xref: /linux/mm/swap_state.c (revision 040932cdcfca9b0ac55a4f74f194c2e2c8a2527b)
1 /*
2  *  linux/mm/swap_state.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  *
7  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
8  */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/buffer_head.h>
17 #include <linux/backing-dev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 #include <linux/page_cgroup.h>
21 
22 #include <asm/pgtable.h>
23 
24 /*
25  * swapper_space is a fiction, retained to simplify the path through
26  * vmscan's shrink_page_list, to make sync_page look nicer, and to allow
27  * future use of radix_tree tags in the swap cache.
28  */
29 static const struct address_space_operations swap_aops = {
30 	.writepage	= swap_writepage,
31 	.sync_page	= block_sync_page,
32 	.set_page_dirty	= __set_page_dirty_nobuffers,
33 	.migratepage	= migrate_page,
34 };
35 
36 static struct backing_dev_info swap_backing_dev_info = {
37 	.name		= "swap",
38 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
39 	.unplug_io_fn	= swap_unplug_io_fn,
40 };
41 
42 struct address_space swapper_space = {
43 	.page_tree	= RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
44 	.tree_lock	= __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
45 	.a_ops		= &swap_aops,
46 	.i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
47 	.backing_dev_info = &swap_backing_dev_info,
48 };
49 
50 #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
51 
52 static struct {
53 	unsigned long add_total;
54 	unsigned long del_total;
55 	unsigned long find_success;
56 	unsigned long find_total;
57 } swap_cache_info;
58 
59 void show_swap_cache_info(void)
60 {
61 	printk("%lu pages in swap cache\n", total_swapcache_pages);
62 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
63 		swap_cache_info.add_total, swap_cache_info.del_total,
64 		swap_cache_info.find_success, swap_cache_info.find_total);
65 	printk("Free swap  = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
66 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
67 }
68 
69 /*
70  * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
71  * but sets SwapCache flag and private instead of mapping and index.
72  */
73 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
74 {
75 	int error;
76 
77 	VM_BUG_ON(!PageLocked(page));
78 	VM_BUG_ON(PageSwapCache(page));
79 	VM_BUG_ON(!PageSwapBacked(page));
80 
81 	error = radix_tree_preload(gfp_mask);
82 	if (!error) {
83 		page_cache_get(page);
84 		SetPageSwapCache(page);
85 		set_page_private(page, entry.val);
86 
87 		spin_lock_irq(&swapper_space.tree_lock);
88 		error = radix_tree_insert(&swapper_space.page_tree,
89 						entry.val, page);
90 		if (likely(!error)) {
91 			total_swapcache_pages++;
92 			__inc_zone_page_state(page, NR_FILE_PAGES);
93 			INC_CACHE_INFO(add_total);
94 		}
95 		spin_unlock_irq(&swapper_space.tree_lock);
96 		radix_tree_preload_end();
97 
98 		if (unlikely(error)) {
99 			set_page_private(page, 0UL);
100 			ClearPageSwapCache(page);
101 			page_cache_release(page);
102 		}
103 	}
104 	return error;
105 }
106 
107 /*
108  * This must be called only on pages that have
109  * been verified to be in the swap cache.
110  */
111 void __delete_from_swap_cache(struct page *page)
112 {
113 	VM_BUG_ON(!PageLocked(page));
114 	VM_BUG_ON(!PageSwapCache(page));
115 	VM_BUG_ON(PageWriteback(page));
116 
117 	radix_tree_delete(&swapper_space.page_tree, page_private(page));
118 	set_page_private(page, 0);
119 	ClearPageSwapCache(page);
120 	total_swapcache_pages--;
121 	__dec_zone_page_state(page, NR_FILE_PAGES);
122 	INC_CACHE_INFO(del_total);
123 }
124 
125 /**
126  * add_to_swap - allocate swap space for a page
127  * @page: page we want to move to swap
128  *
129  * Allocate swap space for the page and add the page to the
130  * swap cache.  Caller needs to hold the page lock.
