1 /* 2 * linux/mm/swap_state.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 * 7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 8 */ 9 #include <linux/module.h> 10 #include <linux/mm.h> 11 #include <linux/kernel_stat.h> 12 #include <linux/swap.h> 13 #include <linux/swapops.h> 14 #include <linux/init.h> 15 #include <linux/pagemap.h> 16 #include <linux/buffer_head.h> 17 #include <linux/backing-dev.h> 18 #include <linux/pagevec.h> 19 #include <linux/migrate.h> 20 #include <linux/page_cgroup.h> 21 22 #include <asm/pgtable.h> 23 24 /* 25 * swapper_space is a fiction, retained to simplify the path through 26 * vmscan's shrink_page_list, to make sync_page look nicer, and to allow 27 * future use of radix_tree tags in the swap cache. 28 */ 29 static const struct address_space_operations swap_aops = { 30 .writepage = swap_writepage, 31 .sync_page = block_sync_page, 32 .set_page_dirty = __set_page_dirty_nobuffers, 33 .migratepage = migrate_page, 34 }; 35 36 static struct backing_dev_info swap_backing_dev_info = { 37 .name = "swap", 38 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, 39 .unplug_io_fn = swap_unplug_io_fn, 40 }; 41 42 struct address_space swapper_space = { 43 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN), 44 .tree_lock = __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock), 45 .a_ops = &swap_aops, 46 .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear), 47 .backing_dev_info = &swap_backing_dev_info, 48 }; 49 50 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0) 51 52 static struct { 53 unsigned long add_total; 54 unsigned long del_total; 55 unsigned long find_success; 56 unsigned long find_total; 57 } swap_cache_info; 58 59 void show_swap_cache_info(void) 60 { 61 printk("%lu pages in swap cache\n", total_swapcache_pages); 62 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", 63 swap_cache_info.add_total, swap_cache_info.del_total, 64 swap_cache_info.find_success, swap_cache_info.find_total); 65 printk("Free swap = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10)); 66 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); 67 } 68 69 /* 70 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, 71 * but sets SwapCache flag and private instead of mapping and index. 72 */ 73 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) 74 { 75 int error; 76 77 VM_BUG_ON(!PageLocked(page)); 78 VM_BUG_ON(PageSwapCache(page)); 79 VM_BUG_ON(!PageSwapBacked(page)); 80 81 error = radix_tree_preload(gfp_mask); 82 if (!error) { 83 page_cache_get(page); 84 SetPageSwapCache(page); 85 set_page_private(page, entry.val); 86 87 spin_lock_irq(&swapper_space.tree_lock); 88 error = radix_tree_insert(&swapper_space.page_tree, 89 entry.val, page); 90 if (likely(!error)) { 91 total_swapcache_pages++; 92 __inc_zone_page_state(page, NR_FILE_PAGES); 93 INC_CACHE_INFO(add_total); 94 } 95 spin_unlock_irq(&swapper_space.tree_lock); 96 radix_tree_preload_end(); 97 98 if (unlikely(error)) { 99 set_page_private(page, 0UL); 100 ClearPageSwapCache(page); 101 page_cache_release(page); 102 } 103 } 104 return error; 105 } 106 107 /* 108 * This must be called only on pages that have 109 * been verified to be in the swap cache. 