xref: /linux/mm/swap_state.c (revision 0678df8271820bcf8fb4f877129f05d68a237de4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/swap_state.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  *
8  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
9  */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/mempolicy.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/init.h>
17 #include <linux/pagemap.h>
18 #include <linux/backing-dev.h>
19 #include <linux/blkdev.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
24 #include <linux/shmem_fs.h>
25 #include "internal.h"
26 #include "swap.h"
27 
28 /*
29  * swapper_space is a fiction, retained to simplify the path through
30  * vmscan's shrink_page_list.
31  */
32 static const struct address_space_operations swap_aops = {
33 	.writepage	= swap_writepage,
34 	.dirty_folio	= noop_dirty_folio,
35 #ifdef CONFIG_MIGRATION
36 	.migrate_folio	= migrate_folio,
37 #endif
38 };
39 
40 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
41 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
42 static bool enable_vma_readahead __read_mostly = true;
43 
44 #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
45 #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
46 #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
47 #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
48 
49 #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
50 #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
51 #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
52 
53 #define SWAP_RA_VAL(addr, win, hits)				\
54 	(((addr) & PAGE_MASK) |					\
55 	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
56 	 ((hits) & SWAP_RA_HITS_MASK))
57 
58 /* Initial readahead hits is 4 to start up with a small window */
59 #define GET_SWAP_RA_VAL(vma)					\
60 	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
61 
62 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
63 
64 void show_swap_cache_info(void)
65 {
66 	printk("%lu pages in swap cache\n", total_swapcache_pages());
67 	printk("Free swap  = %ldkB\n", K(get_nr_swap_pages()));
68 	printk("Total swap = %lukB\n", K(total_swap_pages));
69 }
70 
71 void *get_shadow_from_swap_cache(swp_entry_t entry)
72 {
73 	struct address_space *address_space = swap_address_space(entry);
74 	pgoff_t idx = swp_offset(entry);
75 	struct page *page;
76 
77 	page = xa_load(&address_space->i_pages, idx);
78 	if (xa_is_value(page))
79 		return page;
80 	return NULL;
81 }
82 
83 /*
84  * add_to_swap_cache resembles filemap_add_folio on swapper_space,
85  * but sets SwapCache flag and private instead of mapping and index.
86  */
87 int add_to_swap_cache(struct folio *folio, swp_entry_t entry,
88 			gfp_t gfp, void **shadowp)
89 {
90 	struct address_space *address_space = swap_address_space(entry);
91 	pgoff_t idx = swp_offset(entry);
92 	XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio));
93 	unsigned long i, nr = folio_nr_pages(folio);
94 	void *old;
95 
96 	xas_set_update(&xas, workingset_update_node);
97 
98 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
99 	VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
100 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
101 
102 	folio_ref_add(folio, nr);
103 	folio_set_swapcache(folio);
104 	folio->swap = entry;
105 
106 	do {
107 		xas_lock_irq(&xas);
108 		xas_create_range(&xas);
109 		if (xas_error(&xas))
110 			goto unlock;
111 		for (i = 0; i < nr; i++) {
112 			VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio);
113 			if (shadowp) {
114 				old = xas_load(&xas);
115 				if (xa_is_value(old))
116 					*shadowp = old;
117 			}
118 			xas_store(&xas, folio);
119 			xas_next(&xas);
120 		}
121 		address_space->nrpages += nr;
122 		__node_stat_mod_folio(folio, NR_FILE_PAGES, nr);
123 		__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr);
124 unlock:
125 		xas_unlock_irq(&xas);
126 	} while (xas_nomem(&xas, gfp));
127 
128 	if (!xas_error(&xas))
129 		return 0;
130 
131 	folio_clear_swapcache(folio);
132 	folio_ref_sub(folio, nr);
133 	return xas_error(&xas);
134 }
135 
136 /*
137  * This must be called only on folios that have
138  * been verified to be in the swap cache.
