1 /* 2 * linux/mm/swap_state.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 * 7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 8 */ 9 #include <linux/mm.h> 10 #include <linux/gfp.h> 11 #include <linux/kernel_stat.h> 12 #include <linux/swap.h> 13 #include <linux/swapops.h> 14 #include <linux/init.h> 15 #include <linux/pagemap.h> 16 #include <linux/backing-dev.h> 17 #include <linux/pagevec.h> 18 #include <linux/migrate.h> 19 #include <linux/page_cgroup.h> 20 21 #include <asm/pgtable.h> 22 23 /* 24 * swapper_space is a fiction, retained to simplify the path through 25 * vmscan's shrink_page_list. 26 */ 27 static const struct address_space_operations swap_aops = { 28 .writepage = swap_writepage, 29 .set_page_dirty = __set_page_dirty_no_writeback, 30 .migratepage = migrate_page, 31 }; 32 33 static struct backing_dev_info swap_backing_dev_info = { 34 .name = "swap", 35 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, 36 }; 37 38 struct address_space swapper_space = { 39 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN), 40 .tree_lock = __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock), 41 .a_ops = &swap_aops, 42 .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear), 43 .backing_dev_info = &swap_backing_dev_info, 44 }; 45 46 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0) 47 48 static struct { 49 unsigned long add_total; 50 unsigned long del_total; 51 unsigned long find_success; 52 unsigned long find_total; 53 } swap_cache_info; 54 55 void show_swap_cache_info(void) 56 { 57 printk("%lu pages in swap cache\n", total_swapcache_pages); 58 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", 59 swap_cache_info.add_total, swap_cache_info.del_total, 60 swap_cache_info.find_success, swap_cache_info.find_total); 61 printk("Free swap = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10)); 62 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); 63 } 64 65 /* 66 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, 67 * but sets SwapCache flag and private instead of mapping and index. 68 */ 69 static int __add_to_swap_cache(struct page *page, swp_entry_t entry) 70 { 71 int error; 72 73 VM_BUG_ON(!PageLocked(page)); 74 VM_BUG_ON(PageSwapCache(page)); 75 VM_BUG_ON(!PageSwapBacked(page)); 76 77 page_cache_get(page); 78 SetPageSwapCache(page); 79 set_page_private(page, entry.val); 80 81 spin_lock_irq(&swapper_space.tree_lock); 82 error = radix_tree_insert(&swapper_space.page_tree, entry.val, page); 83 if (likely(!error)) { 84 total_swapcache_pages++; 85 __inc_zone_page_state(page, NR_FILE_PAGES); 86 INC_CACHE_INFO(add_total); 87 } 88 spin_unlock_irq(&swapper_space.tree_lock); 89 90 if (unlikely(error)) { 91 /* 92 * Only the context which have set SWAP_HAS_CACHE flag 93 * would call add_to_swap_cache(). 94 * So add_to_swap_cache() doesn't returns -EEXIST. 95 */ 96 VM_BUG_ON(error == -EEXIST); 97 set_page_private(page, 0UL); 98 ClearPageSwapCache(page); 99 page_cache_release(page); 100 } 101 102 return error; 103 } 104 105 106 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) 107 { 108 int error; 109 110 error = radix_tree_preload(gfp_mask); 111 if (!error) { 112 error = __add_to_swap_cache(page, entry); 113 radix_tree_preload_end(); 114 } 115 return error; 116 } 117 118 /* 119 * This must be called only on pages that have 120 * been verified to be in the swap cache. 