1 /* 2 * linux/mm/swap_state.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 * 7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 8 */ 9 #include <linux/module.h> 10 #include <linux/mm.h> 11 #include <linux/kernel_stat.h> 12 #include <linux/swap.h> 13 #include <linux/swapops.h> 14 #include <linux/init.h> 15 #include <linux/pagemap.h> 16 #include <linux/buffer_head.h> 17 #include <linux/backing-dev.h> 18 #include <linux/pagevec.h> 19 #include <linux/migrate.h> 20 21 #include <asm/pgtable.h> 22 23 /* 24 * swapper_space is a fiction, retained to simplify the path through 25 * vmscan's shrink_page_list, to make sync_page look nicer, and to allow 26 * future use of radix_tree tags in the swap cache. 27 */ 28 static const struct address_space_operations swap_aops = { 29 .writepage = swap_writepage, 30 .sync_page = block_sync_page, 31 .set_page_dirty = __set_page_dirty_nobuffers, 32 .migratepage = migrate_page, 33 }; 34 35 static struct backing_dev_info swap_backing_dev_info = { 36 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, 37 .unplug_io_fn = swap_unplug_io_fn, 38 }; 39 40 struct address_space swapper_space = { 41 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN), 42 .tree_lock = __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock), 43 .a_ops = &swap_aops, 44 .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear), 45 .backing_dev_info = &swap_backing_dev_info, 46 }; 47 48 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0) 49 50 static struct { 51 unsigned long add_total; 52 unsigned long del_total; 53 unsigned long find_success; 54 unsigned long find_total; 55 } swap_cache_info; 56 57 void show_swap_cache_info(void) 58 { 59 printk("%lu pages in swap cache\n", total_swapcache_pages); 60 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", 61 swap_cache_info.add_total, swap_cache_info.del_total, 62 swap_cache_info.find_success, swap_cache_info.find_total); 63 printk("Free swap = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10)); 64 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); 65 } 66 67 /* 68 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, 69 * but sets SwapCache flag and private instead of mapping and index. 70 */ 71 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) 72 { 73 int error; 74 75 BUG_ON(!PageLocked(page)); 76 BUG_ON(PageSwapCache(page)); 77 BUG_ON(PagePrivate(page)); 78 BUG_ON(!PageSwapBacked(page)); 79 error = radix_tree_preload(gfp_mask); 80 if (!error) { 81 page_cache_get(page); 82 SetPageSwapCache(page); 83 set_page_private(page, entry.val); 84 85 spin_lock_irq(&swapper_space.tree_lock); 86 error = radix_tree_insert(&swapper_space.page_tree, 87 entry.val, page); 88 if (likely(!error)) { 89 total_swapcache_pages++; 90 __inc_zone_page_state(page, NR_FILE_PAGES); 91 INC_CACHE_INFO(add_total); 92 } 93 spin_unlock_irq(&swapper_space.tree_lock); 94 radix_tree_preload_end(); 95 96 if (unlikely(error)) { 97 set_page_private(page, 0UL); 98 ClearPageSwapCache(page); 99 page_cache_release(page); 100 } 101 } 102 return error; 103 } 104 105 /* 106 * This must be called only on pages that have 107 * been verified to be in the swap cache. 