xref: /linux/mm/swap_state.c (revision 23c48a124b469cee2eb0c75e6d22d366d1caa118)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/swap_state.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  *
8  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
9  */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
24 #include <linux/shmem_fs.h>
25 #include "internal.h"
26 #include "swap.h"
27 
28 /*
29  * swapper_space is a fiction, retained to simplify the path through
30  * vmscan's shrink_page_list.
31  */
32 static const struct address_space_operations swap_aops = {
33 	.writepage	= swap_writepage,
34 	.dirty_folio	= noop_dirty_folio,
35 #ifdef CONFIG_MIGRATION
36 	.migrate_folio	= migrate_folio,
37 #endif
38 };
39 
40 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
41 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
42 static bool enable_vma_readahead __read_mostly = true;
43 
44 #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
45 #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
46 #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
47 #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
48 
49 #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
50 #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
51 #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
52 
53 #define SWAP_RA_VAL(addr, win, hits)				\
54 	(((addr) & PAGE_MASK) |					\
55 	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
56 	 ((hits) & SWAP_RA_HITS_MASK))
57 
58 /* Initial readahead hits is 4 to start up with a small window */
59 #define GET_SWAP_RA_VAL(vma)					\
60 	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
61 
62 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
63 
64 void show_swap_cache_info(void)
65 {
66 	printk("%lu pages in swap cache\n", total_swapcache_pages());
67 	printk("Free swap  = %ldkB\n",
68 		get_nr_swap_pages() << (PAGE_SHIFT - 10));
69 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
70 }
71 
72 void *get_shadow_from_swap_cache(swp_entry_t entry)
73 {
74 	struct address_space *address_space = swap_address_space(entry);
75 	pgoff_t idx = swp_offset(entry);
76 	struct page *page;
77 
78 	page = xa_load(&address_space->i_pages, idx);
79 	if (xa_is_value(page))
80 		return page;
81 	return NULL;
82 }
83 
84 /*
85  * add_to_swap_cache resembles filemap_add_folio on swapper_space,
86  * but sets SwapCache flag and private instead of mapping and index.
87  */
88 int add_to_swap_cache(struct page *page, swp_entry_t entry,
89 			gfp_t gfp, void **shadowp)
90 {
91 	struct address_space *address_space = swap_address_space(entry);
92 	pgoff_t idx = swp_offset(entry);
93 	XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
94 	unsigned long i, nr = thp_nr_pages(page);
95 	void *old;
96 
97 	VM_BUG_ON_PAGE(!PageLocked(page), page);
98 	VM_BUG_ON_PAGE(PageSwapCache(page), page);
99 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
100 
101 	page_ref_add(page, nr);
102 	SetPageSwapCache(page);
103 
104 	do {
105 		xas_lock_irq(&xas);
106 		xas_create_range(&xas);
107 		if (xas_error(&xas))
108 			goto unlock;
109 		for (i = 0; i < nr; i++) {
110 			VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
111 			old = xas_load(&xas);
112 			if (xa_is_value(old)) {
113 				if (shadowp)
114 					*shadowp = old;
115 			}
116 			set_page_private(page + i, entry.val + i);
117 			xas_store(&xas, page);
118 			xas_next(&xas);
119 		}
120 		address_space->nrpages += nr;
121 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
122 		__mod_lruvec_page_state(page, NR_SWAPCACHE, nr);
123 unlock:
124 		xas_unlock_irq(&xas);
125 	} while (xas_nomem(&xas, gfp));
126 
127 	if (!xas_error(&xas))
128 		return 0;
129 
130 	ClearPageSwapCache(page);
131 	page_ref_sub(page, nr);
132 	return xas_error(&xas);
133 }
134 
135 /*
136  * This must be called only on folios that have
137  * been verified to be in the swap cache.