121 */ 122 void __delete_from_swap_cache(struct page *page) 123 { 124 VM_BUG_ON(!PageLocked(page)); 125 VM_BUG_ON(!PageSwapCache(page)); 126 VM_BUG_ON(PageWriteback(page)); 127 128 radix_tree_delete(&swapper_space.page_tree, page_private(page)); 129 set_page_private(page, 0); 130 ClearPageSwapCache(page); 131 total_swapcache_pages--; 132 __dec_zone_page_state(page, NR_FILE_PAGES); 133 INC_CACHE_INFO(del_total); 134 } 135 136 /** 137 * add_to_swap - allocate swap space for a page 138 * @page: page we want to move to swap 139 * 140 * Allocate swap space for the page and add the page to the 141 * swap cache. Caller needs to hold the page lock. 142 */ 143 int add_to_swap(struct page *page) 144 { 145 swp_entry_t entry; 146 int err; 147 148 VM_BUG_ON(!PageLocked(page)); 149 VM_BUG_ON(!PageUptodate(page)); 150 151 entry = get_swap_page(); 152 if (!entry.val) 153 return 0; 154 155 if (unlikely(PageTransHuge(page))) 156 if (unlikely(split_huge_page(page))) { 157 swapcache_free(entry, NULL); 158 return 0; 159 } 160 161 /* 162 * Radix-tree node allocations from PF_MEMALLOC contexts could 163 * completely exhaust the page allocator. __GFP_NOMEMALLOC 164 * stops emergency reserves from being allocated. 165 * 166 * TODO: this could cause a theoretical memory reclaim 167 * deadlock in the swap out path. 168 */ 169 /* 170 * Add it to the swap cache and mark it dirty 171 */ 172 err = add_to_swap_cache(page, entry, 173 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN); 174 175 if (!err) { /* Success */ 176 SetPageDirty(page); 177 return 1; 178 } else { /* -ENOMEM radix-tree allocation failure */ 179 /* 180 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 181 * clear SWAP_HAS_CACHE flag. 182 */ 183 swapcache_free(entry, NULL); 184 return 0; 185 } 186 } 187 188 /* 189 * This must be called only on pages that have 190 * been verified to be in the swap cache and locked. 191 * It will never put the page into the free list, 192 * the caller has a reference on the page. 193 */ 194 void delete_from_swap_cache(struct page *page) 195 { 196 swp_entry_t entry; 197 198 entry.val = page_private(page); 199 200 spin_lock_irq(&swapper_space.tree_lock); 201 __delete_from_swap_cache(page); 202 spin_unlock_irq(&swapper_space.tree_lock); 203 204 swapcache_free(entry, page); 205 page_cache_release(page); 206 } 207 208 /* 209 * If we are the only user, then try to free up the swap cache. 210 * 211 * Its ok to check for PageSwapCache without the page lock 212 * here because we are going to recheck again inside 213 * try_to_free_swap() _with_ the lock. 214 * - Marcelo 215 */ 216 static inline void free_swap_cache(struct page *page) 217 { 218 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) { 219 try_to_free_swap(page); 220 unlock_page(page); 221 } 222 } 223 224 /* 225 * Perform a free_page(), also freeing any swap cache associated with 226 * this page if it is the last user of the page. 227 */ 228 void free_page_and_swap_cache(struct page *page) 229 { 230 free_swap_cache(page); 231 page_cache_release(page); 232 } 233 234 /* 235 * Passed an array of pages, drop them all from swapcache and then release 236 * them. They are removed from the LRU and freed if this is their last use. 237 */ 238 void free_pages_and_swap_cache(struct page **pages, int nr) 239 { 240 struct page **pagep = pages; 241 242 lru_add_drain(); 243 while (nr) { 244 int todo = min(nr, PAGEVEC_SIZE); 245 int i; 246 247 for (i = 0; i < todo; i++) 248 free_swap_cache(pagep[i]); 249 release_pages(pagep, todo, 0); 250 pagep += todo; 251 nr -= todo; 252 } 253 } 254 255 /* 256 * Lookup a swap entry in the swap cache. A found page will be returned 257 * unlocked and with its refcount incremented - we rely on the kernel 258 * lock getting page table operations atomic even if we drop the page 259 * lock before returning. 260 */ 261 struct page * lookup_swap_cache(swp_entry_t entry) 262 { 263 struct page *page; 264 265 page = find_get_page(&swapper_space, entry.val); 266 267 if (page) 268 INC_CACHE_INFO(find_success); 269 270 INC_CACHE_INFO(find_total); 271 return page; 272 } 273 274 /* 275 * Locate a page of swap in physical memory, reserving swap cache space 276 * and reading the disk if it is not already cached. 