110 */ 111 void __delete_from_swap_cache(struct page *page) 112 { 113 VM_BUG_ON(!PageLocked(page)); 114 VM_BUG_ON(!PageSwapCache(page)); 115 VM_BUG_ON(PageWriteback(page)); 116 117 radix_tree_delete(&swapper_space.page_tree, page_private(page)); 118 set_page_private(page, 0); 119 ClearPageSwapCache(page); 120 total_swapcache_pages--; 121 __dec_zone_page_state(page, NR_FILE_PAGES); 122 INC_CACHE_INFO(del_total); 123 } 124 125 /** 126 * add_to_swap - allocate swap space for a page 127 * @page: page we want to move to swap 128 * 129 * Allocate swap space for the page and add the page to the 130 * swap cache. Caller needs to hold the page lock. 131 */ 132 int add_to_swap(struct page *page) 133 { 134 swp_entry_t entry; 135 int err; 136 137 VM_BUG_ON(!PageLocked(page)); 138 VM_BUG_ON(!PageUptodate(page)); 139 140 for (;;) { 141 entry = get_swap_page(); 142 if (!entry.val) 143 return 0; 144 145 /* 146 * Radix-tree node allocations from PF_MEMALLOC contexts could 147 * completely exhaust the page allocator. __GFP_NOMEMALLOC 148 * stops emergency reserves from being allocated. 149 * 150 * TODO: this could cause a theoretical memory reclaim 151 * deadlock in the swap out path. 152 */ 153 /* 154 * Add it to the swap cache and mark it dirty 155 */ 156 err = add_to_swap_cache(page, entry, 157 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN); 158 159 switch (err) { 160 case 0: /* Success */ 161 SetPageDirty(page); 162 return 1; 163 case -EEXIST: 164 /* Raced with "speculative" read_swap_cache_async */ 165 swapcache_free(entry, NULL); 166 continue; 167 default: 168 /* -ENOMEM radix-tree allocation failure */ 169 swapcache_free(entry, NULL); 170 return 0; 171 } 172 } 173 } 174 175 /* 176 * This must be called only on pages that have 177 * been verified to be in the swap cache and locked. 178 * It will never put the page into the free list, 179 * the caller has a reference on the page. 180 */ 181 void delete_from_swap_cache(struct page *page) 182 { 183 swp_entry_t entry; 184 185 entry.val = page_private(page); 186 187 spin_lock_irq(&swapper_space.tree_lock); 188 __delete_from_swap_cache(page); 189 spin_unlock_irq(&swapper_space.tree_lock); 190 191 swapcache_free(entry, page); 192 page_cache_release(page); 193 } 194 195 /* 196 * If we are the only user, then try to free up the swap cache. 197 * 198 * Its ok to check for PageSwapCache without the page lock 199 * here because we are going to recheck again inside 200 * try_to_free_swap() _with_ the lock. 201 * - Marcelo 202 */ 203 static inline void free_swap_cache(struct page *page) 204 { 205 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) { 206 try_to_free_swap(page); 207 unlock_page(page); 208 } 209 } 210 211 /* 212 * Perform a free_page(), also freeing any swap cache associated with 213 * this page if it is the last user of the page. 214 */ 215 void free_page_and_swap_cache(struct page *page) 216 { 217 free_swap_cache(page); 218 page_cache_release(page); 219 } 220 221 /* 222 * Passed an array of pages, drop them all from swapcache and then release 223 * them. They are removed from the LRU and freed if this is their last use. 224 */ 225 void free_pages_and_swap_cache(struct page **pages, int nr) 226 { 227 struct page **pagep = pages; 228 229 lru_add_drain(); 230 while (nr) { 231 int todo = min(nr, PAGEVEC_SIZE); 232 int i; 233 234 for (i = 0; i < todo; i++) 235 free_swap_cache(pagep[i]); 236 release_pages(pagep, todo, 0); 237 pagep += todo; 238 nr -= todo; 239 } 240 } 241 242 /* 243 * Lookup a swap entry in the swap cache. A found page will be returned 244 * unlocked and with its refcount incremented - we rely on the kernel 245 * lock getting page table operations atomic even if we drop the page 246 * lock before returning. 247 */ 248 struct page * lookup_swap_cache(swp_entry_t entry) 249 { 250 struct page *page; 251 252 page = find_get_page(&swapper_space, entry.val); 253 254 if (page) 255 INC_CACHE_INFO(find_success); 256 257 INC_CACHE_INFO(find_total); 258 return page; 259 } 260 261 /* 262 * Locate a page of swap in physical memory, reserving swap cache space 263 * and reading the disk if it is not already cached. 