139  */
140 void __delete_from_swap_cache(struct folio *folio,
141 			swp_entry_t entry, void *shadow)
142 {
143 	struct address_space *address_space = swap_address_space(entry);
144 	int i;
145 	long nr = folio_nr_pages(folio);
146 	pgoff_t idx = swp_offset(entry);
147 	XA_STATE(xas, &address_space->i_pages, idx);
148 
149 	xas_set_update(&xas, workingset_update_node);
150 
151 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
152 	VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
153 	VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
154 
155 	for (i = 0; i < nr; i++) {
156 		void *entry = xas_store(&xas, shadow);
157 		VM_BUG_ON_PAGE(entry != folio, entry);
158 		xas_next(&xas);
159 	}
160 	folio->swap.val = 0;
161 	folio_clear_swapcache(folio);
162 	address_space->nrpages -= nr;
163 	__node_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
164 	__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr);
165 }
166 
167 /**
168  * add_to_swap - allocate swap space for a folio
169  * @folio: folio we want to move to swap
170  *
171  * Allocate swap space for the folio and add the folio to the
172  * swap cache.
173  *
174  * Context: Caller needs to hold the folio lock.
175  * Return: Whether the folio was added to the swap cache.
176  */
177 bool add_to_swap(struct folio *folio)
178 {
179 	swp_entry_t entry;
180 	int err;
181 
182 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
183 	VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
184 
185 	entry = folio_alloc_swap(folio);
186 	if (!entry.val)
187 		return false;
188 
189 	/*
190 	 * XArray node allocations from PF_MEMALLOC contexts could
191 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
192 	 * stops emergency reserves from being allocated.
193 	 *
194 	 * TODO: this could cause a theoretical memory reclaim
195 	 * deadlock in the swap out path.
196 	 */
197 	/*
198 	 * Add it to the swap cache.
199 	 */
200 	err = add_to_swap_cache(folio, entry,
201 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
202 	if (err)
203 		/*
204 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
205 		 * clear SWAP_HAS_CACHE flag.
206 		 */
207 		goto fail;
208 	/*
209 	 * Normally the folio will be dirtied in unmap because its
210 	 * pte should be dirty. A special case is MADV_FREE page. The
211 	 * page's pte could have dirty bit cleared but the folio's
212 	 * SwapBacked flag is still set because clearing the dirty bit
213 	 * and SwapBacked flag has no lock protected. For such folio,
214 	 * unmap will not set dirty bit for it, so folio reclaim will
215 	 * not write the folio out. This can cause data corruption when
216 	 * the folio is swapped in later. Always setting the dirty flag
217 	 * for the folio solves the problem.
218 	 */
219 	folio_mark_dirty(folio);
220 
221 	return true;
222 
223 fail:
224 	put_swap_folio(folio, entry);
225 	return false;
226 }
227 
228 /*
229  * This must be called only on folios that have
230  * been verified to be in the swap cache and locked.
231  * It will never put the folio into the free list,
232  * the caller has a reference on the folio.
233  */
234 void delete_from_swap_cache(struct folio *folio)
235 {
236 	swp_entry_t entry = folio->swap;
237 	struct address_space *address_space = swap_address_space(entry);
238 
239 	xa_lock_irq(&address_space->i_pages);
240 	__delete_from_swap_cache(folio, entry, NULL);
241 	xa_unlock_irq(&address_space->i_pages);
242 
243 	put_swap_folio(folio, entry);
244 	folio_ref_sub(folio, folio_nr_pages(folio));
245 }
246 
247 void clear_shadow_from_swap_cache(int type, unsigned long begin,
248 				unsigned long end)
249 {
250 	unsigned long curr = begin;
251 	void *old;
252 
253 	for (;;) {
254 		swp_entry_t entry = swp_entry(type, curr);
255 		struct address_space *address_space = swap_address_space(entry);
256 		XA_STATE(xas, &address_space->i_pages, curr);
257 
258 		xas_set_update(&xas, workingset_update_node);
259 
260 		xa_lock_irq(&address_space->i_pages);
261 		xas_for_each(&xas, old, end) {
262 			if (!xa_is_value(old))
263 				continue;
264 			xas_store(&xas, NULL);
265 		}
266 		xa_unlock_irq(&address_space->i_pages);
267 
268 		/* search the next swapcache until we meet end */
269 		curr >>= SWAP_ADDRESS_SPACE_SHIFT;
270 		curr++;
271 		curr <<= SWAP_ADDRESS_SPACE_SHIFT;
272 		if (curr > end)
273 			break;
274 	}
275 }
276 
277 /*
278  * If we are the only user, then try to free up the swap cache.
