1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/swap_state.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 * 8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 9 */ 10 #include <linux/mm.h> 11 #include <linux/gfp.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/init.h> 16 #include <linux/pagemap.h> 17 #include <linux/backing-dev.h> 18 #include <linux/blkdev.h> 19 #include <linux/pagevec.h> 20 #include <linux/migrate.h> 21 #include <linux/vmalloc.h> 22 #include <linux/swap_slots.h> 23 #include <linux/huge_mm.h> 24 25 #include <asm/pgtable.h> 26 27 /* 28 * swapper_space is a fiction, retained to simplify the path through 29 * vmscan's shrink_page_list. 30 */ 31 static const struct address_space_operations swap_aops = { 32 .writepage = swap_writepage, 33 .set_page_dirty = swap_set_page_dirty, 34 #ifdef CONFIG_MIGRATION 35 .migratepage = migrate_page, 36 #endif 37 }; 38 39 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly; 40 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly; 41 static bool enable_vma_readahead __read_mostly = true; 42 43 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2) 44 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1) 45 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK 46 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK) 47 48 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK) 49 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT) 50 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK) 51 52 #define SWAP_RA_VAL(addr, win, hits) \ 53 (((addr) & PAGE_MASK) | \ 54 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \ 55 ((hits) & SWAP_RA_HITS_MASK)) 56 57 /* Initial readahead hits is 4 to start up with a small window */ 58 #define GET_SWAP_RA_VAL(vma) \ 59 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4) 60 61 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0) 62 #define ADD_CACHE_INFO(x, nr) do { swap_cache_info.x += (nr); } while (0) 63 64 static struct { 65 unsigned long add_total; 66 unsigned long del_total; 67 unsigned long find_success; 68 unsigned long find_total; 69 } swap_cache_info; 70 71 unsigned long total_swapcache_pages(void) 72 { 73 unsigned int i, j, nr; 74 unsigned long ret = 0; 75 struct address_space *spaces; 76 77 rcu_read_lock(); 78 for (i = 0; i < MAX_SWAPFILES; i++) { 79 /* 80 * The corresponding entries in nr_swapper_spaces and 81 * swapper_spaces will be reused only after at least 82 * one grace period. So it is impossible for them 83 * belongs to different usage. 84 */ 85 nr = nr_swapper_spaces[i]; 86 spaces = rcu_dereference(swapper_spaces[i]); 87 if (!nr || !spaces) 88 continue; 89 for (j = 0; j < nr; j++) 90 ret += spaces[j].nrpages; 91 } 92 rcu_read_unlock(); 93 return ret; 94 } 95 96 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); 97 98 void show_swap_cache_info(void) 99 { 100 printk("%lu pages in swap cache\n", total_swapcache_pages()); 101 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", 102 swap_cache_info.add_total, swap_cache_info.del_total, 103 swap_cache_info.find_success, swap_cache_info.find_total); 104 printk("Free swap = %ldkB\n", 105 get_nr_swap_pages() << (PAGE_SHIFT - 10)); 106 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); 107 } 108 109 /* 110 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, 111 * but sets SwapCache flag and private instead of mapping and index. 112 */ 113 int __add_to_swap_cache(struct page *page, swp_entry_t entry) 114 { 115 int error, i, nr = hpage_nr_pages(page); 116 struct address_space *address_space; 117 pgoff_t idx = swp_offset(entry); 118 119 VM_BUG_ON_PAGE(!PageLocked(page), page); 120 VM_BUG_ON_PAGE(PageSwapCache(page), page); 121 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 122 123 page_ref_add(page, nr); 124 SetPageSwapCache(page); 125 126 address_space = swap_address_space(entry); 127 xa_lock_irq(&address_space->i_pages); 128 for (i = 0; i < nr; i++) { 129 set_page_private(page + i, entry.val + i); 130 error = radix_tree_insert(&address_space->i_pages, 131 idx + i, page + i); 132 if (unlikely(error)) 133 break; 134 } 135 if (likely(!error)) { 136 address_space->nrpages += nr; 137 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); 138 ADD_CACHE_INFO(add_total, nr); 139 } else { 140 /* 141 * Only the context which have set SWAP_HAS_CACHE flag 142 * would call add_to_swap_cache(). 