131  */
132 int add_to_swap(struct page *page)
133 {
134 	swp_entry_t entry;
135 	int err;
136 
137 	VM_BUG_ON(!PageLocked(page));
138 	VM_BUG_ON(!PageUptodate(page));
139 
140 	for (;;) {
141 		entry = get_swap_page();
142 		if (!entry.val)
143 			return 0;
144 
145 		/*
146 		 * Radix-tree node allocations from PF_MEMALLOC contexts could
147 		 * completely exhaust the page allocator. __GFP_NOMEMALLOC
148 		 * stops emergency reserves from being allocated.
149 		 *
150 		 * TODO: this could cause a theoretical memory reclaim
151 		 * deadlock in the swap out path.
152 		 */
153 		/*
154 		 * Add it to the swap cache and mark it dirty
155 		 */
156 		err = add_to_swap_cache(page, entry,
157 				__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
158 
159 		switch (err) {
160 		case 0:				/* Success */
161 			SetPageDirty(page);
162 			return 1;
163 		case -EEXIST:
164 			/* Raced with "speculative" read_swap_cache_async */
165 			swapcache_free(entry, NULL);
166 			continue;
167 		default:
168 			/* -ENOMEM radix-tree allocation failure */
169 			swapcache_free(entry, NULL);
170 			return 0;
171 		}
172 	}
173 }
174 
175 /*
176  * This must be called only on pages that have
177  * been verified to be in the swap cache and locked.
178  * It will never put the page into the free list,
179  * the caller has a reference on the page.
180  */
181 void delete_from_swap_cache(struct page *page)
182 {
183 	swp_entry_t entry;
184 
185 	entry.val = page_private(page);
186 
187 	spin_lock_irq(&swapper_space.tree_lock);
188 	__delete_from_swap_cache(page);
189 	spin_unlock_irq(&swapper_space.tree_lock);
190 
191 	swapcache_free(entry, page);
192 	page_cache_release(page);
193 }
194 
195 /*
196  * If we are the only user, then try to free up the swap cache.
197  *
198  * Its ok to check for PageSwapCache without the page lock
199  * here because we are going to recheck again inside
200  * try_to_free_swap() _with_ the lock.
201  * 					- Marcelo
202  */
203 static inline void free_swap_cache(struct page *page)
204 {
205 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
206 		try_to_free_swap(page);
207 		unlock_page(page);
208 	}
209 }
210 
211 /*
212  * Perform a free_page(), also freeing any swap cache associated with
213  * this page if it is the last user of the page.
214  */
215 void free_page_and_swap_cache(struct page *page)
216 {
217 	free_swap_cache(page);
218 	page_cache_release(page);
219 }
220 
221 /*
222  * Passed an array of pages, drop them all from swapcache and then release
223  * them.  They are removed from the LRU and freed if this is their last use.
224  */
225 void free_pages_and_swap_cache(struct page **pages, int nr)
226 {
227 	struct page **pagep = pages;
228 
229 	lru_add_drain();
230 	while (nr) {
231 		int todo = min(nr, PAGEVEC_SIZE);
232 		int i;
233 
234 		for (i = 0; i < todo; i++)
235 			free_swap_cache(pagep[i]);
236 		release_pages(pagep, todo, 0);
237 		pagep += todo;
238 		nr -= todo;
239 	}
240 }
241 
242 /*
243  * Lookup a swap entry in the swap cache. A found page will be returned
244  * unlocked and with its refcount incremented - we rely on the kernel
245  * lock getting page table operations atomic even if we drop the page
246  * lock before returning.
247  */
248 struct page * lookup_swap_cache(swp_entry_t entry)
249 {
250 	struct page *page;
251 
252 	page = find_get_page(&swapper_space, entry.val);
253 
254 	if (page)
255 		INC_CACHE_INFO(find_success);
256 
257 	INC_CACHE_INFO(find_total);
258 	return page;
259 }
260 
261 /*
262  * Locate a page of swap in physical memory, reserving swap cache space
263  * and reading the disk if it is not already cached.