279  *
280  * Its ok to check the swapcache flag without the folio lock
281  * here because we are going to recheck again inside
282  * folio_free_swap() _with_ the lock.
283  * 					- Marcelo
284  */
285 void free_swap_cache(struct page *page)
286 {
287 	struct folio *folio = page_folio(page);
288 
289 	if (folio_test_swapcache(folio) && !folio_mapped(folio) &&
290 	    folio_trylock(folio)) {
291 		folio_free_swap(folio);
292 		folio_unlock(folio);
293 	}
294 }
295 
296 /*
297  * Perform a free_page(), also freeing any swap cache associated with
298  * this page if it is the last user of the page.
299  */
300 void free_page_and_swap_cache(struct page *page)
301 {
302 	free_swap_cache(page);
303 	if (!is_huge_zero_page(page))
304 		put_page(page);
305 }
306 
307 /*
308  * Passed an array of pages, drop them all from swapcache and then release
309  * them.  They are removed from the LRU and freed if this is their last use.
310  */
311 void free_pages_and_swap_cache(struct encoded_page **pages, int nr)
312 {
313 	lru_add_drain();
314 	for (int i = 0; i < nr; i++)
315 		free_swap_cache(encoded_page_ptr(pages[i]));
316 	release_pages(pages, nr);
317 }
318 
319 static inline bool swap_use_vma_readahead(void)
320 {
321 	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
322 }
323 
324 /*
325  * Lookup a swap entry in the swap cache. A found folio will be returned
326  * unlocked and with its refcount incremented - we rely on the kernel
327  * lock getting page table operations atomic even if we drop the folio
328  * lock before returning.
329  *
330  * Caller must lock the swap device or hold a reference to keep it valid.
331  */
332 struct folio *swap_cache_get_folio(swp_entry_t entry,
333 		struct vm_area_struct *vma, unsigned long addr)
334 {
335 	struct folio *folio;
336 
337 	folio = filemap_get_folio(swap_address_space(entry), swp_offset(entry));
338 	if (!IS_ERR(folio)) {
339 		bool vma_ra = swap_use_vma_readahead();
340 		bool readahead;
341 
342 		/*
343 		 * At the moment, we don't support PG_readahead for anon THP
344 		 * so let's bail out rather than confusing the readahead stat.
345 		 */
346 		if (unlikely(folio_test_large(folio)))
347 			return folio;
348 
349 		readahead = folio_test_clear_readahead(folio);
350 		if (vma && vma_ra) {
351 			unsigned long ra_val;
352 			int win, hits;
353 
354 			ra_val = GET_SWAP_RA_VAL(vma);
355 			win = SWAP_RA_WIN(ra_val);
356 			hits = SWAP_RA_HITS(ra_val);
357 			if (readahead)
358 				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
359 			atomic_long_set(&vma->swap_readahead_info,
360 					SWAP_RA_VAL(addr, win, hits));
361 		}
362 
363 		if (readahead) {
364 			count_vm_event(SWAP_RA_HIT);
365 			if (!vma || !vma_ra)
366 				atomic_inc(&swapin_readahead_hits);
367 		}
368 	} else {
369 		folio = NULL;
370 	}
371 
372 	return folio;
373 }
374 
375 /**
376  * filemap_get_incore_folio - Find and get a folio from the page or swap caches.