143 * So add_to_swap_cache() doesn't returns -EEXIST. 144 */ 145 VM_BUG_ON(error == -EEXIST); 146 set_page_private(page + i, 0UL); 147 while (i--) { 148 radix_tree_delete(&address_space->i_pages, idx + i); 149 set_page_private(page + i, 0UL); 150 } 151 ClearPageSwapCache(page); 152 page_ref_sub(page, nr); 153 } 154 xa_unlock_irq(&address_space->i_pages); 155 156 return error; 157 } 158 159 160 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) 161 { 162 int error; 163 164 error = radix_tree_maybe_preload_order(gfp_mask, compound_order(page)); 165 if (!error) { 166 error = __add_to_swap_cache(page, entry); 167 radix_tree_preload_end(); 168 } 169 return error; 170 } 171 172 /* 173 * This must be called only on pages that have 174 * been verified to be in the swap cache. 175 */ 176 void __delete_from_swap_cache(struct page *page) 177 { 178 struct address_space *address_space; 179 int i, nr = hpage_nr_pages(page); 180 swp_entry_t entry; 181 pgoff_t idx; 182 183 VM_BUG_ON_PAGE(!PageLocked(page), page); 184 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 185 VM_BUG_ON_PAGE(PageWriteback(page), page); 186 187 entry.val = page_private(page); 188 address_space = swap_address_space(entry); 189 idx = swp_offset(entry); 190 for (i = 0; i < nr; i++) { 191 radix_tree_delete(&address_space->i_pages, idx + i); 192 set_page_private(page + i, 0); 193 } 194 ClearPageSwapCache(page); 195 address_space->nrpages -= nr; 196 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 197 ADD_CACHE_INFO(del_total, nr); 198 } 199 200 /** 201 * add_to_swap - allocate swap space for a page 202 * @page: page we want to move to swap 203 * 204 * Allocate swap space for the page and add the page to the 205 * swap cache. Caller needs to hold the page lock. 206 */ 207 int add_to_swap(struct page *page) 208 { 209 swp_entry_t entry; 210 int err; 211 212 VM_BUG_ON_PAGE(!PageLocked(page), page); 213 VM_BUG_ON_PAGE(!PageUptodate(page), page); 214 215 entry = get_swap_page(page); 216 if (!entry.val) 217 return 0; 218 219 /* 220 * Radix-tree node allocations from PF_MEMALLOC contexts could 221 * completely exhaust the page allocator. __GFP_NOMEMALLOC 222 * stops emergency reserves from being allocated. 223 * 224 * TODO: this could cause a theoretical memory reclaim 225 * deadlock in the swap out path. 226 */ 227 /* 228 * Add it to the swap cache. 229 */ 230 err = add_to_swap_cache(page, entry, 231 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN); 232 /* -ENOMEM radix-tree allocation failure */ 233 if (err) 234 /* 235 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 236 * clear SWAP_HAS_CACHE flag. 237 */ 238 goto fail; 239 /* 240 * Normally the page will be dirtied in unmap because its pte should be 241 * dirty. A special case is MADV_FREE page. The page'e pte could have 242 * dirty bit cleared but the page's SwapBacked bit is still set because 243 * clearing the dirty bit and SwapBacked bit has no lock protected. For 244 * such page, unmap will not set dirty bit for it, so page reclaim will 245 * not write the page out. This can cause data corruption when the page 246 * is swap in later. Always setting the dirty bit for the page solves 247 * the problem. 248 */ 249 set_page_dirty(page); 250 251 return 1; 252 253 fail: 254 put_swap_page(page, entry); 255 return 0; 256 } 257 258 /* 259 * This must be called only on pages that have 260 * been verified to be in the swap cache and locked. 261 * It will never put the page into the free list, 262 * the caller has a reference on the page. 263 */ 264 void delete_from_swap_cache(struct page *page) 265 { 266 swp_entry_t entry; 267 struct address_space *address_space; 268 269 entry.val = page_private(page); 270 271 address_space = swap_address_space(entry); 272 xa_lock_irq(&address_space->i_pages); 273 __delete_from_swap_cache(page); 274 xa_unlock_irq(&address_space->i_pages); 275 276 put_swap_page(page, entry); 277 page_ref_sub(page, hpage_nr_pages(page)); 278 } 279 280 /* 281 * If we are the only user, then try to free up the swap cache. 