xref: /linux/mm/swap_state.c (revision 160b8e75932fd51a49607d32dbfa1d417977b79c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/swap_state.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  *
8  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
9  */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
24 
25 #include <asm/pgtable.h>
26 
27 /*
28  * swapper_space is a fiction, retained to simplify the path through
29  * vmscan's shrink_page_list.
30  */
31 static const struct address_space_operations swap_aops = {
32 	.writepage	= swap_writepage,
33 	.set_page_dirty	= swap_set_page_dirty,
34 #ifdef CONFIG_MIGRATION
35 	.migratepage	= migrate_page,
36 #endif
37 };
38 
39 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
40 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
41 bool swap_vma_readahead __read_mostly = true;
42 
43 #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
44 #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
45 #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
46 #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
47 
48 #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
49 #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
50 #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
51 
52 #define SWAP_RA_VAL(addr, win, hits)				\
53 	(((addr) & PAGE_MASK) |					\
54 	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
55 	 ((hits) & SWAP_RA_HITS_MASK))
56 
57 /* Initial readahead hits is 4 to start up with a small window */
58 #define GET_SWAP_RA_VAL(vma)					\
59 	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
60 
61 #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
62 #define ADD_CACHE_INFO(x, nr)	do { swap_cache_info.x += (nr); } while (0)
63 
64 static struct {
65 	unsigned long add_total;
66 	unsigned long del_total;
67 	unsigned long find_success;
68 	unsigned long find_total;
69 } swap_cache_info;
70 
71 unsigned long total_swapcache_pages(void)
72 {
73 	unsigned int i, j, nr;
74 	unsigned long ret = 0;
75 	struct address_space *spaces;
76 
77 	rcu_read_lock();
78 	for (i = 0; i < MAX_SWAPFILES; i++) {
79 		/*
80 		 * The corresponding entries in nr_swapper_spaces and
81 		 * swapper_spaces will be reused only after at least
82 		 * one grace period.  So it is impossible for them
83 		 * belongs to different usage.
84 		 */
85 		nr = nr_swapper_spaces[i];
86 		spaces = rcu_dereference(swapper_spaces[i]);
87 		if (!nr || !spaces)
88 			continue;
89 		for (j = 0; j < nr; j++)
90 			ret += spaces[j].nrpages;
91 	}
92 	rcu_read_unlock();
93 	return ret;
94 }
95 
96 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
97 
98 void show_swap_cache_info(void)
99 {
100 	printk("%lu pages in swap cache\n", total_swapcache_pages());
101 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
102 		swap_cache_info.add_total, swap_cache_info.del_total,
103 		swap_cache_info.find_success, swap_cache_info.find_total);
104 	printk("Free swap  = %ldkB\n",
105 		get_nr_swap_pages() << (PAGE_SHIFT - 10));
106 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
107 }
108 
109 /*
110  * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
111  * but sets SwapCache flag and private instead of mapping and index.
112  */
113 int __add_to_swap_cache(struct page *page, swp_entry_t entry)
114 {
115 	int error, i, nr = hpage_nr_pages(page);
116 	struct address_space *address_space;
117 	pgoff_t idx = swp_offset(entry);
118 
119 	VM_BUG_ON_PAGE(!PageLocked(page), page);
120 	VM_BUG_ON_PAGE(PageSwapCache(page), page);
121 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
122 
123 	page_ref_add(page, nr);
124 	SetPageSwapCache(page);
125 
126 	address_space = swap_address_space(entry);
127 	spin_lock_irq(&address_space->tree_lock);
128 	for (i = 0; i < nr; i++) {
129 		set_page_private(page + i, entry.val + i);
130 		error = radix_tree_insert(&address_space->page_tree,
131 					  idx + i, page + i);
132 		if (unlikely(error))
133 			break;
134 	}
135 	if (likely(!error)) {
136 		address_space->nrpages += nr;
137 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
138 		ADD_CACHE_INFO(add_total, nr);
139 	} else {
140 		/*
141 		 * Only the context which have set SWAP_HAS_CACHE flag
142 		 * would call add_to_swap_cache().
143 		 * So add_to_swap_cache() doesn't returns -EEXIST.