377  * @mapping: The address_space to search.
378  * @index: The page cache index.
379  *
380  * This differs from filemap_get_folio() in that it will also look for the
381  * folio in the swap cache.
382  *
383  * Return: The found folio or %NULL.
384  */
385 struct folio *filemap_get_incore_folio(struct address_space *mapping,
386 		pgoff_t index)
387 {
388 	swp_entry_t swp;
389 	struct swap_info_struct *si;
390 	struct folio *folio = filemap_get_entry(mapping, index);
391 
392 	if (!folio)
393 		return ERR_PTR(-ENOENT);
394 	if (!xa_is_value(folio))
395 		return folio;
396 	if (!shmem_mapping(mapping))
397 		return ERR_PTR(-ENOENT);
398 
399 	swp = radix_to_swp_entry(folio);
400 	/* There might be swapin error entries in shmem mapping. */
401 	if (non_swap_entry(swp))
402 		return ERR_PTR(-ENOENT);
403 	/* Prevent swapoff from happening to us */
404 	si = get_swap_device(swp);
405 	if (!si)
406 		return ERR_PTR(-ENOENT);
407 	index = swp_offset(swp);
408 	folio = filemap_get_folio(swap_address_space(swp), index);
409 	put_swap_device(si);
410 	return folio;
411 }
412 
413 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
414 				     struct mempolicy *mpol, pgoff_t ilx,
415 				     bool *new_page_allocated)
416 {
417 	struct swap_info_struct *si;
418 	struct folio *folio;
419 	struct page *page;
420 	void *shadow = NULL;
421 
422 	*new_page_allocated = false;
423 	si = get_swap_device(entry);
424 	if (!si)
425 		return NULL;
426 
427 	for (;;) {
428 		int err;
429 		/*
430 		 * First check the swap cache.  Since this is normally
431 		 * called after swap_cache_get_folio() failed, re-calling
432 		 * that would confuse statistics.
433 		 */
434 		folio = filemap_get_folio(swap_address_space(entry),
435 						swp_offset(entry));
436 		if (!IS_ERR(folio)) {
437 			page = folio_file_page(folio, swp_offset(entry));
438 			goto got_page;
439 		}
440 
441 		/*
442 		 * Just skip read ahead for unused swap slot.
443 		 * During swap_off when swap_slot_cache is disabled,
444 		 * we have to handle the race between putting
445 		 * swap entry in swap cache and marking swap slot
446 		 * as SWAP_HAS_CACHE.  That's done in later part of code or
447 		 * else swap_off will be aborted if we return NULL.
448 		 */
449 		if (!swap_swapcount(si, entry) && swap_slot_cache_enabled)
450 			goto fail_put_swap;
451 
452 		/*
453 		 * Get a new page to read into from swap.  Allocate it now,
454 		 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
455 		 * cause any racers to loop around until we add it to cache.
456 		 */
457 		folio = (struct folio *)alloc_pages_mpol(gfp_mask, 0,
458 						mpol, ilx, numa_node_id());
459 		if (!folio)
460                         goto fail_put_swap;
461 
462 		/*
463 		 * Swap entry may have been freed since our caller observed it.
464 		 */
465 		err = swapcache_prepare(entry);
466 		if (!err)
467 			break;
468 
469 		folio_put(folio);
470 		if (err != -EEXIST)
471 			goto fail_put_swap;
472 
473 		/*
474 		 * We might race against __delete_from_swap_cache(), and
475 		 * stumble across a swap_map entry whose SWAP_HAS_CACHE
476 		 * has not yet been cleared.  Or race against another
477 		 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
478 		 * in swap_map, but not yet added its page to swap cache.