264 * A failure return means that either the page allocation failed or that 265 * the swap entry is no longer in use. 266 */ 267 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 268 struct vm_area_struct *vma, unsigned long addr) 269 { 270 struct page *found_page, *new_page = NULL; 271 int err; 272 273 do { 274 /* 275 * First check the swap cache. Since this is normally 276 * called after lookup_swap_cache() failed, re-calling 277 * that would confuse statistics. 278 */ 279 found_page = find_get_page(&swapper_space, entry.val); 280 if (found_page) 281 break; 282 283 /* 284 * Get a new page to read into from swap. 285 */ 286 if (!new_page) { 287 new_page = alloc_page_vma(gfp_mask, vma, addr); 288 if (!new_page) 289 break; /* Out of memory */ 290 } 291 292 /* 293 * Swap entry may have been freed since our caller observed it. 294 */ 295 err = swapcache_prepare(entry); 296 if (err == -EEXIST) /* seems racy */ 297 continue; 298 if (err) /* swp entry is obsolete ? */ 299 break; 300 301 /* 302 * Associate the page with swap entry in the swap cache. 303 * May fail (-EEXIST) if there is already a page associated 304 * with this entry in the swap cache: added by a racing 305 * read_swap_cache_async, or add_to_swap or shmem_writepage 306 * re-using the just freed swap entry for an existing page. 307 * May fail (-ENOMEM) if radix-tree node allocation failed. 308 */ 309 __set_page_locked(new_page); 310 SetPageSwapBacked(new_page); 311 err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL); 312 if (likely(!err)) { 313 /* 314 * Initiate read into locked page and return. 315 */ 316 lru_cache_add_anon(new_page); 317 swap_readpage(new_page); 318 return new_page; 319 } 320 ClearPageSwapBacked(new_page); 321 __clear_page_locked(new_page); 322 swapcache_free(entry, NULL); 323 } while (err != -ENOMEM); 324 325 if (new_page) 326 page_cache_release(new_page); 327 return found_page; 328 } 329 330 /** 331 * swapin_readahead - swap in pages in hope we need them soon 332 * @entry: swap entry of this memory 333 * @gfp_mask: memory allocation flags 334 * @vma: user vma this address belongs to 335 * @addr: target address for mempolicy 336 * 337 * Returns the struct page for entry and addr, after queueing swapin. 338 * 339 * Primitive swap readahead code. We simply read an aligned block of 340 * (1 << page_cluster) entries in the swap area. This method is chosen 341 * because it doesn't cost us any seek time. We also make sure to queue 342 * the 'original' request together with the readahead ones... 343 * 344 * This has been extended to use the NUMA policies from the mm triggering 345 * the readahead. 346 * 347 * Caller must hold down_read on the vma->vm_mm if vma is not NULL. 348 */ 349 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 350 struct vm_area_struct *vma, unsigned long addr) 351 { 352 int nr_pages; 353 struct page *page; 354 unsigned long offset; 355 unsigned long end_offset; 356 357 /* 358 * Get starting offset for readaround, and number of pages to read. 359 * Adjust starting address by readbehind (for NUMA interleave case)? 360 * No, it's very unlikely that swap layout would follow vma layout, 361 * more likely that neighbouring swap pages came from the same node: 362 * so use the same "addr" to choose the same node for each swap read. 363 */ 364 nr_pages = valid_swaphandles(entry, &offset); 365 for (end_offset = offset + nr_pages; offset < end_offset; offset++) { 366 /* Ok, do the async read-ahead now */ 367 page = read_swap_cache_async(swp_entry(swp_type(entry), offset), 368 gfp_mask, vma, addr); 369 if (!page) 370 break; 371 page_cache_release(page); 372 } 373 lru_add_drain(); /* Push any new pages onto the LRU now */ 374 return read_swap_cache_async(entry, gfp_mask, vma, addr); 375 } 376