144 		 */
145 		VM_BUG_ON(error == -EEXIST);
146 		set_page_private(page + i, 0UL);
147 		while (i--) {
148 			radix_tree_delete(&address_space->page_tree, idx + i);
149 			set_page_private(page + i, 0UL);
150 		}
151 		ClearPageSwapCache(page);
152 		page_ref_sub(page, nr);
153 	}
154 	spin_unlock_irq(&address_space->tree_lock);
155 
156 	return error;
157 }
158 
159 
160 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
161 {
162 	int error;
163 
164 	error = radix_tree_maybe_preload_order(gfp_mask, compound_order(page));
165 	if (!error) {
166 		error = __add_to_swap_cache(page, entry);
167 		radix_tree_preload_end();
168 	}
169 	return error;
170 }
171 
172 /*
173  * This must be called only on pages that have
174  * been verified to be in the swap cache.
175  */
176 void __delete_from_swap_cache(struct page *page)
177 {
178 	struct address_space *address_space;
179 	int i, nr = hpage_nr_pages(page);
180 	swp_entry_t entry;
181 	pgoff_t idx;
182 
183 	VM_BUG_ON_PAGE(!PageLocked(page), page);
184 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
185 	VM_BUG_ON_PAGE(PageWriteback(page), page);
186 
187 	entry.val = page_private(page);
188 	address_space = swap_address_space(entry);
189 	idx = swp_offset(entry);
190 	for (i = 0; i < nr; i++) {
191 		radix_tree_delete(&address_space->page_tree, idx + i);
192 		set_page_private(page + i, 0);
193 	}
194 	ClearPageSwapCache(page);
195 	address_space->nrpages -= nr;
196 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
197 	ADD_CACHE_INFO(del_total, nr);
198 }
199 
200 /**
201  * add_to_swap - allocate swap space for a page
202  * @page: page we want to move to swap
203  *
204  * Allocate swap space for the page and add the page to the
205  * swap cache.  Caller needs to hold the page lock.
206  */
207 int add_to_swap(struct page *page)
208 {
209 	swp_entry_t entry;
210 	int err;
211 
212 	VM_BUG_ON_PAGE(!PageLocked(page), page);
213 	VM_BUG_ON_PAGE(!PageUptodate(page), page);
214 
215 	entry = get_swap_page(page);
216 	if (!entry.val)
217 		return 0;
218 
219 	if (mem_cgroup_try_charge_swap(page, entry))
220 		goto fail;
221 
222 	/*
223 	 * Radix-tree node allocations from PF_MEMALLOC contexts could
224 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
225 	 * stops emergency reserves from being allocated.
226 	 *
227 	 * TODO: this could cause a theoretical memory reclaim
228 	 * deadlock in the swap out path.
229 	 */
230 	/*
231 	 * Add it to the swap cache.
232 	 */
233 	err = add_to_swap_cache(page, entry,
234 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
235 	/* -ENOMEM radix-tree allocation failure */
236 	if (err)
237 		/*
238 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
239 		 * clear SWAP_HAS_CACHE flag.
240 		 */
241 		goto fail;
242 	/*
243 	 * Normally the page will be dirtied in unmap because its pte should be
244 	 * dirty. A special case is MADV_FREE page. The page'e pte could have
245 	 * dirty bit cleared but the page's SwapBacked bit is still set because
246 	 * clearing the dirty bit and SwapBacked bit has no lock protected. For
247 	 * such page, unmap will not set dirty bit for it, so page reclaim will
248 	 * not write the page out. This can cause data corruption when the page
249 	 * is swap in later. Always setting the dirty bit for the page solves
250 	 * the problem.
251 	 */
252 	set_page_dirty(page);
253 
254 	return 1;
255 
256 fail:
257 	put_swap_page(page, entry);
258 	return 0;
259 }
260 
261 /*
262  * This must be called only on pages that have
263  * been verified to be in the swap cache and locked.
264  * It will never put the page into the free list,
265  * the caller has a reference on the page.
266  */
267 void delete_from_swap_cache(struct page *page)
268 {
269 	swp_entry_t entry;
270 	struct address_space *address_space;
271 
272 	entry.val = page_private(page);
273 
274 	address_space = swap_address_space(entry);
275 	spin_lock_irq(&address_space->tree_lock);
276 	__delete_from_swap_cache(page);
277 	spin_unlock_irq(&address_space->tree_lock);
278 
279 	put_swap_page(page, entry);
280 	page_ref_sub(page, hpage_nr_pages(page));
281 }
282 
283 /*
284  * If we are the only user, then try to free up the swap cache.
285  *
286  * Its ok to check for PageSwapCache without the page lock
287  * here because we are going to recheck again inside
288  * try_to_free_swap() _with_ the lock.