479 		 */
480 		schedule_timeout_uninterruptible(1);
481 	}
482 
483 	/*
484 	 * The swap entry is ours to swap in. Prepare the new page.
485 	 */
486 
487 	__folio_set_locked(folio);
488 	__folio_set_swapbacked(folio);
489 
490 	if (mem_cgroup_swapin_charge_folio(folio, NULL, gfp_mask, entry))
491 		goto fail_unlock;
492 
493 	/* May fail (-ENOMEM) if XArray node allocation failed. */
494 	if (add_to_swap_cache(folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
495 		goto fail_unlock;
496 
497 	mem_cgroup_swapin_uncharge_swap(entry);
498 
499 	if (shadow)
500 		workingset_refault(folio, shadow);
501 
502 	/* Caller will initiate read into locked folio */
503 	folio_add_lru(folio);
504 	*new_page_allocated = true;
505 	page = &folio->page;
506 got_page:
507 	put_swap_device(si);
508 	return page;
509 
510 fail_unlock:
511 	put_swap_folio(folio, entry);
512 	folio_unlock(folio);
513 	folio_put(folio);
514 fail_put_swap:
515 	put_swap_device(si);
516 	return NULL;
517 }
518 
519 /*
520  * Locate a page of swap in physical memory, reserving swap cache space
521  * and reading the disk if it is not already cached.
522  * A failure return means that either the page allocation failed or that
523  * the swap entry is no longer in use.
524  *
525  * get/put_swap_device() aren't needed to call this function, because
526  * __read_swap_cache_async() call them and swap_readpage() holds the
527  * swap cache folio lock.
528  */
529 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
530 				   struct vm_area_struct *vma,
531 				   unsigned long addr, struct swap_iocb **plug)
532 {
533 	bool page_allocated;
534 	struct mempolicy *mpol;
535 	pgoff_t ilx;
536 	struct page *page;
537 
538 	mpol = get_vma_policy(vma, addr, 0, &ilx);
539 	page = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
540 					&page_allocated);
541 	mpol_cond_put(mpol);
542 
543 	if (page_allocated)
544 		swap_readpage(page, false, plug);
545 	return page;
546 }
547 
548 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
549 				      unsigned long offset,
550 				      int hits,
551 				      int max_pages,
552 				      int prev_win)
553 {
554 	unsigned int pages, last_ra;
555 
556 	/*
557 	 * This heuristic has been found to work well on both sequential and
558 	 * random loads, swapping to hard disk or to SSD: please don't ask
559 	 * what the "+ 2" means, it just happens to work well, that's all.
560 	 */
561 	pages = hits + 2;
562 	if (pages == 2) {
563 		/*
564 		 * We can have no readahead hits to judge by: but must not get
565 		 * stuck here forever, so check for an adjacent offset instead
566 		 * (and don't even bother to check whether swap type is same).
567 		 */
568 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
569 			pages = 1;
570 	} else {
571 		unsigned int roundup = 4;
572 		while (roundup < pages)
573 			roundup <<= 1;
574 		pages = roundup;
575 	}
576 
577 	if (pages > max_pages)
578 		pages = max_pages;
579 
580 	/* Don't shrink readahead too fast */
581 	last_ra = prev_win / 2;
582 	if (pages < last_ra)
583 		pages = last_ra;
584 
585 	return pages;
586 }
587 
588 static unsigned long swapin_nr_pages(unsigned long offset)
589 {
590 	static unsigned long prev_offset;
591 	unsigned int hits, pages, max_pages;
592 	static atomic_t last_readahead_pages;
593 
594 	max_pages = 1 << READ_ONCE(page_cluster);
595 	if (max_pages <= 1)
596 		return 1;
597 
598 	hits = atomic_xchg(&swapin_readahead_hits, 0);
599 	pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
600 				  max_pages,
601 				  atomic_read(&last_readahead_pages));
602 	if (!hits)
603 		WRITE_ONCE(prev_offset, offset);
604 	atomic_set(&last_readahead_pages, pages);
605 
606 	return pages;
607 }
608 
609 /**
610  * swap_cluster_readahead - swap in pages in hope we need them soon
611  * @entry: swap entry of this memory
612  * @gfp_mask: memory allocation flags
613  * @mpol: NUMA memory allocation policy to be applied
614  * @ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
615  *
616  * Returns the struct page for entry and addr, after queueing swapin.