108 */ 109 void __delete_from_swap_cache(struct page *page) 110 { 111 BUG_ON(!PageLocked(page)); 112 BUG_ON(!PageSwapCache(page)); 113 BUG_ON(PageWriteback(page)); 114 BUG_ON(PagePrivate(page)); 115 116 radix_tree_delete(&swapper_space.page_tree, page_private(page)); 117 set_page_private(page, 0); 118 ClearPageSwapCache(page); 119 total_swapcache_pages--; 120 __dec_zone_page_state(page, NR_FILE_PAGES); 121 INC_CACHE_INFO(del_total); 122 } 123 124 /** 125 * add_to_swap - allocate swap space for a page 126 * @page: page we want to move to swap 127 * @gfp_mask: memory allocation flags 128 * 129 * Allocate swap space for the page and add the page to the 130 * swap cache. Caller needs to hold the page lock. 131 */ 132 int add_to_swap(struct page * page, gfp_t gfp_mask) 133 { 134 swp_entry_t entry; 135 int err; 136 137 BUG_ON(!PageLocked(page)); 138 BUG_ON(!PageUptodate(page)); 139 140 for (;;) { 141 entry = get_swap_page(); 142 if (!entry.val) 143 return 0; 144 145 /* 146 * Radix-tree node allocations from PF_MEMALLOC contexts could 147 * completely exhaust the page allocator. __GFP_NOMEMALLOC 148 * stops emergency reserves from being allocated. 149 * 150 * TODO: this could cause a theoretical memory reclaim 151 * deadlock in the swap out path. 152 */ 153 /* 154 * Add it to the swap cache and mark it dirty 155 */ 156 err = add_to_swap_cache(page, entry, 157 gfp_mask|__GFP_NOMEMALLOC|__GFP_NOWARN); 158 159 switch (err) { 160 case 0: /* Success */ 161 SetPageDirty(page); 162 return 1; 163 case -EEXIST: 164 /* Raced with "speculative" read_swap_cache_async */ 165 swap_free(entry); 166 continue; 167 default: 168 /* -ENOMEM radix-tree allocation failure */ 169 swap_free(entry); 170 return 0; 171 } 172 } 173 } 174 175 /* 176 * This must be called only on pages that have 177 * been verified to be in the swap cache and locked. 178 * It will never put the page into the free list, 179 * the caller has a reference on the page. 180 */ 181 void delete_from_swap_cache(struct page *page) 182 { 183 swp_entry_t entry; 184 185 entry.val = page_private(page); 186 187 spin_lock_irq(&swapper_space.tree_lock); 188 __delete_from_swap_cache(page); 189 spin_unlock_irq(&swapper_space.tree_lock); 190 191 swap_free(entry); 192 page_cache_release(page); 193 } 194 195 /* 196 * If we are the only user, then try to free up the swap cache. 197 * 198 * Its ok to check for PageSwapCache without the page lock 199 * here because we are going to recheck again inside 200 * exclusive_swap_page() _with_ the lock. 201 * - Marcelo 202 */ 203 static inline void free_swap_cache(struct page *page) 204 { 205 if (PageSwapCache(page) && trylock_page(page)) { 206 remove_exclusive_swap_page(page); 207 unlock_page(page); 208 } 209 } 210 211 /* 212 * Perform a free_page(), also freeing any swap cache associated with 213 * this page if it is the last user of the page. 214 */ 215 void free_page_and_swap_cache(struct page *page) 216 { 217 free_swap_cache(page); 218 page_cache_release(page); 219 } 220 221 /* 222 * Passed an array of pages, drop them all from swapcache and then release 223 * them. They are removed from the LRU and freed if this is their last use. 224 */ 225 void free_pages_and_swap_cache(struct page **pages, int nr) 226 { 227 struct page **pagep = pages; 228 229 lru_add_drain(); 230 while (nr) { 231 int todo = min(nr, PAGEVEC_SIZE); 232 int i; 233 234 for (i = 0; i < todo; i++) 235 free_swap_cache(pagep[i]); 236 release_pages(pagep, todo, 0); 237 pagep += todo; 238 nr -= todo; 239 } 240 } 241 242 /* 243 * Lookup a swap entry in the swap cache. A found page will be returned 244 * unlocked and with its refcount incremented - we rely on the kernel 245 * lock getting page table operations atomic even if we drop the page 246 * lock before returning. 247 */ 248 struct page * lookup_swap_cache(swp_entry_t entry) 249 { 250 struct page *page; 251 252 page = find_get_page(&swapper_space, entry.val); 253 254 if (page) 255 INC_CACHE_INFO(find_success); 256 257 INC_CACHE_INFO(find_total); 258 return page; 259 } 260 261 /* 262 * Locate a page of swap in physical memory, reserving swap cache space 263 * and reading the disk if it is not already cached. 