xref: /linux/mm/swap_state.c (revision 367b8112fe2ea5c39a7bb4d263dcdd9b612fae18)
1 /*
2  *  linux/mm/swap_state.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  *
7  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
8  */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/buffer_head.h>
17 #include <linux/backing-dev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 
21 #include <asm/pgtable.h>
22 
23 /*
24  * swapper_space is a fiction, retained to simplify the path through
25  * vmscan's shrink_page_list, to make sync_page look nicer, and to allow
26  * future use of radix_tree tags in the swap cache.
27  */
28 static const struct address_space_operations swap_aops = {
29 	.writepage	= swap_writepage,
30 	.sync_page	= block_sync_page,
31 	.set_page_dirty	= __set_page_dirty_nobuffers,
32 	.migratepage	= migrate_page,
33 };
34 
35 static struct backing_dev_info swap_backing_dev_info = {
36 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
37 	.unplug_io_fn	= swap_unplug_io_fn,
38 };
39 
40 struct address_space swapper_space = {
41 	.page_tree	= RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
42 	.tree_lock	= __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
43 	.a_ops		= &swap_aops,
44 	.i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
45 	.backing_dev_info = &swap_backing_dev_info,
46 };
47 
48 #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
49 
50 static struct {
51 	unsigned long add_total;
52 	unsigned long del_total;
53 	unsigned long find_success;
54 	unsigned long find_total;
55 } swap_cache_info;
56 
57 void show_swap_cache_info(void)
58 {
59 	printk("%lu pages in swap cache\n", total_swapcache_pages);
60 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
61 		swap_cache_info.add_total, swap_cache_info.del_total,
62 		swap_cache_info.find_success, swap_cache_info.find_total);
63 	printk("Free swap  = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
64 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
65 }
66 
67 /*
68  * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
69  * but sets SwapCache flag and private instead of mapping and index.
70  */
71 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
72 {
73 	int error;
74 
75 	BUG_ON(!PageLocked(page));
76 	BUG_ON(PageSwapCache(page));
77 	BUG_ON(PagePrivate(page));
78 	BUG_ON(!PageSwapBacked(page));
79 	error = radix_tree_preload(gfp_mask);
80 	if (!error) {
81 		page_cache_get(page);
82 		SetPageSwapCache(page);
83 		set_page_private(page, entry.val);
84 
85 		spin_lock_irq(&swapper_space.tree_lock);
86 		error = radix_tree_insert(&swapper_space.page_tree,
87 						entry.val, page);
88 		if (likely(!error)) {
89 			total_swapcache_pages++;
90 			__inc_zone_page_state(page, NR_FILE_PAGES);
91 			INC_CACHE_INFO(add_total);
92 		}
93 		spin_unlock_irq(&swapper_space.tree_lock);
94 		radix_tree_preload_end();
95 
96 		if (unlikely(error)) {
97 			set_page_private(page, 0UL);
98 			ClearPageSwapCache(page);
99 			page_cache_release(page);
100 		}
101 	}
102 	return error;
103 }
104 
105 /*
106  * This must be called only on pages that have
107  * been verified to be in the swap cache.
108  */
109 void __delete_from_swap_cache(struct page *page)
110 {
111 	BUG_ON(!PageLocked(page));
112 	BUG_ON(!PageSwapCache(page));
113 	BUG_ON(PageWriteback(page));
114 	BUG_ON(PagePrivate(page));
115 
116 	radix_tree_delete(&swapper_space.page_tree, page_private(page));
117 	set_page_private(page, 0);
118 	ClearPageSwapCache(page);
119 	total_swapcache_pages--;
120 	__dec_zone_page_state(page, NR_FILE_PAGES);
121 	INC_CACHE_INFO(del_total);
122 }
123 
124 /**
125  * add_to_swap - allocate swap space for a page
126  * @page: page we want to move to swap
127  * @gfp_mask: memory allocation flags
128  *
129  * Allocate swap space for the page and add the page to the
130  * swap cache.  Caller needs to hold the page lock.