617  *
618  * Primitive swap readahead code. We simply read an aligned block of
619  * (1 << page_cluster) entries in the swap area. This method is chosen
620  * because it doesn't cost us any seek time.  We also make sure to queue
621  * the 'original' request together with the readahead ones...
622  *
623  * Note: it is intentional that the same NUMA policy and interleave index
624  * are used for every page of the readahead: neighbouring pages on swap
625  * are fairly likely to have been swapped out from the same node.
626  */
627 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
628 				    struct mempolicy *mpol, pgoff_t ilx)
629 {
630 	struct page *page;
631 	unsigned long entry_offset = swp_offset(entry);
632 	unsigned long offset = entry_offset;
633 	unsigned long start_offset, end_offset;
634 	unsigned long mask;
635 	struct swap_info_struct *si = swp_swap_info(entry);
636 	struct blk_plug plug;
637 	struct swap_iocb *splug = NULL;
638 	bool page_allocated;
639 
640 	mask = swapin_nr_pages(offset) - 1;
641 	if (!mask)
642 		goto skip;
643 
644 	/* Read a page_cluster sized and aligned cluster around offset. */
645 	start_offset = offset & ~mask;
646 	end_offset = offset | mask;
647 	if (!start_offset)	/* First page is swap header. */
648 		start_offset++;
649 	if (end_offset >= si->max)
650 		end_offset = si->max - 1;
651 
652 	blk_start_plug(&plug);
653 	for (offset = start_offset; offset <= end_offset ; offset++) {
654 		/* Ok, do the async read-ahead now */
655 		page = __read_swap_cache_async(
656 				swp_entry(swp_type(entry), offset),
657 				gfp_mask, mpol, ilx, &page_allocated);
658 		if (!page)
659 			continue;
660 		if (page_allocated) {
661 			swap_readpage(page, false, &splug);
662 			if (offset != entry_offset) {
663 				SetPageReadahead(page);
664 				count_vm_event(SWAP_RA);
665 			}
666 		}
667 		put_page(page);
668 	}
669 	blk_finish_plug(&plug);
670 	swap_read_unplug(splug);
671 	lru_add_drain();	/* Push any new pages onto the LRU now */
672 skip:
673 	/* The page was likely read above, so no need for plugging here */
674 	page = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
675 					&page_allocated);
676 	if (unlikely(page_allocated))
677 		swap_readpage(page, false, NULL);
678 	return page;
679 }
680 
681 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
682 {
683 	struct address_space *spaces, *space;
684 	unsigned int i, nr;
685 
686 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
687 	spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
688 	if (!spaces)
689 		return -ENOMEM;
690 	for (i = 0; i < nr; i++) {
691 		space = spaces + i;
692 		xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
693 		atomic_set(&space->i_mmap_writable, 0);
694 		space->a_ops = &swap_aops;
695 		/* swap cache doesn't use writeback related tags */