289  * 					- Marcelo
290  */
291 static inline void free_swap_cache(struct page *page)
292 {
293 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
294 		try_to_free_swap(page);
295 		unlock_page(page);
296 	}
297 }
298 
299 /*
300  * Perform a free_page(), also freeing any swap cache associated with
301  * this page if it is the last user of the page.
302  */
303 void free_page_and_swap_cache(struct page *page)
304 {
305 	free_swap_cache(page);
306 	if (!is_huge_zero_page(page))
307 		put_page(page);
308 }
309 
310 /*
311  * Passed an array of pages, drop them all from swapcache and then release
312  * them.  They are removed from the LRU and freed if this is their last use.
313  */
314 void free_pages_and_swap_cache(struct page **pages, int nr)
315 {
316 	struct page **pagep = pages;
317 	int i;
318 
319 	lru_add_drain();
320 	for (i = 0; i < nr; i++)
321 		free_swap_cache(pagep[i]);
322 	release_pages(pagep, nr);
323 }
324 
325 /*
326  * Lookup a swap entry in the swap cache. A found page will be returned
327  * unlocked and with its refcount incremented - we rely on the kernel
328  * lock getting page table operations atomic even if we drop the page
329  * lock before returning.
330  */
331 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
332 			       unsigned long addr)
333 {
334 	struct page *page;
335 	unsigned long ra_info;
336 	int win, hits, readahead;
337 
338 	page = find_get_page(swap_address_space(entry), swp_offset(entry));
339 
340 	INC_CACHE_INFO(find_total);
341 	if (page) {
342 		INC_CACHE_INFO(find_success);
343 		if (unlikely(PageTransCompound(page)))
344 			return page;
345 		readahead = TestClearPageReadahead(page);
346 		if (vma) {
347 			ra_info = GET_SWAP_RA_VAL(vma);
348 			win = SWAP_RA_WIN(ra_info);
349 			hits = SWAP_RA_HITS(ra_info);
350 			if (readahead)
351 				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
352 			atomic_long_set(&vma->swap_readahead_info,
353 					SWAP_RA_VAL(addr, win, hits));
354 		}
355 		if (readahead) {
356 			count_vm_event(SWAP_RA_HIT);
357 			if (!vma)
358 				atomic_inc(&swapin_readahead_hits);
359 		}
360 	}
361 	return page;
362 }
363 
364 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
365 			struct vm_area_struct *vma, unsigned long addr,
366 			bool *new_page_allocated)
367 {
368 	struct page *found_page, *new_page = NULL;
369 	struct address_space *swapper_space = swap_address_space(entry);
370 	int err;
371 	*new_page_allocated = false;
372 
373 	do {
374 		/*
375 		 * First check the swap cache.  Since this is normally
376 		 * called after lookup_swap_cache() failed, re-calling
377 		 * that would confuse statistics.
378 		 */
379 		found_page = find_get_page(swapper_space, swp_offset(entry));
380 		if (found_page)
381 			break;
382 
383 		/*
384 		 * Just skip read ahead for unused swap slot.
385 		 * During swap_off when swap_slot_cache is disabled,
386 		 * we have to handle the race between putting
387 		 * swap entry in swap cache and marking swap slot
388 		 * as SWAP_HAS_CACHE.  That's done in later part of code or
389 		 * else swap_off will be aborted if we return NULL.
390 		 */
391 		if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
392 			break;
393 
394 		/*
395 		 * Get a new page to read into from swap.
396 		 */
397 		if (!new_page) {
398 			new_page = alloc_page_vma(gfp_mask, vma, addr);
399 			if (!new_page)
400 				break;		/* Out of memory */
401 		}
402 
403 		/*
404 		 * call radix_tree_preload() while we can wait.
405 		 */
406 		err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
407 		if (err)
408 			break;
409 
410 		/*
411 		 * Swap entry may have been freed since our caller observed it.
412 		 */
413 		err = swapcache_prepare(entry);
414 		if (err == -EEXIST) {
415 			radix_tree_preload_end();
416 			/*
417 			 * We might race against get_swap_page() and stumble
418 			 * across a SWAP_HAS_CACHE swap_map entry whose page
419 			 * has not been brought into the swapcache yet.
