xref: /linux/mm/swap_state.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  *  linux/mm/swap_state.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  *
7  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
8  */
9 #include <linux/mm.h>
10 #include <linux/gfp.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/migrate.h>
19 #include <linux/page_cgroup.h>
20 
21 #include <asm/pgtable.h>
22 
23 /*
24  * swapper_space is a fiction, retained to simplify the path through
25  * vmscan's shrink_page_list.
26  */
27 static const struct address_space_operations swap_aops = {
28 	.writepage	= swap_writepage,
29 	.set_page_dirty	= __set_page_dirty_no_writeback,
30 	.migratepage	= migrate_page,
31 };
32 
33 static struct backing_dev_info swap_backing_dev_info = {
34 	.name		= "swap",
35 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
36 };
37 
38 struct address_space swapper_space = {
39 	.page_tree	= RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
40 	.tree_lock	= __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
41 	.a_ops		= &swap_aops,
42 	.i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
43 	.backing_dev_info = &swap_backing_dev_info,
44 };
45 
46 #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
47 
48 static struct {
49 	unsigned long add_total;
50 	unsigned long del_total;
51 	unsigned long find_success;
52 	unsigned long find_total;
53 } swap_cache_info;
54 
55 void show_swap_cache_info(void)
56 {
57 	printk("%lu pages in swap cache\n", total_swapcache_pages);
58 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
59 		swap_cache_info.add_total, swap_cache_info.del_total,
60 		swap_cache_info.find_success, swap_cache_info.find_total);
61 	printk("Free swap  = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
62 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
63 }
64 
65 /*
66  * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
67  * but sets SwapCache flag and private instead of mapping and index.
68  */
69 static int __add_to_swap_cache(struct page *page, swp_entry_t entry)
70 {
71 	int error;
72 
73 	VM_BUG_ON(!PageLocked(page));
74 	VM_BUG_ON(PageSwapCache(page));
75 	VM_BUG_ON(!PageSwapBacked(page));
76 
77 	page_cache_get(page);
78 	SetPageSwapCache(page);
79 	set_page_private(page, entry.val);
80 
81 	spin_lock_irq(&swapper_space.tree_lock);
82 	error = radix_tree_insert(&swapper_space.page_tree, entry.val, page);
83 	if (likely(!error)) {
84 		total_swapcache_pages++;
85 		__inc_zone_page_state(page, NR_FILE_PAGES);
86 		INC_CACHE_INFO(add_total);
87 	}
88 	spin_unlock_irq(&swapper_space.tree_lock);
89 
90 	if (unlikely(error)) {
91 		/*
92 		 * Only the context which have set SWAP_HAS_CACHE flag
93 		 * would call add_to_swap_cache().
94 		 * So add_to_swap_cache() doesn't returns -EEXIST.
95 		 */
96 		VM_BUG_ON(error == -EEXIST);
97 		set_page_private(page, 0UL);
98 		ClearPageSwapCache(page);
99 		page_cache_release(page);
100 	}
101 
102 	return error;
103 }
104 
105 
106 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
107 {
108 	int error;
109 
110 	error = radix_tree_preload(gfp_mask);
111 	if (!error) {
112 		error = __add_to_swap_cache(page, entry);
113 		radix_tree_preload_end();
114 	}
115 	return error;
116 }
117 
118 /*
119  * This must be called only on pages that have
120  * been verified to be in the swap cache.
121  */
122 void __delete_from_swap_cache(struct page *page)
123 {
124 	VM_BUG_ON(!PageLocked(page));
125 	VM_BUG_ON(!PageSwapCache(page));
126 	VM_BUG_ON(PageWriteback(page));
127 
128 	radix_tree_delete(&swapper_space.page_tree, page_private(page));
129 	set_page_private(page, 0);
130 	ClearPageSwapCache(page);
131 	total_swapcache_pages--;
132 	__dec_zone_page_state(page, NR_FILE_PAGES);
133 	INC_CACHE_INFO(del_total);
134 }
135 
136 /**
137  * add_to_swap - allocate swap space for a page
138  * @page: page we want to move to swap
139  *
140  * Allocate swap space for the page and add the page to the
141  * swap cache.  Caller needs to hold the page lock.