696 		mapping_set_no_writeback_tags(space);
697 	}
698 	nr_swapper_spaces[type] = nr;
699 	swapper_spaces[type] = spaces;
700 
701 	return 0;
702 }
703 
704 void exit_swap_address_space(unsigned int type)
705 {
706 	int i;
707 	struct address_space *spaces = swapper_spaces[type];
708 
709 	for (i = 0; i < nr_swapper_spaces[type]; i++)
710 		VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
711 	kvfree(spaces);
712 	nr_swapper_spaces[type] = 0;
713 	swapper_spaces[type] = NULL;
714 }
715 
716 #define SWAP_RA_ORDER_CEILING	5
717 
718 struct vma_swap_readahead {
719 	unsigned short win;
720 	unsigned short offset;
721 	unsigned short nr_pte;
722 };
723 
724 static void swap_ra_info(struct vm_fault *vmf,
725 			 struct vma_swap_readahead *ra_info)
726 {
727 	struct vm_area_struct *vma = vmf->vma;
728 	unsigned long ra_val;
729 	unsigned long faddr, pfn, fpfn, lpfn, rpfn;
730 	unsigned long start, end;
731 	unsigned int max_win, hits, prev_win, win;
732 
733 	max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
734 			     SWAP_RA_ORDER_CEILING);
735 	if (max_win == 1) {
736 		ra_info->win = 1;
737 		return;
738 	}
739 
740 	faddr = vmf->address;
741 	fpfn = PFN_DOWN(faddr);
742 	ra_val = GET_SWAP_RA_VAL(vma);
743 	pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
744 	prev_win = SWAP_RA_WIN(ra_val);
745 	hits = SWAP_RA_HITS(ra_val);
746 	ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
747 					       max_win, prev_win);
748 	atomic_long_set(&vma->swap_readahead_info,
749 			SWAP_RA_VAL(faddr, win, 0));
750 	if (win == 1)
751 		return;
752 
753 	if (fpfn == pfn + 1) {
754 		lpfn = fpfn;
755 		rpfn = fpfn + win;
756 	} else if (pfn == fpfn + 1) {
757 		lpfn = fpfn - win + 1;
758 		rpfn = fpfn + 1;
759 	} else {
760 		unsigned int left = (win - 1) / 2;
761 
762 		lpfn = fpfn - left;
763 		rpfn = fpfn + win - left;
764 	}
765 	start = max3(lpfn, PFN_DOWN(vma->vm_start),
766 		     PFN_DOWN(faddr & PMD_MASK));
767 	end = min3(rpfn, PFN_DOWN(vma->vm_end),
768 		   PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
769 
770 	ra_info->nr_pte = end - start;
771 	ra_info->offset = fpfn - start;
772 }
773 
774 /**
775  * swap_vma_readahead - swap in pages in hope we need them soon
776  * @targ_entry: swap entry of the targeted memory
777  * @gfp_mask: memory allocation flags
778  * @mpol: NUMA memory allocation policy to be applied
779  * @targ_ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
780  * @vmf: fault information
781  *
782  * Returns the struct page for entry and addr, after queueing swapin.
783  *
784  * Primitive swap readahead code. We simply read in a few pages whose
785  * virtual addresses are around the fault address in the same vma.
786  *
787  * Caller must hold read mmap_lock if vmf->vma is not NULL.