264 * A failure return means that either the page allocation failed or that 265 * the swap entry is no longer in use. 266 */ 267 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 268 struct vm_area_struct *vma, unsigned long addr) 269 { 270 struct page *found_page, *new_page = NULL; 271 int err; 272 273 do { 274 /* 275 * First check the swap cache. Since this is normally 276 * called after lookup_swap_cache() failed, re-calling 277 * that would confuse statistics. 278 */ 279 found_page = find_get_page(&swapper_space, entry.val); 280 if (found_page) 281 break; 282 283 /* 284 * Get a new page to read into from swap. 285 */ 286 if (!new_page) { 287 new_page = alloc_page_vma(gfp_mask, vma, addr); 288 if (!new_page) 289 break; /* Out of memory */ 290 } 291 292 /* 293 * Swap entry may have been freed since our caller observed it. 294 */ 295 if (!swap_duplicate(entry)) 296 break; 297 298 /* 299 * Associate the page with swap entry in the swap cache. 300 * May fail (-EEXIST) if there is already a page associated 301 * with this entry in the swap cache: added by a racing 302 * read_swap_cache_async, or add_to_swap or shmem_writepage 303 * re-using the just freed swap entry for an existing page. 304 * May fail (-ENOMEM) if radix-tree node allocation failed. 305 */ 306 __set_page_locked(new_page); 307 SetPageSwapBacked(new_page); 308 err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL); 309 if (likely(!err)) { 310 /* 311 * Initiate read into locked page and return. 312 */ 313 lru_cache_add_anon(new_page); 314 swap_readpage(NULL, new_page); 315 return new_page; 316 } 317 ClearPageSwapBacked(new_page); 318 __clear_page_locked(new_page); 319 swap_free(entry); 320 } while (err != -ENOMEM); 321 322 if (new_page) 323 page_cache_release(new_page); 324 return found_page; 325 } 326 327 /** 328 * swapin_readahead - swap in pages in hope we need them soon 329 * @entry: swap entry of this memory 330 * @gfp_mask: memory allocation flags 331 * @vma: user vma this address belongs to 332 * @addr: target address for mempolicy 333 * 334 * Returns the struct page for entry and addr, after queueing swapin. 335 * 336 * Primitive swap readahead code. We simply read an aligned block of 337 * (1 << page_cluster) entries in the swap area. This method is chosen 338 * because it doesn't cost us any seek time. We also make sure to queue 339 * the 'original' request together with the readahead ones... 340 * 341 * This has been extended to use the NUMA policies from the mm triggering 342 * the readahead. 343 * 344 * Caller must hold down_read on the vma->vm_mm if vma is not NULL. 345 */ 346 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 347 struct vm_area_struct *vma, unsigned long addr) 348 { 349 int nr_pages; 350 struct page *page; 351 unsigned long offset; 352 unsigned long end_offset; 353 354 /* 355 * Get starting offset for readaround, and number of pages to read. 356 * Adjust starting address by readbehind (for NUMA interleave case)? 357 * No, it's very unlikely that swap layout would follow vma layout, 358 * more likely that neighbouring swap pages came from the same node: 359 * so use the same "addr" to choose the same node for each swap read. 360 */ 361 nr_pages = valid_swaphandles(entry, &offset); 362 for (end_offset = offset + nr_pages; offset < end_offset; offset++) { 363 /* Ok, do the async read-ahead now */ 364 page = read_swap_cache_async(swp_entry(swp_type(entry), offset), 365 gfp_mask, vma, addr); 366 if (!page) 367 break; 368 page_cache_release(page); 369 } 370 lru_add_drain(); /* Push any new pages onto the LRU now */ 371 return read_swap_cache_async(entry, gfp_mask, vma, addr); 372 } 373