131  */
132 int add_to_swap(struct page * page, gfp_t gfp_mask)
133 {
134 	swp_entry_t entry;
135 	int err;
136 
137 	BUG_ON(!PageLocked(page));
138 	BUG_ON(!PageUptodate(page));
139 
140 	for (;;) {
141 		entry = get_swap_page();
142 		if (!entry.val)
143 			return 0;
144 
145 		/*
146 		 * Radix-tree node allocations from PF_MEMALLOC contexts could
147 		 * completely exhaust the page allocator. __GFP_NOMEMALLOC
148 		 * stops emergency reserves from being allocated.
149 		 *
150 		 * TODO: this could cause a theoretical memory reclaim
151 		 * deadlock in the swap out path.
152 		 */
153 		/*
154 		 * Add it to the swap cache and mark it dirty
155 		 */
156 		err = add_to_swap_cache(page, entry,
157 				gfp_mask|__GFP_NOMEMALLOC|__GFP_NOWARN);
158 
159 		switch (err) {
160 		case 0:				/* Success */
161 			SetPageDirty(page);
162 			return 1;
163 		case -EEXIST:
164 			/* Raced with "speculative" read_swap_cache_async */
165 			swap_free(entry);
166 			continue;
167 		default:
168 			/* -ENOMEM radix-tree allocation failure */
169 			swap_free(entry);
170 			return 0;
171 		}
172 	}
173 }
174 
175 /*
176  * This must be called only on pages that have
177  * been verified to be in the swap cache and locked.
178  * It will never put the page into the free list,
179  * the caller has a reference on the page.
180  */
181 void delete_from_swap_cache(struct page *page)
182 {
183 	swp_entry_t entry;
184 
185 	entry.val = page_private(page);
186 
187 	spin_lock_irq(&swapper_space.tree_lock);
188 	__delete_from_swap_cache(page);
189 	spin_unlock_irq(&swapper_space.tree_lock);
190 
191 	swap_free(entry);
192 	page_cache_release(page);
193 }
194 
195 /*
196  * If we are the only user, then try to free up the swap cache.
197  *
198  * Its ok to check for PageSwapCache without the page lock
199  * here because we are going to recheck again inside
200  * exclusive_swap_page() _with_ the lock.
201  * 					- Marcelo
202  */
203 static inline void free_swap_cache(struct page *page)
204 {
205 	if (PageSwapCache(page) && trylock_page(page)) {
206 		remove_exclusive_swap_page(page);
207 		unlock_page(page);
208 	}
209 }
210 
211 /*
212  * Perform a free_page(), also freeing any swap cache associated with
213  * this page if it is the last user of the page.
214  */
215 void free_page_and_swap_cache(struct page *page)
216 {
217 	free_swap_cache(page);
218 	page_cache_release(page);
219 }
220 
221 /*
222  * Passed an array of pages, drop them all from swapcache and then release
223  * them.  They are removed from the LRU and freed if this is their last use.
224  */
225 void free_pages_and_swap_cache(struct page **pages, int nr)
226 {
227 	struct page **pagep = pages;
228 
229 	lru_add_drain();
230 	while (nr) {
231 		int todo = min(nr, PAGEVEC_SIZE);
232 		int i;
233 
234 		for (i = 0; i < todo; i++)
235 			free_swap_cache(pagep[i]);
236 		release_pages(pagep, todo, 0);
237 		pagep += todo;
238 		nr -= todo;
239 	}
240 }
241 
242 /*
243  * Lookup a swap entry in the swap cache. A found page will be returned
244  * unlocked and with its refcount incremented - we rely on the kernel
245  * lock getting page table operations atomic even if we drop the page
246  * lock before returning.
247  */
248 struct page * lookup_swap_cache(swp_entry_t entry)
249 {
250 	struct page *page;
251 
252 	page = find_get_page(&swapper_space, entry.val);
253 
254 	if (page)
255 		INC_CACHE_INFO(find_success);
256 
257 	INC_CACHE_INFO(find_total);
258 	return page;
259 }
260 
261 /*
262  * Locate a page of swap in physical memory, reserving swap cache space
263  * and reading the disk if it is not already cached.