420 			 */
421 			cond_resched();
422 			continue;
423 		}
424 		if (err) {		/* swp entry is obsolete ? */
425 			radix_tree_preload_end();
426 			break;
427 		}
428 
429 		/* May fail (-ENOMEM) if radix-tree node allocation failed. */
430 		__SetPageLocked(new_page);
431 		__SetPageSwapBacked(new_page);
432 		err = __add_to_swap_cache(new_page, entry);
433 		if (likely(!err)) {
434 			radix_tree_preload_end();
435 			/*
436 			 * Initiate read into locked page and return.
437 			 */
438 			lru_cache_add_anon(new_page);
439 			*new_page_allocated = true;
440 			return new_page;
441 		}
442 		radix_tree_preload_end();
443 		__ClearPageLocked(new_page);
444 		/*
445 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
446 		 * clear SWAP_HAS_CACHE flag.
447 		 */
448 		put_swap_page(new_page, entry);
449 	} while (err != -ENOMEM);
450 
451 	if (new_page)
452 		put_page(new_page);
453 	return found_page;
454 }
455 
456 /*
457  * Locate a page of swap in physical memory, reserving swap cache space
458  * and reading the disk if it is not already cached.
459  * A failure return means that either the page allocation failed or that
460  * the swap entry is no longer in use.
461  */
462 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
463 		struct vm_area_struct *vma, unsigned long addr, bool do_poll)
464 {
465 	bool page_was_allocated;
466 	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
467 			vma, addr, &page_was_allocated);
468 
469 	if (page_was_allocated)
470 		swap_readpage(retpage, do_poll);
471 
472 	return retpage;
473 }
474 
475 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
476 				      unsigned long offset,
477 				      int hits,
478 				      int max_pages,
479 				      int prev_win)
480 {
481 	unsigned int pages, last_ra;
482 
483 	/*
484 	 * This heuristic has been found to work well on both sequential and
485 	 * random loads, swapping to hard disk or to SSD: please don't ask
486 	 * what the "+ 2" means, it just happens to work well, that's all.
487 	 */
488 	pages = hits + 2;
489 	if (pages == 2) {
490 		/*
491 		 * We can have no readahead hits to judge by: but must not get
492 		 * stuck here forever, so check for an adjacent offset instead
493 		 * (and don't even bother to check whether swap type is same).
494 		 */
495 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
496 			pages = 1;
497 	} else {
498 		unsigned int roundup = 4;
499 		while (roundup < pages)
500 			roundup <<= 1;
501 		pages = roundup;
502 	}
503 
504 	if (pages > max_pages)
505 		pages = max_pages;
506 
507 	/* Don't shrink readahead too fast */
508 	last_ra = prev_win / 2;
509 	if (pages < last_ra)
510 		pages = last_ra;
511 
512 	return pages;
513 }
514 
515 static unsigned long swapin_nr_pages(unsigned long offset)
516 {
517 	static unsigned long prev_offset;
518 	unsigned int hits, pages, max_pages;
519 	static atomic_t last_readahead_pages;
520 
521 	max_pages = 1 << READ_ONCE(page_cluster);
522 	if (max_pages <= 1)
523 		return 1;
524 
525 	hits = atomic_xchg(&swapin_readahead_hits, 0);
526 	pages = __swapin_nr_pages(prev_offset, offset, hits, max_pages,
527 				  atomic_read(&last_readahead_pages));
528 	if (!hits)
529 		prev_offset = offset;
530 	atomic_set(&last_readahead_pages, pages);
531 
532 	return pages;
533 }
534 
535 /**
536  * swapin_readahead - swap in pages in hope we need them soon
537  * @entry: swap entry of this memory
538  * @gfp_mask: memory allocation flags
539  * @vma: user vma this address belongs to
540  * @addr: target address for mempolicy
541  *
542  * Returns the struct page for entry and addr, after queueing swapin.
543  *
544  * Primitive swap readahead code. We simply read an aligned block of
545  * (1 << page_cluster) entries in the swap area. This method is chosen
546  * because it doesn't cost us any seek time.  We also make sure to queue
547  * the 'original' request together with the readahead ones...
548  *
549  * This has been extended to use the NUMA policies from the mm triggering
550  * the readahead.