138  */
139 void __delete_from_swap_cache(struct folio *folio,
140 			swp_entry_t entry, void *shadow)
141 {
142 	struct address_space *address_space = swap_address_space(entry);
143 	int i;
144 	long nr = folio_nr_pages(folio);
145 	pgoff_t idx = swp_offset(entry);
146 	XA_STATE(xas, &address_space->i_pages, idx);
147 
148 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
149 	VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
150 	VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
151 
152 	for (i = 0; i < nr; i++) {
153 		void *entry = xas_store(&xas, shadow);
154 		VM_BUG_ON_FOLIO(entry != folio, folio);
155 		set_page_private(folio_page(folio, i), 0);
156 		xas_next(&xas);
157 	}
158 	folio_clear_swapcache(folio);
159 	address_space->nrpages -= nr;
160 	__node_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
161 	__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr);
162 }
163 
164 /**
165  * add_to_swap - allocate swap space for a folio
166  * @folio: folio we want to move to swap
167  *
168  * Allocate swap space for the folio and add the folio to the
169  * swap cache.
170  *
171  * Context: Caller needs to hold the folio lock.
172  * Return: Whether the folio was added to the swap cache.
173  */
174 bool add_to_swap(struct folio *folio)
175 {
176 	swp_entry_t entry;
177 	int err;
178 
179 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
180 	VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
181 
182 	entry = folio_alloc_swap(folio);
183 	if (!entry.val)
184 		return false;
185 
186 	/*
187 	 * XArray node allocations from PF_MEMALLOC contexts could
188 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
189 	 * stops emergency reserves from being allocated.
190 	 *
191 	 * TODO: this could cause a theoretical memory reclaim
192 	 * deadlock in the swap out path.
193 	 */
194 	/*
195 	 * Add it to the swap cache.
196 	 */
197 	err = add_to_swap_cache(&folio->page, entry,
198 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
199 	if (err)
200 		/*
201 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
202 		 * clear SWAP_HAS_CACHE flag.
203 		 */
204 		goto fail;
205 	/*
206 	 * Normally the folio will be dirtied in unmap because its
207 	 * pte should be dirty. A special case is MADV_FREE page. The
208 	 * page's pte could have dirty bit cleared but the folio's
209 	 * SwapBacked flag is still set because clearing the dirty bit
210 	 * and SwapBacked flag has no lock protected. For such folio,
211 	 * unmap will not set dirty bit for it, so folio reclaim will
212 	 * not write the folio out. This can cause data corruption when
213 	 * the folio is swapped in later. Always setting the dirty flag
214 	 * for the folio solves the problem.
215 	 */
216 	folio_mark_dirty(folio);
217 
218 	return true;
219 
220 fail:
221 	put_swap_page(&folio->page, entry);
222 	return false;
223 }
224 
225 /*
226  * This must be called only on folios that have
227  * been verified to be in the swap cache and locked.
228  * It will never put the folio into the free list,
229  * the caller has a reference on the folio.
230  */
231 void delete_from_swap_cache(struct folio *folio)
232 {
233 	swp_entry_t entry = folio_swap_entry(folio);
234 	struct address_space *address_space = swap_address_space(entry);
235 
236 	xa_lock_irq(&address_space->i_pages);
237 	__delete_from_swap_cache(folio, entry, NULL);
238 	xa_unlock_irq(&address_space->i_pages);
239 
240 	put_swap_page(&folio->page, entry);
241 	folio_ref_sub(folio, folio_nr_pages(folio));
242 }
243 
244 void clear_shadow_from_swap_cache(int type, unsigned long begin,
245 				unsigned long end)
246 {
247 	unsigned long curr = begin;
248 	void *old;
249 
250 	for (;;) {
251 		swp_entry_t entry = swp_entry(type, curr);
252 		struct address_space *address_space = swap_address_space(entry);
253 		XA_STATE(xas, &address_space->i_pages, curr);
254 
255 		xa_lock_irq(&address_space->i_pages);
256 		xas_for_each(&xas, old, end) {
257 			if (!xa_is_value(old))
258 				continue;
259 			xas_store(&xas, NULL);
260 		}
261 		xa_unlock_irq(&address_space->i_pages);
262 
263 		/* search the next swapcache until we meet end */
264 		curr >>= SWAP_ADDRESS_SPACE_SHIFT;
265 		curr++;
266 		curr <<= SWAP_ADDRESS_SPACE_SHIFT;
267 		if (curr > end)
268 			break;
269 	}
270 }
271 
272 /*
273  * If we are the only user, then try to free up the swap cache.