264  * A failure return means that either the page allocation failed or that
265  * the swap entry is no longer in use.
266  */
267 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
268 			struct vm_area_struct *vma, unsigned long addr)
269 {
270 	struct page *found_page, *new_page = NULL;
271 	int err;
272 
273 	do {
274 		/*
275 		 * First check the swap cache.  Since this is normally
276 		 * called after lookup_swap_cache() failed, re-calling
277 		 * that would confuse statistics.
278 		 */
279 		found_page = find_get_page(&swapper_space, entry.val);
280 		if (found_page)
281 			break;
282 
283 		/*
284 		 * Get a new page to read into from swap.
285 		 */
286 		if (!new_page) {
287 			new_page = alloc_page_vma(gfp_mask, vma, addr);
288 			if (!new_page)
289 				break;		/* Out of memory */
290 		}
291 
292 		/*
293 		 * Swap entry may have been freed since our caller observed it.
294 		 */
295 		if (!swap_duplicate(entry))
296 			break;
297 
298 		/*
299 		 * Associate the page with swap entry in the swap cache.
300 		 * May fail (-EEXIST) if there is already a page associated
301 		 * with this entry in the swap cache: added by a racing
302 		 * read_swap_cache_async, or add_to_swap or shmem_writepage
303 		 * re-using the just freed swap entry for an existing page.
304 		 * May fail (-ENOMEM) if radix-tree node allocation failed.
305 		 */
306 		__set_page_locked(new_page);
307 		SetPageSwapBacked(new_page);
308 		err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL);
309 		if (likely(!err)) {
310 			/*
311 			 * Initiate read into locked page and return.
312 			 */
313 			lru_cache_add_anon(new_page);
314 			swap_readpage(NULL, new_page);
315 			return new_page;
316 		}
317 		ClearPageSwapBacked(new_page);
318 		__clear_page_locked(new_page);
319 		swap_free(entry);
320 	} while (err != -ENOMEM);
321 
322 	if (new_page)
323 		page_cache_release(new_page);
324 	return found_page;
325 }
326 
327 /**
328  * swapin_readahead - swap in pages in hope we need them soon
329  * @entry: swap entry of this memory
330  * @gfp_mask: memory allocation flags
331  * @vma: user vma this address belongs to
332  * @addr: target address for mempolicy
333  *
334  * Returns the struct page for entry and addr, after queueing swapin.
335  *
336  * Primitive swap readahead code. We simply read an aligned block of
337  * (1 << page_cluster) entries in the swap area. This method is chosen
338  * because it doesn't cost us any seek time.  We also make sure to queue
339  * the 'original' request together with the readahead ones...
340  *
341  * This has been extended to use the NUMA policies from the mm triggering
342  * the readahead.
343  *
344  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
345  */
346 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
347 			struct vm_area_struct *vma, unsigned long addr)
348 {
349 	int nr_pages;
350 	struct page *page;
351 	unsigned long offset;
352 	unsigned long end_offset;
353 
354 	/*
355 	 * Get starting offset for readaround, and number of pages to read.
356 	 * Adjust starting address by readbehind (for NUMA interleave case)?
357 	 * No, it's very unlikely that swap layout would follow vma layout,
358 	 * more likely that neighbouring swap pages came from the same node:
359 	 * so use the same "addr" to choose the same node for each swap read.
360 	 */
361 	nr_pages = valid_swaphandles(entry, &offset);
362 	for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
363 		/* Ok, do the async read-ahead now */
364 		page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
365 						gfp_mask, vma, addr);
366 		if (!page)
367 			break;
368 		page_cache_release(page);
369 	}
370 	lru_add_drain();	/* Push any new pages onto the LRU now */
371 	return read_swap_cache_async(entry, gfp_mask, vma, addr);
372 }
373