xref: /linux/mm/swap.c (revision f7275650133ce9df83886684f3bd97373dfc21ea)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page() */
27 #include <linux/percpu_counter.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 
34 /* How many pages do we try to swap or page in/out together? */
35 int page_cluster;
36 
37 static DEFINE_PER_CPU(struct pagevec, lru_add_pvecs);
38 static DEFINE_PER_CPU(struct pagevec, lru_add_active_pvecs);
39 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
40 
41 /*
42  * This path almost never happens for VM activity - pages are normally
43  * freed via pagevecs.  But it gets used by networking.
44  */
45 static void __page_cache_release(struct page *page)
46 {
47 	if (PageLRU(page)) {
48 		unsigned long flags;
49 		struct zone *zone = page_zone(page);
50 
51 		spin_lock_irqsave(&zone->lru_lock, flags);
52 		VM_BUG_ON(!PageLRU(page));
53 		__ClearPageLRU(page);
54 		del_page_from_lru(zone, page);
55 		spin_unlock_irqrestore(&zone->lru_lock, flags);
56 	}
57 	free_hot_page(page);
58 }
59 
60 static void put_compound_page(struct page *page)
61 {
62 	page = compound_head(page);
63 	if (put_page_testzero(page)) {
64 		compound_page_dtor *dtor;
65 
66 		dtor = get_compound_page_dtor(page);
67 		(*dtor)(page);
68 	}
69 }
70 
71 void put_page(struct page *page)
72 {
73 	if (unlikely(PageCompound(page)))
74 		put_compound_page(page);
75 	else if (put_page_testzero(page))
76 		__page_cache_release(page);
77 }
78 EXPORT_SYMBOL(put_page);
79 
80 /**
81  * put_pages_list() - release a list of pages
82  * @pages: list of pages threaded on page->lru
83  *
84  * Release a list of pages which are strung together on page.lru.  Currently
85  * used by read_cache_pages() and related error recovery code.
86  */
87 void put_pages_list(struct list_head *pages)
88 {
89 	while (!list_empty(pages)) {
90 		struct page *victim;
91 
92 		victim = list_entry(pages->prev, struct page, lru);
93 		list_del(&victim->lru);
94 		page_cache_release(victim);
95 	}
96 }
97 EXPORT_SYMBOL(put_pages_list);
98 
99 /*
100  * pagevec_move_tail() must be called with IRQ disabled.
101  * Otherwise this may cause nasty races.
102  */
103 static void pagevec_move_tail(struct pagevec *pvec)
104 {
105 	int i;
106 	int pgmoved = 0;
107 	struct zone *zone = NULL;
108 
109 	for (i = 0; i < pagevec_count(pvec); i++) {
110 		struct page *page = pvec->pages[i];
111 		struct zone *pagezone = page_zone(page);
112 
113 		if (pagezone != zone) {
114 			if (zone)
115 				spin_unlock(&zone->lru_lock);
116 			zone = pagezone;
117 			spin_lock(&zone->lru_lock);
118 		}
119 		if (PageLRU(page) && !PageActive(page)) {
120 			list_move_tail(&page->lru, &zone->inactive_list);
121 			pgmoved++;
122 		}
123 	}
124 	if (zone)
125 		spin_unlock(&zone->lru_lock);
126 	__count_vm_events(PGROTATED, pgmoved);
127 	release_pages(pvec->pages, pvec->nr, pvec->cold);
128 	pagevec_reinit(pvec);
129 }
130 
131 /*
132  * Writeback is about to end against a page which has been marked for immediate
133  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
134  * inactive list.
135  */
136 void  rotate_reclaimable_page(struct page *page)
137 {
138 	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
139 	    PageLRU(page)) {
140 		struct pagevec *pvec;
141 		unsigned long flags;
142 
143 		page_cache_get(page);
144 		local_irq_save(flags);
145 		pvec = &__get_cpu_var(lru_rotate_pvecs);
146 		if (!pagevec_add(pvec, page))
147 			pagevec_move_tail(pvec);
148 		local_irq_restore(flags);
149 	}
150 }
151 
152 /*
153  * FIXME: speed this up?