274  *
275  * Its ok to check for PageSwapCache without the page lock
276  * here because we are going to recheck again inside
277  * try_to_free_swap() _with_ the lock.
278  * 					- Marcelo
279  */
280 void free_swap_cache(struct page *page)
281 {
282 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
283 		try_to_free_swap(page);
284 		unlock_page(page);
285 	}
286 }
287 
288 /*
289  * Perform a free_page(), also freeing any swap cache associated with
290  * this page if it is the last user of the page.
291  */
292 void free_page_and_swap_cache(struct page *page)
293 {
294 	free_swap_cache(page);
295 	if (!is_huge_zero_page(page))
296 		put_page(page);
297 }
298 
299 /*
300  * Passed an array of pages, drop them all from swapcache and then release
301  * them.  They are removed from the LRU and freed if this is their last use.
302  */
303 void free_pages_and_swap_cache(struct page **pages, int nr)
304 {
305 	struct page **pagep = pages;
306 	int i;
307 
308 	lru_add_drain();
309 	for (i = 0; i < nr; i++)
310 		free_swap_cache(pagep[i]);
311 	release_pages(pagep, nr);
312 }
313 
314 static inline bool swap_use_vma_readahead(void)
315 {
316 	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
317 }
318 
319 /*
320  * Lookup a swap entry in the swap cache. A found page will be returned
321  * unlocked and with its refcount incremented - we rely on the kernel
322  * lock getting page table operations atomic even if we drop the page
323  * lock before returning.
324  */
325 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
326 			       unsigned long addr)
327 {
328 	struct page *page;
329 	struct swap_info_struct *si;
330 
331 	si = get_swap_device(entry);
332 	if (!si)
333 		return NULL;
334 	page = find_get_page(swap_address_space(entry), swp_offset(entry));
335 	put_swap_device(si);
336 
337 	if (page) {
338 		bool vma_ra = swap_use_vma_readahead();
339 		bool readahead;
340 
341 		/*
342 		 * At the moment, we don't support PG_readahead for anon THP
343 		 * so let's bail out rather than confusing the readahead stat.
344 		 */
345 		if (unlikely(PageTransCompound(page)))
346 			return page;
347 
348 		readahead = TestClearPageReadahead(page);
349 		if (vma && vma_ra) {
350 			unsigned long ra_val;
351 			int win, hits;
352 
353 			ra_val = GET_SWAP_RA_VAL(vma);
354 			win = SWAP_RA_WIN(ra_val);
355 			hits = SWAP_RA_HITS(ra_val);
356 			if (readahead)
357 				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
358 			atomic_long_set(&vma->swap_readahead_info,
359 					SWAP_RA_VAL(addr, win, hits));
360 		}
361 
362 		if (readahead) {
363 			count_vm_event(SWAP_RA_HIT);
364 			if (!vma || !vma_ra)
365 				atomic_inc(&swapin_readahead_hits);
366 		}
367 	}
368 
369 	return page;
370 }
371 
372 /**
373  * find_get_incore_page - Find and get a page from the page or swap caches.
374  * @mapping: The address_space to search.
375  * @index: The page cache index.
376  *
377  * This differs from find_get_page() in that it will also look for the
378  * page in the swap cache.
379  *
380  * Return: The found page or %NULL.
381  */
382 struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index)
383 {
384 	swp_entry_t swp;
385 	struct swap_info_struct *si;
386 	struct page *page = pagecache_get_page(mapping, index,
387 						FGP_ENTRY | FGP_HEAD, 0);
388 
389 	if (!page)
390 		return page;
391 	if (!xa_is_value(page))
392 		return find_subpage(page, index);
393 	if (!shmem_mapping(mapping))
394 		return NULL;
395 
396 	swp = radix_to_swp_entry(page);
397 	/* There might be swapin error entries in shmem mapping. */
398 	if (non_swap_entry(swp))
399 		return NULL;
400 	/* Prevent swapoff from happening to us */
401 	si = get_swap_device(swp);
402 	if (!si)
403 		return NULL;
404 	page = find_get_page(swap_address_space(swp), swp_offset(swp));
405 	put_swap_device(si);
406 	return page;
407 }
408 
409 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
410 			struct vm_area_struct *vma, unsigned long addr,
411 			bool *new_page_allocated)
412 {
413 	struct swap_info_struct *si;
414 	struct page *page;
415 	void *shadow = NULL;
416 
417 	*new_page_allocated = false;
418 
419 	for (;;) {
420 		int err;
421 		/*
422 		 * First check the swap cache.  Since this is normally
423 		 * called after lookup_swap_cache() failed, re-calling
424 		 * that would confuse statistics.