282 * 283 * Its ok to check for PageSwapCache without the page lock 284 * here because we are going to recheck again inside 285 * try_to_free_swap() _with_ the lock. 286 * - Marcelo 287 */ 288 static inline void free_swap_cache(struct page *page) 289 { 290 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) { 291 try_to_free_swap(page); 292 unlock_page(page); 293 } 294 } 295 296 /* 297 * Perform a free_page(), also freeing any swap cache associated with 298 * this page if it is the last user of the page. 299 */ 300 void free_page_and_swap_cache(struct page *page) 301 { 302 free_swap_cache(page); 303 if (!is_huge_zero_page(page)) 304 put_page(page); 305 } 306 307 /* 308 * Passed an array of pages, drop them all from swapcache and then release 309 * them. They are removed from the LRU and freed if this is their last use. 310 */ 311 void free_pages_and_swap_cache(struct page **pages, int nr) 312 { 313 struct page **pagep = pages; 314 int i; 315 316 lru_add_drain(); 317 for (i = 0; i < nr; i++) 318 free_swap_cache(pagep[i]); 319 release_pages(pagep, nr); 320 } 321 322 static inline bool swap_use_vma_readahead(void) 323 { 324 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap); 325 } 326 327 /* 328 * Lookup a swap entry in the swap cache. A found page will be returned 329 * unlocked and with its refcount incremented - we rely on the kernel 330 * lock getting page table operations atomic even if we drop the page 331 * lock before returning. 332 */ 333 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma, 334 unsigned long addr) 335 { 336 struct page *page; 337 338 page = find_get_page(swap_address_space(entry), swp_offset(entry)); 339 340 INC_CACHE_INFO(find_total); 341 if (page) { 342 bool vma_ra = swap_use_vma_readahead(); 343 bool readahead; 344 345 INC_CACHE_INFO(find_success); 346 /* 347 * At the moment, we don't support PG_readahead for anon THP 348 * so let's bail out rather than confusing the readahead stat. 349 */ 350 if (unlikely(PageTransCompound(page))) 351 return page; 352 353 readahead = TestClearPageReadahead(page); 354 if (vma && vma_ra) { 355 unsigned long ra_val; 356 int win, hits; 357 358 ra_val = GET_SWAP_RA_VAL(vma); 359 win = SWAP_RA_WIN(ra_val); 360 hits = SWAP_RA_HITS(ra_val); 361 if (readahead) 362 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX); 363 atomic_long_set(&vma->swap_readahead_info, 364 SWAP_RA_VAL(addr, win, hits)); 365 } 366 367 if (readahead) { 368 count_vm_event(SWAP_RA_HIT); 369 if (!vma || !vma_ra) 370 atomic_inc(&swapin_readahead_hits); 371 } 372 } 373 374 return page; 375 } 376 377 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 378 struct vm_area_struct *vma, unsigned long addr, 379 bool *new_page_allocated) 380 { 381 struct page *found_page, *new_page = NULL; 382 struct address_space *swapper_space = swap_address_space(entry); 383 int err; 384 *new_page_allocated = false; 385 386 do { 387 /* 388 * First check the swap cache. Since this is normally 389 * called after lookup_swap_cache() failed, re-calling 390 * that would confuse statistics. 391 */ 392 found_page = find_get_page(swapper_space, swp_offset(entry)); 393 if (found_page) 394 break; 395 396 /* 397 * Just skip read ahead for unused swap slot. 398 * During swap_off when swap_slot_cache is disabled, 399 * we have to handle the race between putting 400 * swap entry in swap cache and marking swap slot 401 * as SWAP_HAS_CACHE. That's done in later part of code or 402 * else swap_off will be aborted if we return NULL. 403 */ 404 if (!