551  *
552  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
553  */
554 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
555 			struct vm_area_struct *vma, unsigned long addr)
556 {
557 	struct page *page;
558 	unsigned long entry_offset = swp_offset(entry);
559 	unsigned long offset = entry_offset;
560 	unsigned long start_offset, end_offset;
561 	unsigned long mask;
562 	struct swap_info_struct *si = swp_swap_info(entry);
563 	struct blk_plug plug;
564 	bool do_poll = true, page_allocated;
565 
566 	mask = swapin_nr_pages(offset) - 1;
567 	if (!mask)
568 		goto skip;
569 
570 	do_poll = false;
571 	/* Read a page_cluster sized and aligned cluster around offset. */
572 	start_offset = offset & ~mask;
573 	end_offset = offset | mask;
574 	if (!start_offset)	/* First page is swap header. */
575 		start_offset++;
576 	if (end_offset >= si->max)
577 		end_offset = si->max - 1;
578 
579 	blk_start_plug(&plug);
580 	for (offset = start_offset; offset <= end_offset ; offset++) {
581 		/* Ok, do the async read-ahead now */
582 		page = __read_swap_cache_async(
583 			swp_entry(swp_type(entry), offset),
584 			gfp_mask, vma, addr, &page_allocated);
585 		if (!page)
586 			continue;
587 		if (page_allocated) {
588 			swap_readpage(page, false);
589 			if (offset != entry_offset &&
590 			    likely(!PageTransCompound(page))) {
591 				SetPageReadahead(page);
592 				count_vm_event(SWAP_RA);
593 			}
594 		}
595 		put_page(page);
596 	}
597 	blk_finish_plug(&plug);
598 
599 	lru_add_drain();	/* Push any new pages onto the LRU now */
600 skip:
601 	return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
602 }
603 
604 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
605 {
606 	struct address_space *spaces, *space;
607 	unsigned int i, nr;
608 
609 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
610 	spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL);
611 	if (!spaces)
612 		return -ENOMEM;
613 	for (i = 0; i < nr; i++) {
614 		space = spaces + i;
615 		INIT_RADIX_TREE(&space->page_tree, GFP_ATOMIC|__GFP_NOWARN);
616 		atomic_set(&space->i_mmap_writable, 0);
617 		space->a_ops = &swap_aops;
618 		/* swap cache doesn't use writeback related tags */
619 		mapping_set_no_writeback_tags(space);
620 		spin_lock_init(&space->tree_lock);
621 	}
622 	nr_swapper_spaces[type] = nr;
623 	rcu_assign_pointer(swapper_spaces[type], spaces);
624 
625 	return 0;
626 }
627 
628 void exit_swap_address_space(unsigned int type)
629 {
630 	struct address_space *spaces;
631 
632 	spaces = swapper_spaces[type];
633 	nr_swapper_spaces[type] = 0;
634 	rcu_assign_pointer(swapper_spaces[type], NULL);
635 	synchronize_rcu();
636 	kvfree(spaces);
637 }
638 
639 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
640 				     unsigned long faddr,
641 				     unsigned long lpfn,
642 				     unsigned long rpfn,
643 				     unsigned long *start,
644 				     unsigned long *end)
645 {
646 	*start = max3(lpfn, PFN_DOWN(vma->vm_start),
647 		      PFN_DOWN(faddr & PMD_MASK));
648 	*end = min3(rpfn, PFN_DOWN(vma->vm_end),
649 		    PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
650 }
651 
652 struct page *swap_readahead_detect(struct vm_fault *vmf,
653 				   struct vma_swap_readahead *swap_ra)
654 {
655 	struct vm_area_struct *vma = vmf->vma;
656 	unsigned long swap_ra_info;
657 	struct page *page;
658 	swp_entry_t entry;
659 	unsigned long faddr, pfn, fpfn;
660 	unsigned long start, end;
661 	pte_t *pte;
662 	unsigned int max_win, hits, prev_win, win, left;
663 #ifndef CONFIG_64BIT
664 	pte_t *tpte;
665 #endif
666 
667 	max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
668 			     SWAP_RA_ORDER_CEILING);
669 	if (max_win == 1) {
670 		swap_ra->win = 1;
671 		return NULL;
672 	}
673 
674 	faddr = vmf->address;
675 	entry = pte_to_swp_entry(vmf->orig_pte);
676 	if ((unlikely(non_swap_entry(entry))))
677 		return NULL;
678 	page = lookup_swap_cache(entry, vma, faddr);
679 	if (page)
680 		return page;