425 		 */
426 		si = get_swap_device(entry);
427 		if (!si)
428 			return NULL;
429 		page = find_get_page(swap_address_space(entry),
430 				     swp_offset(entry));
431 		put_swap_device(si);
432 		if (page)
433 			return page;
434 
435 		/*
436 		 * Just skip read ahead for unused swap slot.
437 		 * During swap_off when swap_slot_cache is disabled,
438 		 * we have to handle the race between putting
439 		 * swap entry in swap cache and marking swap slot
440 		 * as SWAP_HAS_CACHE.  That's done in later part of code or
441 		 * else swap_off will be aborted if we return NULL.
442 		 */
443 		if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
444 			return NULL;
445 
446 		/*
447 		 * Get a new page to read into from swap.  Allocate it now,
448 		 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
449 		 * cause any racers to loop around until we add it to cache.
450 		 */
451 		page = alloc_page_vma(gfp_mask, vma, addr);
452 		if (!page)
453 			return NULL;
454 
455 		/*
456 		 * Swap entry may have been freed since our caller observed it.
457 		 */
458 		err = swapcache_prepare(entry);
459 		if (!err)
460 			break;
461 
462 		put_page(page);
463 		if (err != -EEXIST)
464 			return NULL;
465 
466 		/*
467 		 * We might race against __delete_from_swap_cache(), and
468 		 * stumble across a swap_map entry whose SWAP_HAS_CACHE
469 		 * has not yet been cleared.  Or race against another
470 		 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
471 		 * in swap_map, but not yet added its page to swap cache.
472 		 */
473 		schedule_timeout_uninterruptible(1);
474 	}
475 
476 	/*
477 	 * The swap entry is ours to swap in. Prepare the new page.
478 	 */
479 
480 	__SetPageLocked(page);
481 	__SetPageSwapBacked(page);
482 
483 	if (mem_cgroup_swapin_charge_page(page, NULL, gfp_mask, entry))
484 		goto fail_unlock;
485 
486 	/* May fail (-ENOMEM) if XArray node allocation failed. */
487 	if (add_to_swap_cache(page, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
488 		goto fail_unlock;
489 
490 	mem_cgroup_swapin_uncharge_swap(entry);
491 
492 	if (shadow)
493 		workingset_refault(page_folio(page), shadow);
494 
495 	/* Caller will initiate read into locked page */
496 	lru_cache_add(page);
497 	*new_page_allocated = true;
498 	return page;
499 
500 fail_unlock:
501 	put_swap_page(page, entry);
502 	unlock_page(page);
503 	put_page(page);
504 	return NULL;
505 }
506 
507 /*
508  * Locate a page of swap in physical memory, reserving swap cache space
509  * and reading the disk if it is not already cached.
510  * A failure return means that either the page allocation failed or that
511  * the swap entry is no longer in use.
512  */
513 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
514 				   struct vm_area_struct *vma,
515 				   unsigned long addr, bool do_poll,
516 				   struct swap_iocb **plug)
517 {
518 	bool page_was_allocated;
519 	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
520 			vma, addr, &page_was_allocated);
521 
522 	if (page_was_allocated)
523 		swap_readpage(retpage, do_poll, plug);
524 
525 	return retpage;
526 }
527 
528 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
529 				      unsigned long offset,
530 				      int hits,
531 				      int max_pages,
532 				      int prev_win)
533 {
534 	unsigned int pages, last_ra;
535 
536 	/*
537 	 * This heuristic has been found to work well on both sequential and
538 	 * random loads, swapping to hard disk or to SSD: please don't ask
539 	 * what the "+ 2" means, it just happens to work well, that's all.