264  * A failure return means that either the page allocation failed or that
265  * the swap entry is no longer in use.
266  */
267 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
268 			struct vm_area_struct *vma, unsigned long addr)
269 {
270 	struct page *found_page, *new_page = NULL;
271 	int err;
272 
273 	do {
274 		/*
275 		 * First check the swap cache.  Since this is normally
276 		 * called after lookup_swap_cache() failed, re-calling
277 		 * that would confuse statistics.
278 		 */
279 		found_page = find_get_page(&swapper_space, entry.val);
280 		if (found_page)
281 			break;
282 
283 		/*
284 		 * Get a new page to read into from swap.
285 		 */
286 		if (!new_page) {
287 			new_page = alloc_page_vma(gfp_mask, vma, addr);
288 			if (!new_page)
289 				break;		/* Out of memory */
290 		}
291 
292 		/*
293 		 * Swap entry may have been freed since our caller observed it.
294 		 */
295 		err = swapcache_prepare(entry);
296 		if (err == -EEXIST) /* seems racy */
297 			continue;
298 		if (err)           /* swp entry is obsolete ? */
299 			break;
300 
301 		/*
302 		 * Associate the page with swap entry in the swap cache.
303 		 * May fail (-EEXIST) if there is already a page associated
304 		 * with this entry in the swap cache: added by a racing
305 		 * read_swap_cache_async, or add_to_swap or shmem_writepage
306 		 * re-using the just freed swap entry for an existing page.
307 		 * May fail (-ENOMEM) if radix-tree node allocation failed.
308 		 */
309 		__set_page_locked(new_page);
310 		SetPageSwapBacked(new_page);
311 		err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL);
312 		if (likely(!err)) {
313 			/*
314 			 * Initiate read into locked page and return.
315 			 */
316 			lru_cache_add_anon(new_page);
317 			swap_readpage(new_page);
318 			return new_page;
319 		}
320 		ClearPageSwapBacked(new_page);
321 		__clear_page_locked(new_page);
322 		swapcache_free(entry, NULL);
323 	} while (err != -ENOMEM);
324 
325 	if (new_page)
326 		page_cache_release(new_page);
327 	return found_page;
328 }
329 
330 /**
331  * swapin_readahead - swap in pages in hope we need them soon
332  * @entry: swap entry of this memory
333  * @gfp_mask: memory allocation flags
334  * @vma: user vma this address belongs to
335  * @addr: target address for mempolicy
336  *
337  * Returns the struct page for entry and addr, after queueing swapin.
338  *
339  * Primitive swap readahead code. We simply read an aligned block of
340  * (1 << page_cluster) entries in the swap area. This method is chosen
341  * because it doesn't cost us any seek time.  We also make sure to queue
342  * the 'original' request together with the readahead ones...
343  *
344  * This has been extended to use the NUMA policies from the mm triggering
345  * the readahead.
346  *
347  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
348  */
349 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
350 			struct vm_area_struct *vma, unsigned long addr)
351 {
352 	int nr_pages;
353 	struct page *page;
354 	unsigned long offset;
355 	unsigned long end_offset;
356 
357 	/*
358 	 * Get starting offset for readaround, and number of pages to read.
359 	 * Adjust starting address by readbehind (for NUMA interleave case)?
360 	 * No, it's very unlikely that swap layout would follow vma layout,
361 	 * more likely that neighbouring swap pages came from the same node:
362 	 * so use the same "addr" to choose the same node for each swap read.
363 	 */
364 	nr_pages = valid_swaphandles(entry, &offset);
365 	for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
366 		/* Ok, do the async read-ahead now */
367 		page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
368 						gfp_mask, vma, addr);
369 		if (!page)
370 			break;
371 		page_cache_release(page);
372 	}
373 	lru_add_drain();	/* Push any new pages onto the LRU now */
374 	return read_swap_cache_async(entry, gfp_mask, vma, addr);
375 }
376