788  *
789  */
790 static struct page *swap_vma_readahead(swp_entry_t targ_entry, gfp_t gfp_mask,
791 				       struct mempolicy *mpol, pgoff_t targ_ilx,
792 				       struct vm_fault *vmf)
793 {
794 	struct blk_plug plug;
795 	struct swap_iocb *splug = NULL;
796 	struct page *page;
797 	pte_t *pte = NULL, pentry;
798 	unsigned long addr;
799 	swp_entry_t entry;
800 	pgoff_t ilx;
801 	unsigned int i;
802 	bool page_allocated;
803 	struct vma_swap_readahead ra_info = {
804 		.win = 1,
805 	};
806 
807 	swap_ra_info(vmf, &ra_info);
808 	if (ra_info.win == 1)
809 		goto skip;
810 
811 	addr = vmf->address - (ra_info.offset * PAGE_SIZE);
812 	ilx = targ_ilx - ra_info.offset;
813 
814 	blk_start_plug(&plug);
815 	for (i = 0; i < ra_info.nr_pte; i++, ilx++, addr += PAGE_SIZE) {
816 		if (!pte++) {
817 			pte = pte_offset_map(vmf->pmd, addr);
818 			if (!pte)
819 				break;
820 		}
821 		pentry = ptep_get_lockless(pte);
822 		if (!is_swap_pte(pentry))
823 			continue;
824 		entry = pte_to_swp_entry(pentry);
825 		if (unlikely(non_swap_entry(entry)))
826 			continue;
827 		pte_unmap(pte);
828 		pte = NULL;
829 		page = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
830 						&page_allocated);
831 		if (!page)
832 			continue;
833 		if (page_allocated) {
834 			swap_readpage(page, false, &splug);
835 			if (i != ra_info.offset) {
836 				SetPageReadahead(page);
837 				count_vm_event(SWAP_RA);
838 			}
839 		}
840 		put_page(page);
841 	}
842 	if (pte)
843 		pte_unmap(pte);
844 	blk_finish_plug(&plug);
845 	swap_read_unplug(splug);
846 	lru_add_drain();
847 skip:
848 	/* The page was likely read above, so no need for plugging here */
849 	page = __read_swap_cache_async(targ_entry, gfp_mask, mpol, targ_ilx,
850 					&page_allocated);
851 	if (unlikely(page_allocated))
852 		swap_readpage(page, false, NULL);
853 	return page;
854 }
855 
856 /**
857  * swapin_readahead - swap in pages in hope we need them soon
858  * @entry: swap entry of this memory
859  * @gfp_mask: memory allocation flags
860  * @vmf: fault information
861  *
862  * Returns the struct page for entry and addr, after queueing swapin.
863  *
864  * It's a main entry function for swap readahead. By the configuration,
865  * it will read ahead blocks by cluster-based(ie, physical disk based)
866  * or vma-based(ie, virtual address based on faulty address) readahead.
867  */
868 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
869 				struct vm_fault *vmf)
870 {
871 	struct mempolicy *mpol;
872 	pgoff_t ilx;
873 	struct page *page;
874 
875 	mpol = get_vma_policy(vmf->vma, vmf->address, 0, &ilx);
876 	page = swap_use_vma_readahead() ?
877 		swap_vma_readahead(entry, gfp_mask, mpol, ilx, vmf) :
878 		swap_cluster_readahead(entry, gfp_mask, mpol, ilx);
879 	mpol_cond_put(mpol);
880 	return page;
881 }
882 
883 #ifdef CONFIG_SYSFS
884 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
885 				     struct kobj_attribute *attr, char *buf)
886 {
887 	return sysfs_emit(buf, "%s\n",
888 			  enable_vma_readahead ? "true" : "false");
889 }
890 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
891 				      struct kobj_attribute *attr,
892 				      const char *buf, size_t count)
893 {
894 	ssize_t ret;
895 
896 	ret = kstrtobool(buf, &enable_vma_readahead);
897 	if (ret)
898 		return ret;
899 
900 	return count;
901 }
902 static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
903 
904 static struct attribute *swap_attrs[] = {
905 	&vma_ra_enabled_attr.attr,
906 	NULL,
907 };
908 
909 static const struct attribute_group swap_attr_group = {
910 	.attrs = swap_attrs,
911 };
912 
913 static int __init swap_init_sysfs(void)
914 {
915 	int err;
916 	struct kobject *swap_kobj;
917 
918 	swap_kobj = kobject_create_and_add("swap", mm_kobj);
919 	if (!swap_kobj) {
920 		pr_err("failed to create swap kobject\n");
921 		return -ENOMEM;
922 	}
923 	err = sysfs_create_group(swap_kobj, &swap_attr_group);
924 	if (err) {
925 		pr_err("failed to register swap group\n");
926 		goto delete_obj;
927 	}
928 	return 0;
929 
930 delete_obj:
931 	kobject_put(swap_kobj);
932 	return err;
933 }
934 subsys_initcall(swap_init_sysfs);
935 #endif
936