__swp_swapcount(entry) && swap_slot_cache_enabled) 405 break; 406 407 /* 408 * Get a new page to read into from swap. 409 */ 410 if (!new_page) { 411 new_page = alloc_page_vma(gfp_mask, vma, addr); 412 if (!new_page) 413 break; /* Out of memory */ 414 } 415 416 /* 417 * call radix_tree_preload() while we can wait. 418 */ 419 err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL); 420 if (err) 421 break; 422 423 /* 424 * Swap entry may have been freed since our caller observed it. 425 */ 426 err = swapcache_prepare(entry); 427 if (err == -EEXIST) { 428 radix_tree_preload_end(); 429 /* 430 * We might race against get_swap_page() and stumble 431 * across a SWAP_HAS_CACHE swap_map entry whose page 432 * has not been brought into the swapcache yet. 433 */ 434 cond_resched(); 435 continue; 436 } 437 if (err) { /* swp entry is obsolete ? */ 438 radix_tree_preload_end(); 439 break; 440 } 441 442 /* May fail (-ENOMEM) if radix-tree node allocation failed. */ 443 __SetPageLocked(new_page); 444 __SetPageSwapBacked(new_page); 445 err = __add_to_swap_cache(new_page, entry); 446 if (likely(!err)) { 447 radix_tree_preload_end(); 448 /* 449 * Initiate read into locked page and return. 450 */ 451 lru_cache_add_anon(new_page); 452 *new_page_allocated = true; 453 return new_page; 454 } 455 radix_tree_preload_end(); 456 __ClearPageLocked(new_page); 457 /* 458 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 459 * clear SWAP_HAS_CACHE flag. 460 */ 461 put_swap_page(new_page, entry); 462 } while (err != -ENOMEM); 463 464 if (new_page) 465 put_page(new_page); 466 return found_page; 467 } 468 469 /* 470 * Locate a page of swap in physical memory, reserving swap cache space 471 * and reading the disk if it is not already cached. 472 * A failure return means that either the page allocation failed or that 473 * the swap entry is no longer in use. 474 */ 475 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 476 struct vm_area_struct *vma, unsigned long addr, bool do_poll) 477 { 478 bool page_was_allocated; 479 struct page *retpage = __read_swap_cache_async(entry, gfp_mask, 480 vma, addr, &page_was_allocated); 481 482 if (page_was_allocated) 483 swap_readpage(retpage, do_poll); 484 485 return retpage; 486 } 487 488 static unsigned int __swapin_nr_pages(unsigned long prev_offset, 489 unsigned long offset, 490 int hits, 491 int max_pages, 492 int prev_win) 493 { 494 unsigned int pages, last_ra; 495 496 /* 497 * This heuristic has been found to work well on both sequential and 498 * random loads, swapping to hard disk or to SSD: please don't ask 499 * what the "+ 2" means, it just happens to work well, that's all. 500 */ 501 pages = hits + 2; 502 if (pages == 2) { 503 /* 504 * We can have no readahead hits to judge by: but must not get 505 * stuck here forever, so check for an adjacent offset instead 506 * (and don't even bother to check whether swap type is same). 507 */ 508 if (offset != prev_offset + 1 && offset != prev_offset - 1) 509 pages = 1; 510 } else { 511 unsigned int roundup = 4; 512 while (roundup < pages) 513 roundup <<= 1; 514 pages = roundup; 515 } 516 517 if (pages > max_pages) 518 pages = max_pages; 519 520 /* Don't shrink readahead too fast */ 521 last_ra = prev_win / 2; 522 if (pages < last_ra) 523 pages = last_ra; 524 525 return pages; 526 } 527 528 static unsigned long swapin_nr_pages(unsigned long offset) 529 { 530 static unsigned long prev_offset; 531 unsigned int hits, pages, max_pages; 532 static atomic_t last_readahead_pages; 533 534 max_pages = 1 << READ_ONCE(page_cluster); 535 if (max_pages <= 1) 536 return 1; 537 538 hits = atomic_xchg(&swapin_readahead_hits, 0); 539 pages = __swapin_nr_pages(prev_offset, offset, hits, max_pages, 540 atomic_read(&last_readahead_pages)); 541 if (!hits) 542 prev_offset = offset; 543 atomic_set(&last_readahead_pages, pages); 544 545 return pages; 546 } 547 548 /** 549 * swap_cluster_readahead - swap in pages in hope we need them soon 550 * @entry: swap entry of this memory 551 * @gfp_mask: memory allocation flags 552 * @vmf: fault information 553 * 554 * Returns the struct page for entry and addr, after queueing swapin. 555 * 556 * Primitive swap readahead code. We simply read an aligned block of 557 * (1 << page_cluster) entries in the swap area. This method is chosen 558 * because it doesn't cost us any seek time. We also make sure to queue 559 * the 'original' request together with the readahead ones... 560 * 561 * This has been extended to use the NUMA policies from the mm triggering 562 * the readahead. 