142  */
143 int add_to_swap(struct page *page)
144 {
145 	swp_entry_t entry;
146 	int err;
147 
148 	VM_BUG_ON(!PageLocked(page));
149 	VM_BUG_ON(!PageUptodate(page));
150 
151 	entry = get_swap_page();
152 	if (!entry.val)
153 		return 0;
154 
155 	if (unlikely(PageTransHuge(page)))
156 		if (unlikely(split_huge_page(page))) {
157 			swapcache_free(entry, NULL);
158 			return 0;
159 		}
160 
161 	/*
162 	 * Radix-tree node allocations from PF_MEMALLOC contexts could
163 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
164 	 * stops emergency reserves from being allocated.
165 	 *
166 	 * TODO: this could cause a theoretical memory reclaim
167 	 * deadlock in the swap out path.
168 	 */
169 	/*
170 	 * Add it to the swap cache and mark it dirty
171 	 */
172 	err = add_to_swap_cache(page, entry,
173 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
174 
175 	if (!err) {	/* Success */
176 		SetPageDirty(page);
177 		return 1;
178 	} else {	/* -ENOMEM radix-tree allocation failure */
179 		/*
180 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
181 		 * clear SWAP_HAS_CACHE flag.
182 		 */
183 		swapcache_free(entry, NULL);
184 		return 0;
185 	}
186 }
187 
188 /*
189  * This must be called only on pages that have
190  * been verified to be in the swap cache and locked.
191  * It will never put the page into the free list,
192  * the caller has a reference on the page.
193  */
194 void delete_from_swap_cache(struct page *page)
195 {
196 	swp_entry_t entry;
197 
198 	entry.val = page_private(page);
199 
200 	spin_lock_irq(&swapper_space.tree_lock);
201 	__delete_from_swap_cache(page);
202 	spin_unlock_irq(&swapper_space.tree_lock);
203 
204 	swapcache_free(entry, page);
205 	page_cache_release(page);
206 }
207 
208 /*
209  * If we are the only user, then try to free up the swap cache.
210  *
211  * Its ok to check for PageSwapCache without the page lock
212  * here because we are going to recheck again inside
213  * try_to_free_swap() _with_ the lock.
214  * 					- Marcelo
215  */
216 static inline void free_swap_cache(struct page *page)
217 {
218 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
219 		try_to_free_swap(page);
220 		unlock_page(page);
221 	}
222 }
223 
224 /*
225  * Perform a free_page(), also freeing any swap cache associated with
226  * this page if it is the last user of the page.
227  */
228 void free_page_and_swap_cache(struct page *page)
229 {
230 	free_swap_cache(page);
231 	page_cache_release(page);
232 }
233 
234 /*
235  * Passed an array of pages, drop them all from swapcache and then release
236  * them.  They are removed from the LRU and freed if this is their last use.
237  */
238 void free_pages_and_swap_cache(struct page **pages, int nr)
239 {
240 	struct page **pagep = pages;
241 
242 	lru_add_drain();
243 	while (nr) {
244 		int todo = min(nr, PAGEVEC_SIZE);
245 		int i;
246 
247 		for (i = 0; i < todo; i++)
248 			free_swap_cache(pagep[i]);
249 		release_pages(pagep, todo, 0);
250 		pagep += todo;
251 		nr -= todo;
252 	}
253 }
254 
255 /*
256  * Lookup a swap entry in the swap cache. A found page will be returned
257  * unlocked and with its refcount incremented - we rely on the kernel
258  * lock getting page table operations atomic even if we drop the page
259  * lock before returning.
260  */
261 struct page * lookup_swap_cache(swp_entry_t entry)
262 {
263 	struct page *page;
264 
265 	page = find_get_page(&swapper_space, entry.val);
266 
267 	if (page)
268 		INC_CACHE_INFO(find_success);
269 
270 	INC_CACHE_INFO(find_total);
271 	return page;
272 }
273 
274 /*
275  * Locate a page of swap in physical memory, reserving swap cache space
276  * and reading the disk if it is not already cached.