540 	 */
541 	pages = hits + 2;
542 	if (pages == 2) {
543 		/*
544 		 * We can have no readahead hits to judge by: but must not get
545 		 * stuck here forever, so check for an adjacent offset instead
546 		 * (and don't even bother to check whether swap type is same).
547 		 */
548 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
549 			pages = 1;
550 	} else {
551 		unsigned int roundup = 4;
552 		while (roundup < pages)
553 			roundup <<= 1;
554 		pages = roundup;
555 	}
556 
557 	if (pages > max_pages)
558 		pages = max_pages;
559 
560 	/* Don't shrink readahead too fast */
561 	last_ra = prev_win / 2;
562 	if (pages < last_ra)
563 		pages = last_ra;
564 
565 	return pages;
566 }
567 
568 static unsigned long swapin_nr_pages(unsigned long offset)
569 {
570 	static unsigned long prev_offset;
571 	unsigned int hits, pages, max_pages;
572 	static atomic_t last_readahead_pages;
573 
574 	max_pages = 1 << READ_ONCE(page_cluster);
575 	if (max_pages <= 1)
576 		return 1;
577 
578 	hits = atomic_xchg(&swapin_readahead_hits, 0);
579 	pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
580 				  max_pages,
581 				  atomic_read(&last_readahead_pages));
582 	if (!hits)
583 		WRITE_ONCE(prev_offset, offset);
584 	atomic_set(&last_readahead_pages, pages);
585 
586 	return pages;
587 }
588 
589 /**
590  * swap_cluster_readahead - swap in pages in hope we need them soon
591  * @entry: swap entry of this memory
592  * @gfp_mask: memory allocation flags
593  * @vmf: fault information
594  *
595  * Returns the struct page for entry and addr, after queueing swapin.
596  *
597  * Primitive swap readahead code. We simply read an aligned block of
598  * (1 << page_cluster) entries in the swap area. This method is chosen
599  * because it doesn't cost us any seek time.  We also make sure to queue
600  * the 'original' request together with the readahead ones...
601  *
602  * This has been extended to use the NUMA policies from the mm triggering
603  * the readahead.
604  *
605  * Caller must hold read mmap_lock if vmf->vma is not NULL.
606  */
607 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
608 				struct vm_fault *vmf)
609 {
610 	struct page *page;
611 	unsigned long entry_offset = swp_offset(entry);
612 	unsigned long offset = entry_offset;
613 	unsigned long start_offset, end_offset;
614 	unsigned long mask;
615 	struct swap_info_struct *si = swp_swap_info(entry);
616 	struct blk_plug plug;
617 	struct swap_iocb *splug = NULL;
618 	bool do_poll = true, page_allocated;
619 	struct vm_area_struct *vma = vmf->vma;
620 	unsigned long addr = vmf->address;
621 
622 	mask = swapin_nr_pages(offset) - 1;
623 	if (!mask)
624 		goto skip;
625 
626 	do_poll = false;
627 	/* Read a page_cluster sized and aligned cluster around offset. */
628 	start_offset = offset & ~mask;
629 	end_offset = offset | mask;
630 	if (!start_offset)	/* First page is swap header. */
631 		start_offset++;
632 	if (end_offset >= si->max)
633 		end_offset = si->max - 1;
634 
635 	blk_start_plug(&plug);
636 	for (offset = start_offset; offset <= end_offset ; offset++) {
637 		/* Ok, do the async read-ahead now */
638 		page = __read_swap_cache_async(
639 			swp_entry(swp_type(entry), offset),
640 			gfp_mask, vma, addr, &page_allocated);
641 		if (!page)
642 			continue;
643 		if (page_allocated) {
644 			swap_readpage(page, false, &splug);
645 			if (offset != entry_offset) {
646 				SetPageReadahead(page);
647 				count_vm_event(SWAP_RA);
648 			}
649 		}
650 		put_page(page);
651 	}
652 	blk_finish_plug(&plug);
653 	swap_read_unplug(splug);
654 
655 	lru_add_drain();	/* Push any new pages onto the LRU now */
656 skip:
657 	/* The page was likely read above, so no need for plugging here */
