 		swap_ra->win = 1;
667 		return NULL;
668 	}
669 
670 	faddr = vmf->address;
671 	entry = pte_to_swp_entry(vmf->orig_pte);
672 	if ((unlikely(non_swap_entry(entry))))
673 		return NULL;
674 	page = lookup_swap_cache(entry, vma, faddr);
675 	if (page)
676 		return page;
677 
678 	fpfn = PFN_DOWN(faddr);
679 	swap_ra_info = GET_SWAP_RA_VAL(vma);
680 	pfn = PFN_DOWN(SWAP_RA_ADDR(swap_ra_info));
681 	prev_win = SWAP_RA_WIN(swap_ra_info);
682 	hits = SWAP_RA_HITS(swap_ra_info);
683 	swap_ra->win = win = __swapin_nr_pages(pfn, fpfn, hits,
684 					       max_win, prev_win);
685 	atomic_long_set(&vma->swap_readahead_info,
686 			SWAP_RA_VAL(faddr, win, 0));
687 
688 	if (win == 1)
689 		return NULL;
690 
691 	/* Copy the PTEs because the page table may be unmapped */
692 	if (fpfn == pfn + 1)
693 		swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
694 	else if (pfn == fpfn + 1)
695 		swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
696 				  &start, &end);
697 	else {
698 		left = (win - 1) / 2;
699 		swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
700 				  &start, &end);
701 	}
702 	swap_ra->nr_pte = end - start;
703 	swap_ra->offset = fpfn - start;
704 	pte = vmf->pte - swap_ra->offset;
705 #ifdef CONFIG_64BIT
706 	swap_ra->ptes = pte;
707 #else
708 	tpte = swap_ra->ptes;
709 	for (pfn = start; pfn != end; pfn++)
710 		*tpte++ = *pte++;
711 #endif
712 
713 	return NULL;
714 }
715 
716 struct page *do_swap_page_readahead(swp_entry_t fentry, gfp_t gfp_mask,
717 				    struct vm_fault *vmf,
718 				    struct vma_swap_readahead *swap_ra)
719 {
720 	struct blk_plug plug;
721 	struct vm_area_struct *vma = vmf->vma;
722 	struct page *page;
723 	pte_t *pte, pentry;
724 	swp_entry_t entry;
725 	unsigned int i;
726 	bool page_allocated;
727 
728 	if (swap_ra->win == 1)
729 		goto skip;
730 
731 	blk_start_plug(&plug);
732 	for (i = 0, pte = swap_ra->ptes; i < swap_ra->nr_pte;
733 	     i++, pte++) {
734 		pentry = *pte;
735 		if (pte_none(pentry))
736 			continue;
737 		if (pte_present(pentry))
738 			continue;
739 		entry = pte_to_swp_entry(pentry);
740 		if (unlikely(non_swap_entry(entry)))
741 			continue;
742 		page = __read_swap_cache_async(entry, gfp_mask, vma,
743 					       vmf->address, &page_allocated);
744 		if (!page)
745 			continue;
746 		if (page_allocated) {
747 			swap_readpage(page, false);
748 			if (i != swap_ra->offset &&
749 			    likely(!PageTransCompound(page))) {
750 				SetPageReadahead(page);
751 				count_vm_event(SWAP_RA);
752 			}
753 		}
754 		put_page(page);
755 	}
756 	blk_finish_plug(&plug);
757 	lru_add_drain();
758 skip:
759 	return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
760 				     swap_ra->win == 1);
761 }
762 
763 #ifdef CONFIG_SYSFS
764 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
765 				     struct kobj_attribute *attr, char *buf)
766 {
767 	return sprintf(buf, "%s\n", swap_vma_readahead ? "true" : "false");
768 }
769 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
770 				      struct kobj_attribute *attr,
771 				      const char *buf, size_t count)
772 {
773 	if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
774 		swap_vma_readahead = true;
775 	else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
776 		swap_vma_readahead = false;
777 	else
778 		return -EINVAL;
779 
780 	return count;
781 }
782 static struct kobj_attribute vma_ra_enabled_attr =
783 	__ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
784 	       vma_ra_enabled_store);
785 
786 static struct attribute *swap_attrs[] = {
787 	&vma_ra_enabled_attr.attr,
788 	NULL,
789 };
790 
791 static struct attribute_group swap_attr_group = {
792 	.attrs = swap_attrs,
793 };
794 
795 static int __init swap_init_sysfs(void)
796 {
797 	int err;
798 	struct kobject *swap_kobj;
799 
800 	swap_kobj = kobject_create_and_add("swap", mm_kobj);
801 	if (!swap_kobj) {
802 		pr_err("failed to create swap kobject\n");
803 		return -ENOMEM;
804 	}
805 	err = sysfs_create_group(swap_kobj, &swap_attr_group);
806 	if (err) {
807 		pr_err("failed to register swap group\n");
808 		goto delete_obj;
809 	}
810 	return 0;
811 
812 delete_obj:
813 	kobject_put(swap_kobj);
814 	return err;
815 }
816 subsys_initcall(swap_init_sysfs);
817 #endif
818