563 * 564 * Caller must hold down_read on the vma->vm_mm if vmf->vma is not NULL. 565 */ 566 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, 567 struct vm_fault *vmf) 568 { 569 struct page *page; 570 unsigned long entry_offset = swp_offset(entry); 571 unsigned long offset = entry_offset; 572 unsigned long start_offset, end_offset; 573 unsigned long mask; 574 struct swap_info_struct *si = swp_swap_info(entry); 575 struct blk_plug plug; 576 bool do_poll = true, page_allocated; 577 struct vm_area_struct *vma = vmf->vma; 578 unsigned long addr = vmf->address; 579 580 mask = swapin_nr_pages(offset) - 1; 581 if (!mask) 582 goto skip; 583 584 do_poll = false; 585 /* Read a page_cluster sized and aligned cluster around offset. */ 586 start_offset = offset & ~mask; 587 end_offset = offset | mask; 588 if (!start_offset) /* First page is swap header. */ 589 start_offset++; 590 if (end_offset >= si->max) 591 end_offset = si->max - 1; 592 593 blk_start_plug(&plug); 594 for (offset = start_offset; offset <= end_offset ; offset++) { 595 /* Ok, do the async read-ahead now */ 596 page = __read_swap_cache_async( 597 swp_entry(swp_type(entry), offset), 598 gfp_mask, vma, addr, &page_allocated); 599 if (!page) 600 continue; 601 if (page_allocated) { 602 swap_readpage(page, false); 603 if (offset != entry_offset) { 604 SetPageReadahead(page); 605 count_vm_event(SWAP_RA); 606 } 607 } 608 put_page(page); 609 } 610 blk_finish_plug(&plug); 611 612 lru_add_drain(); /* Push any new pages onto the LRU now */ 613 skip: 614 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll); 615 } 616 617 int init_swap_address_space(unsigned int type, unsigned long nr_pages) 618 { 619 struct address_space *spaces, *space; 620 unsigned int i, nr; 621 622 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); 623 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL); 624 if (!spaces) 625 return -ENOMEM; 626 for (i = 0; i < nr; i++) { 627 space = spaces + i; 628 INIT_RADIX_TREE(&space->i_pages, GFP_ATOMIC|__GFP_NOWARN); 629 atomic_set(&space->i_mmap_writable, 0); 630 space->a_ops = &swap_aops; 631 /* swap cache doesn't use writeback related tags */ 632 mapping_set_no_writeback_tags(space); 633 } 634 nr_swapper_spaces[type] = nr; 635 rcu_assign_pointer(swapper_spaces[type], spaces); 636 637 return 0; 638 } 639 640 void exit_swap_address_space(unsigned int type) 641 { 642 struct address_space *spaces; 643 644 spaces = swapper_spaces[type]; 645 nr_swapper_spaces[type] = 0; 646 rcu_assign_pointer(swapper_spaces[type], NULL); 647 synchronize_rcu(); 648 kvfree(spaces); 649 } 650 651 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma, 652 unsigned long faddr, 653 unsigned long lpfn, 654 unsigned long rpfn, 655 unsigned long *start, 656 unsigned long *end) 657 { 658 *start = max3(lpfn, PFN_DOWN(vma->vm_start), 659 PFN_DOWN(faddr & PMD_MASK)); 660 *end = min3(rpfn, PFN_DOWN(vma->vm_end), 661 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE)); 662 } 663 664 static void swap_ra_info(struct vm_fault *vmf, 665 struct vma_swap_readahead *ra_info) 666 { 667 struct vm_area_struct *vma = vmf->vma; 668 unsigned long ra_val; 669 swp_entry_t entry; 670 unsigned long faddr, pfn, fpfn; 671 unsigned long start, end; 672 pte_t *pte, *orig_pte; 673 unsigned int max_win, hits, prev_win, win, left; 674 #ifndef CONFIG_64BIT 675 pte_t *tpte; 676 #endif 677 678 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster), 679 SWAP_RA_ORDER_CEILING); 680 if (max_win == 1) { 681 ra_info->win = 1; 682 return; 683 } 684 685 faddr = vmf->address; 686 orig_pte = pte = pte_offset_map(vmf->pmd, faddr); 687 entry = pte_to_swp_entry(*pte); 688 if ((unlikely(non_swap_entry(entry)))) { 689 pte_unmap(orig_pte); 690 return; 691 } 692 693 fpfn = PFN_DOWN(faddr); 694 ra_val = GET_SWAP_RA_VAL(vma); 695 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val)); 696 prev_win = SWAP_RA_WIN(ra_val); 697 hits = SWAP_RA_HITS(ra_val); 698 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits, 699 max_win, prev_win); 700 atomic_long_set(&vma->swap_readahead_info, 701 SWAP_RA_VAL(faddr, win, 0)); 702 703 if (win == 1) { 704 pte_unmap(orig_pte); 705 return; 706 } 707 708 /* Copy the PTEs because the page table may be unmapped */ 709 if (fpfn == pfn + 1) 710 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end); 711 else if (pfn == fpfn + 1) 712 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1, 713 &start, &end); 714 else { 715 left = (win - 1) / 2; 716 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left, 717 &start, &end); 718 } 719 ra_info->nr_pte = end - start; 720 ra_info->offset = fpfn - start; 721 pte -= ra_info->offset; 722 #ifdef CONFIG_64BIT 723 ra_info->ptes = pte; 724 #else 725 tpte = ra_info->ptes; 726 for (pfn = start; pfn != end; pfn++) 727 *tpte++ = *pte++; 728 #endif 729 pte_unmap(orig_pte); 730 } 731 732 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask, 733 struct vm_fault *vmf) 734 { 735 struct blk_plug plug; 736 struct vm_area_struct *vma = vmf->vma; 737 struct page *page; 738 pte_t *pte, pentry; 739 swp_entry_t entry; 740 unsigned int i; 741 bool page_allocated; 742 struct vma_swap_readahead ra_info = {0,}; 743 744 swap_ra_info(vmf, &ra_info); 745 if (ra_info.win == 1) 746 goto skip; 747 748 blk_start_plug(&plug); 749 for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte; 750 i++, pte++) { 751 pentry = *pte; 752 if (pte_none(pentry)) 753 continue; 754 if (pte_present(pentry)) 755 continue; 756 entry = pte_to_swp_entry(pentry); 757 if (unlikely(non_swap_entry(entry))) 758 continue; 759 page = __read_swap_cache_async(entry, gfp_mask, vma, 760 vmf->address, &page_allocated); 761 if (!page) 762 continue; 763 if (page_allocated) { 764 swap_readpage(page, false); 765 if (i != ra_info.offset) { 766 SetPageReadahead(page); 767 count_vm_event(SWAP_RA); 768 } 769 } 770 put_page(page); 771 } 772 blk_finish_plug(&plug); 773 lru_add_drain(); 774 skip: 775 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address, 776 ra_info.win == 1); 777 } 778 779 /** 780 * swapin_readahead - swap in pages in hope we need them soon 781 * @entry: swap entry of this memory 782 * @gfp_mask: memory allocation flags 783 * @vmf: fault information 784 * 785 * Returns the struct page for entry and addr, after queueing swapin. 786 * 787 * It's a main entry function for swap readahead. By the configuration, 788 * it will read ahead blocks by cluster-based(ie, physical disk based) 789 * or vma-based(ie, virtual address based on faulty address) readahead. 790 */ 791 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 792 struct vm_fault *vmf) 793 { 794 return swap_use_vma_readahead() ? 795 swap_vma_readahead(entry, gfp_mask, vmf) : 796 swap_cluster_readahead(entry, gfp_mask, vmf); 797 } 798 799 #ifdef CONFIG_SYSFS 800 static ssize_t vma_ra_enabled_show(struct kobject *kobj, 801 struct kobj_attribute *attr, char *buf) 802 { 803 return sprintf(buf, "%s\n", enable_vma_readahead ? "true" : "false"); 804 } 805 static ssize_t vma_ra_enabled_store(struct kobject *kobj, 806 struct kobj_attribute *attr, 807 const char *buf, size_t count) 808 { 809 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1)) 810 enable_vma_readahead = true; 811 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1)) 812 enable_vma_readahead = false; 813 else 814 return -EINVAL; 815 816 return count; 817 } 818 static struct kobj_attribute vma_ra_enabled_attr = 819 __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show, 820 vma_ra_enabled_store); 821 822 static struct attribute *swap_attrs[] = { 823 &vma_ra_enabled_attr.attr, 824 NULL, 825 }; 826 827 static struct attribute_group swap_attr_group = { 828 .attrs = swap_attrs, 829 }; 830 831 static int __init swap_init_sysfs(void) 832 { 833 int err; 834 struct kobject *swap_kobj; 835 836 swap_kobj = kobject_create_and_add("swap", mm_kobj); 837 if (!swap_kobj) { 838 pr_err("failed to create swap kobject\n"); 839 return -ENOMEM; 840 } 841 err = sysfs_create_group(swap_kobj, &swap_attr_group); 842 if (err) { 843 pr_err("failed to register swap group\n"); 844 goto delete_obj; 845 } 846 return 0; 847 848 delete_obj: 849 kobject_put(swap_kobj); 850 return err; 851 } 852 subsys_initcall(swap_init_sysfs); 853 #endif 854