658 	return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll, NULL);
659 }
660 
661 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
662 {
663 	struct address_space *spaces, *space;
664 	unsigned int i, nr;
665 
666 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
667 	spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
668 	if (!spaces)
669 		return -ENOMEM;
670 	for (i = 0; i < nr; i++) {
671 		space = spaces + i;
672 		xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
673 		atomic_set(&space->i_mmap_writable, 0);
674 		space->a_ops = &swap_aops;
675 		/* swap cache doesn't use writeback related tags */
676 		mapping_set_no_writeback_tags(space);
677 	}
678 	nr_swapper_spaces[type] = nr;
679 	swapper_spaces[type] = spaces;
680 
681 	return 0;
682 }
683 
684 void exit_swap_address_space(unsigned int type)
685 {
686 	int i;
687 	struct address_space *spaces = swapper_spaces[type];
688 
689 	for (i = 0; i < nr_swapper_spaces[type]; i++)
690 		VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
691 	kvfree(spaces);
692 	nr_swapper_spaces[type] = 0;
693 	swapper_spaces[type] = NULL;
694 }
695 
696 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
697 				     unsigned long faddr,
698 				     unsigned long lpfn,
699 				     unsigned long rpfn,
700 				     unsigned long *start,
701 				     unsigned long *end)
702 {
703 	*start = max3(lpfn, PFN_DOWN(vma->vm_start),
704 		      PFN_DOWN(faddr & PMD_MASK));
705 	*end = min3(rpfn, PFN_DOWN(vma->vm_end),
706 		    PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
707 }
708 
709 static void swap_ra_info(struct vm_fault *vmf,
710 			struct vma_swap_readahead *ra_info)
711 {
712 	struct vm_area_struct *vma = vmf->vma;
713 	unsigned long ra_val;
714 	unsigned long faddr, pfn, fpfn;
715 	unsigned long start, end;
716 	pte_t *pte, *orig_pte;
717 	unsigned int max_win, hits, prev_win, win, left;
718 #ifndef CONFIG_64BIT
719 	pte_t *tpte;
720 #endif
721 
722 	max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
723 			     SWAP_RA_ORDER_CEILING);
724 	if (max_win == 1) {
725 		ra_info->win = 1;
726 		return;
727 	}
728 
729 	faddr = vmf->address;
730 	orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
731 
732 	fpfn = PFN_DOWN(faddr);
733 	ra_val = GET_SWAP_RA_VAL(vma);
734 	pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
735 	prev_win = SWAP_RA_WIN(ra_val);
736 	hits = SWAP_RA_HITS(ra_val);
737 	ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
738 					       max_win, prev_win);
739 	atomic_long_set(&vma->swap_readahead_info,
740 			SWAP_RA_VAL(faddr, win, 0));
741 
742 	if (win == 1) {
743 		pte_unmap(orig_pte);
744 		return;
745 	}
746 
747 	/* Copy the PTEs because the page table may be unmapped */
748 	if (fpfn == pfn + 1)
749 		swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
750 	else if (pfn == fpfn + 1)
751 		swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
752 				  &start, &end);
753 	else {
754 		left = (win - 1) / 2;
755 		swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
756 				  &start, &end);
757 	}
758 	ra_info->nr_pte = end - start;
759 	ra_info->offset = fpfn - start;
760 	pte -= ra_info->offset;
761 #ifdef CONFIG_64BIT
762 	ra_info->ptes = pte;
763 #else
764 	tpte = ra_info->ptes;
765 	for (pfn = start; pfn != end; pfn++)
766 		*tpte++ = *pte++;
767 #endif
768 	pte_unmap(orig_pte);
769 }
770 
771 /**
772  * swap_vma_readahead - swap in pages in hope we need them soon
773  * @fentry: swap entry of this memory
774  * @gfp_mask: memory allocation flags
775  * @vmf: fault information
776  *
777  * Returns the struct page for entry and addr, after queueing swapin.