277  * A failure return means that either the page allocation failed or that
278  * the swap entry is no longer in use.
279  */
280 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
281 			struct vm_area_struct *vma, unsigned long addr)
282 {
283 	struct page *found_page, *new_page = NULL;
284 	int err;
285 
286 	do {
287 		/*
288 		 * First check the swap cache.  Since this is normally
289 		 * called after lookup_swap_cache() failed, re-calling
290 		 * that would confuse statistics.
291 		 */
292 		found_page = find_get_page(&swapper_space, entry.val);
293 		if (found_page)
294 			break;
295 
296 		/*
297 		 * Get a new page to read into from swap.
298 		 */
299 		if (!new_page) {
300 			new_page = alloc_page_vma(gfp_mask, vma, addr);
301 			if (!new_page)
302 				break;		/* Out of memory */
303 		}
304 
305 		/*
306 		 * call radix_tree_preload() while we can wait.
307 		 */
308 		err = radix_tree_preload(gfp_mask & GFP_KERNEL);
309 		if (err)
310 			break;
311 
312 		/*
313 		 * Swap entry may have been freed since our caller observed it.
314 		 */
315 		err = swapcache_prepare(entry);
316 		if (err == -EEXIST) {	/* seems racy */
317 			radix_tree_preload_end();
318 			continue;
319 		}
320 		if (err) {		/* swp entry is obsolete ? */
321 			radix_tree_preload_end();
322 			break;
323 		}
324 
325 		/* May fail (-ENOMEM) if radix-tree node allocation failed. */
326 		__set_page_locked(new_page);
327 		SetPageSwapBacked(new_page);
328 		err = __add_to_swap_cache(new_page, entry);
329 		if (likely(!err)) {
330 			radix_tree_preload_end();
331 			/*
332 			 * Initiate read into locked page and return.
333 			 */
334 			lru_cache_add_anon(new_page);
335 			swap_readpage(new_page);
336 			return new_page;
337 		}
338 		radix_tree_preload_end();
339 		ClearPageSwapBacked(new_page);
340 		__clear_page_locked(new_page);
341 		/*
342 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
343 		 * clear SWAP_HAS_CACHE flag.
344 		 */
345 		swapcache_free(entry, NULL);
346 	} while (err != -ENOMEM);
347 
348 	if (new_page)
349 		page_cache_release(new_page);
350 	return found_page;
351 }
352 
353 /**
354  * swapin_readahead - swap in pages in hope we need them soon
355  * @entry: swap entry of this memory
356  * @gfp_mask: memory allocation flags
357  * @vma: user vma this address belongs to
358  * @addr: target address for mempolicy
359  *
360  * Returns the struct page for entry and addr, after queueing swapin.
361  *
362  * Primitive swap readahead code. We simply read an aligned block of
363  * (1 << page_cluster) entries in the swap area. This method is chosen
364  * because it doesn't cost us any seek time.  We also make sure to queue
365  * the 'original' request together with the readahead ones...
366  *
367  * This has been extended to use the NUMA policies from the mm triggering
368  * the readahead.
369  *
370  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
371  */
372 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
373 			struct vm_area_struct *vma, unsigned long addr)
374 {
375 	struct page *page;
376 	unsigned long offset = swp_offset(entry);
377 	unsigned long start_offset, end_offset;
378 	unsigned long mask = (1UL << page_cluster) - 1;
379 
380 	/* Read a page_cluster sized and aligned cluster around offset. */
381 	start_offset = offset & ~mask;
382 	end_offset = offset | mask;
383 	if (!start_offset)	/* First page is swap header. */
384 		start_offset++;
385 
386 	for (offset = start_offset; offset <= end_offset ; offset++) {
387 		/* Ok, do the async read-ahead now */
388 		page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
389 						gfp_mask, vma, addr);
390 		if (!page)
391 			continue;
392 		page_cache_release(page);
393 	}
394 	lru_add_drain();	/* Push any new pages onto the LRU now */
395 	return read_swap_cache_async(entry, gfp_mask, vma, addr);
396 }
397