681 
682 	fpfn = PFN_DOWN(faddr);
683 	swap_ra_info = GET_SWAP_RA_VAL(vma);
684 	pfn = PFN_DOWN(SWAP_RA_ADDR(swap_ra_info));
685 	prev_win = SWAP_RA_WIN(swap_ra_info);
686 	hits = SWAP_RA_HITS(swap_ra_info);
687 	swap_ra->win = win = __swapin_nr_pages(pfn, fpfn, hits,
688 					       max_win, prev_win);
689 	atomic_long_set(&vma->swap_readahead_info,
690 			SWAP_RA_VAL(faddr, win, 0));
691 
692 	if (win == 1)
693 		return NULL;
694 
695 	/* Copy the PTEs because the page table may be unmapped */
696 	if (fpfn == pfn + 1)
697 		swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
698 	else if (pfn == fpfn + 1)
699 		swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
700 				  &start, &end);
701 	else {
702 		left = (win - 1) / 2;
703 		swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
704 				  &start, &end);
705 	}
706 	swap_ra->nr_pte = end - start;
707 	swap_ra->offset = fpfn - start;
708 	pte = vmf->pte - swap_ra->offset;
709 #ifdef CONFIG_64BIT
710 	swap_ra->ptes = pte;
711 #else
712 	tpte = swap_ra->ptes;
713 	for (pfn = start; pfn != end; pfn++)
714 		*tpte++ = *pte++;
715 #endif
716 
717 	return NULL;
718 }
719 
720 struct page *do_swap_page_readahead(swp_entry_t fentry, gfp_t gfp_mask,
721 				    struct vm_fault *vmf,
722 				    struct vma_swap_readahead *swap_ra)
723 {
724 	struct blk_plug plug;
725 	struct vm_area_struct *vma = vmf->vma;
726 	struct page *page;
727 	pte_t *pte, pentry;
728 	swp_entry_t entry;
729 	unsigned int i;
730 	bool page_allocated;
731 
732 	if (swap_ra->win == 1)
733 		goto skip;
734 
735 	blk_start_plug(&plug);
736 	for (i = 0, pte = swap_ra->ptes; i < swap_ra->nr_pte;
737 	     i++, pte++) {
738 		pentry = *pte;
739 		if (pte_none(pentry))
740 			continue;
741 		if (pte_present(pentry))
742 			continue;
743 		entry = pte_to_swp_entry(pentry);
744 		if (unlikely(non_swap_entry(entry)))
745 			continue;
746 		page = __read_swap_cache_async(entry, gfp_mask, vma,
747 					       vmf->address, &page_allocated);
748 		if (!page)
749 			continue;
750 		if (page_allocated) {
751 			swap_readpage(page, false);
752 			if (i != swap_ra->offset &&
753 			    likely(!PageTransCompound(page))) {
754 				SetPageReadahead(page);
755 				count_vm_event(SWAP_RA);
756 			}
757 		}
758 		put_page(page);
759 	}
760 	blk_finish_plug(&plug);
761 	lru_add_drain();
762 skip:
763 	return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
764 				     swap_ra->win == 1);
765 }
766 
767 #ifdef CONFIG_SYSFS
768 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
769 				     struct kobj_attribute *attr, char *buf)
770 {
771 	return sprintf(buf, "%s\n", swap_vma_readahead ? "true" : "false");
772 }
773 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
774 				      struct kobj_attribute *attr,
775 				      const char *buf, size_t count)
776 {
777 	if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
778 		swap_vma_readahead = true;
779 	else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
780 		swap_vma_readahead = false;
781 	else
782 		return -EINVAL;
783 
784 	return count;
785 }
786 static struct kobj_attribute vma_ra_enabled_attr =
787 	__ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
788 	       vma_ra_enabled_store);
789 
790 static struct attribute *swap_attrs[] = {
791 	&vma_ra_enabled_attr.attr,
792 	NULL,
793 };
794 
795 static struct attribute_group swap_attr_group = {
796 	.attrs = swap_attrs,
797 };
798 
799 static int __init swap_init_sysfs(void)
800 {
801 	int err;
802 	struct kobject *swap_kobj;
803 
804 	swap_kobj = kobject_create_and_add("swap", mm_kobj);
805 	if (!swap_kobj) {
806 		pr_err("failed to create swap kobject\n");
807 		return -ENOMEM;
808 	}
809 	err = sysfs_create_group(swap_kobj, &swap_attr_group);
810 	if (err) {
811 		pr_err("failed to register swap group\n");
812 		goto delete_obj;
813 	}
814 	return 0;
815 
816 delete_obj:
817 	kobject_put(swap_kobj);
818 	return err;
819 }
820 subsys_initcall(swap_init_sysfs);
821 #endif
822