778  *
779  * Primitive swap readahead code. We simply read in a few pages whose
780  * virtual addresses are around the fault address in the same vma.
781  *
782  * Caller must hold read mmap_lock if vmf->vma is not NULL.
783  *
784  */
785 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
786 				       struct vm_fault *vmf)
787 {
788 	struct blk_plug plug;
789 	struct swap_iocb *splug = NULL;
790 	struct vm_area_struct *vma = vmf->vma;
791 	struct page *page;
792 	pte_t *pte, pentry;
793 	swp_entry_t entry;
794 	unsigned int i;
795 	bool page_allocated;
796 	struct vma_swap_readahead ra_info = {
797 		.win = 1,
798 	};
799 
800 	swap_ra_info(vmf, &ra_info);
801 	if (ra_info.win == 1)
802 		goto skip;
803 
804 	blk_start_plug(&plug);
805 	for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
806 	     i++, pte++) {
807 		pentry = *pte;
808 		if (!is_swap_pte(pentry))
809 			continue;
810 		entry = pte_to_swp_entry(pentry);
811 		if (unlikely(non_swap_entry(entry)))
812 			continue;
813 		page = __read_swap_cache_async(entry, gfp_mask, vma,
814 					       vmf->address, &page_allocated);
815 		if (!page)
816 			continue;
817 		if (page_allocated) {
818 			swap_readpage(page, false, &splug);
819 			if (i != ra_info.offset) {
820 				SetPageReadahead(page);
821 				count_vm_event(SWAP_RA);
822 			}
823 		}
824 		put_page(page);
825 	}
826 	blk_finish_plug(&plug);
827 	swap_read_unplug(splug);
828 	lru_add_drain();
829 skip:
830 	/* The page was likely read above, so no need for plugging here */
831 	return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
832 				     ra_info.win == 1, NULL);
833 }
834 
835 /**
836  * swapin_readahead - swap in pages in hope we need them soon
837  * @entry: swap entry of this memory
838  * @gfp_mask: memory allocation flags
839  * @vmf: fault information
840  *
841  * Returns the struct page for entry and addr, after queueing swapin.
842  *
843  * It's a main entry function for swap readahead. By the configuration,
844  * it will read ahead blocks by cluster-based(ie, physical disk based)
845  * or vma-based(ie, virtual address based on faulty address) readahead.
846  */
847 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
848 				struct vm_fault *vmf)
849 {
850 	return swap_use_vma_readahead() ?
851 			swap_vma_readahead(entry, gfp_mask, vmf) :
852 			swap_cluster_readahead(entry, gfp_mask, vmf);
853 }
854 
855 #ifdef CONFIG_SYSFS
856 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
857 				     struct kobj_attribute *attr, char *buf)
858 {
859 	return sysfs_emit(buf, "%s\n",
860 			  enable_vma_readahead ? "true" : "false");
861 }
862 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
863 				      struct kobj_attribute *attr,
864 				      const char *buf, size_t count)
865 {
866 	ssize_t ret;
867 
868 	ret = kstrtobool(buf, &enable_vma_readahead);
869 	if (ret)
870 		return ret;
871 
872 	return count;
873 }
874 static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
875 
876 static struct attribute *swap_attrs[] = {
877 	&vma_ra_enabled_attr.attr,
878 	NULL,
879 };
880 
881 static const struct attribute_group swap_attr_group = {
882 	.attrs = swap_attrs,
883 };
884 
885 static int __init swap_init_sysfs(void)
886 {
887 	int err;
888 	struct kobject *swap_kobj;
889 
890 	swap_kobj = kobject_create_and_add("swap", mm_kobj);
891 	if (!swap_kobj) {
892 		pr_err("failed to create swap kobject\n");
893 		return -ENOMEM;
894 	}
895 	err = sysfs_create_group(swap_kobj, &swap_attr_group);
896 	if (err) {
897 		pr_err("failed to register swap group\n");
898 		goto delete_obj;
899 	}
900 	return 0;
901 
902 delete_obj:
903 	kobject_put(swap_kobj);
904 	return err;
905 }
906 subsys_initcall(swap_init_sysfs);
907 #endif
908