277 * A failure return means that either the page allocation failed or that 278 * the swap entry is no longer in use. 279 */ 280 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 281 struct vm_area_struct *vma, unsigned long addr) 282 { 283 struct page *found_page, *new_page = NULL; 284 int err; 285 286 do { 287 /* 288 * First check the swap cache. Since this is normally 289 * called after lookup_swap_cache() failed, re-calling 290 * that would confuse statistics. 291 */ 292 found_page = find_get_page(&swapper_space, entry.val); 293 if (found_page) 294 break; 295 296 /* 297 * Get a new page to read into from swap. 298 */ 299 if (!new_page) { 300 new_page = alloc_page_vma(gfp_mask, vma, addr); 301 if (!new_page) 302 break; /* Out of memory */ 303 } 304 305 /* 306 * call radix_tree_preload() while we can wait. 307 */ 308 err = radix_tree_preload(gfp_mask & GFP_KERNEL); 309 if (err) 310 break; 311 312 /* 313 * Swap entry may have been freed since our caller observed it. 314 */ 315 err = swapcache_prepare(entry); 316 if (err == -EEXIST) { /* seems racy */ 317 radix_tree_preload_end(); 318 continue; 319 } 320 if (err) { /* swp entry is obsolete ? */ 321 radix_tree_preload_end(); 322 break; 323 } 324 325 /* May fail (-ENOMEM) if radix-tree node allocation failed. */ 326 __set_page_locked(new_page); 327 SetPageSwapBacked(new_page); 328 err = __add_to_swap_cache(new_page, entry); 329 if (likely(!err)) { 330 radix_tree_preload_end(); 331 /* 332 * Initiate read into locked page and return. 333 */ 334 lru_cache_add_anon(new_page); 335 swap_readpage(new_page); 336 return new_page; 337 } 338 radix_tree_preload_end(); 339 ClearPageSwapBacked(new_page); 340 __clear_page_locked(new_page); 341 /* 342 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 343 * clear SWAP_HAS_CACHE flag. 344 */ 345 swapcache_free(entry, NULL); 346 } while (err != -ENOMEM); 347 348 if (new_page) 349 page_cache_release(new_page); 350 return found_page; 351 } 352 353 /** 354 * swapin_readahead - swap in pages in hope we need them soon 355 * @entry: swap entry of this memory 356 * @gfp_mask: memory allocation flags 357 * @vma: user vma this address belongs to 358 * @addr: target address for mempolicy 359 * 360 * Returns the struct page for entry and addr, after queueing swapin. 361 * 362 * Primitive swap readahead code. We simply read an aligned block of 363 * (1 << page_cluster) entries in the swap area. This method is chosen 364 * because it doesn't cost us any seek time. We also make sure to queue 365 * the 'original' request together with the readahead ones... 366 * 367 * This has been extended to use the NUMA policies from the mm triggering 368 * the readahead. 369 * 370 * Caller must hold down_read on the vma->vm_mm if vma is not NULL. 371 */ 372 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 373 struct vm_area_struct *vma, unsigned long addr) 374 { 375 struct page *page; 376 unsigned long offset = swp_offset(entry); 377 unsigned long start_offset, end_offset; 378 unsigned long mask = (1UL << page_cluster) - 1; 379 380 /* Read a page_cluster sized and aligned cluster around offset. */ 381 start_offset = offset & ~mask; 382 end_offset = offset | mask; 383 if (!start_offset) /* First page is swap header. */ 384 start_offset++; 385 386 for (offset = start_offset; offset <= end_offset ; offset++) { 387 /* Ok, do the async read-ahead now */ 388 page = read_swap_cache_async(swp_entry(swp_type(entry), offset), 389 gfp_mask, vma, addr); 390 if (!page) 391 continue; 392 page_cache_release(page); 393 } 394 lru_add_drain(); /* Push any new pages onto the LRU now */ 395 return read_swap_cache_async(entry, gfp_mask, vma, addr); 396 } 397