154  */
155 void activate_page(struct page *page)
156 {
157 	struct zone *zone = page_zone(page);
158 
159 	spin_lock_irq(&zone->lru_lock);
160 	if (PageLRU(page) && !PageActive(page)) {
161 		del_page_from_inactive_list(zone, page);
162 		SetPageActive(page);
163 		add_page_to_active_list(zone, page);
164 		__count_vm_event(PGACTIVATE);
165 		mem_cgroup_move_lists(page, true);
166 	}
167 	spin_unlock_irq(&zone->lru_lock);
168 }
169 
170 /*
171  * Mark a page as having seen activity.
172  *
173  * inactive,unreferenced	->	inactive,referenced
174  * inactive,referenced		->	active,unreferenced
175  * active,unreferenced		->	active,referenced
176  */
177 void mark_page_accessed(struct page *page)
178 {
179 	if (!PageActive(page) && PageReferenced(page) && PageLRU(page)) {
180 		activate_page(page);
181 		ClearPageReferenced(page);
182 	} else if (!PageReferenced(page)) {
183 		SetPageReferenced(page);
184 	}
185 }
186 
187 EXPORT_SYMBOL(mark_page_accessed);
188 
189 /**
190  * lru_cache_add: add a page to the page lists
191  * @page: the page to add
192  */
193 void lru_cache_add(struct page *page)
194 {
195 	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs);
196 
197 	page_cache_get(page);
198 	if (!pagevec_add(pvec, page))
199 		__pagevec_lru_add(pvec);
200 	put_cpu_var(lru_add_pvecs);
201 }
202 
203 void lru_cache_add_active(struct page *page)
204 {
205 	struct pagevec *pvec = &get_cpu_var(lru_add_active_pvecs);
206 
207 	page_cache_get(page);
208 	if (!pagevec_add(pvec, page))
209 		__pagevec_lru_add_active(pvec);
210 	put_cpu_var(lru_add_active_pvecs);
211 }
212 
213 /*
214  * Drain pages out of the cpu's pagevecs.
215  * Either "cpu" is the current CPU, and preemption has already been
216  * disabled; or "cpu" is being hot-unplugged, and is already dead.
217  */
218 static void drain_cpu_pagevecs(int cpu)
219 {
220 	struct pagevec *pvec;
221 
222 	pvec = &per_cpu(lru_add_pvecs, cpu);
223 	if (pagevec_count(pvec))
224 		__pagevec_lru_add(pvec);
225 
226 	pvec = &per_cpu(lru_add_active_pvecs, cpu);
227 	if (pagevec_count(pvec))
228 		__pagevec_lru_add_active(pvec);
229 
230 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
231 	if (pagevec_count(pvec)) {
232 		unsigned long flags;
233 
234 		/* No harm done if a racing interrupt already did this */
235 		local_irq_save(flags);
236 		pagevec_move_tail(pvec);
237 		local_irq_restore(flags);
238 	}
239 }
240 
241 void lru_add_drain(void)
242 {
243 	drain_cpu_pagevecs(get_cpu());
244 	put_cpu();
245 }
246 
247 #ifdef CONFIG_NUMA
248 static void lru_add_drain_per_cpu(struct work_struct *dummy)
249 {
250 	lru_add_drain();
251 }
252 
253 /*
254  * Returns 0 for success
255  */
256 int lru_add_drain_all(void)
257 {
258 	return schedule_on_each_cpu(lru_add_drain_per_cpu);
259 }
260 
261 #else
262 
263 /*
264  * Returns 0 for success
265  */
266 int lru_add_drain_all(void)
267 {
268 	lru_add_drain();
269 	return 0;
270 }
271 #endif
272 
273 /*
274  * Batched page_cache_release().  Decrement the reference count on all the
275  * passed pages.  If it fell to zero then remove the page from the LRU and
276  * free it.
277  *
278  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
279  * for the remainder of the operation.
280  *
281  * The locking in this function is against shrink_inactive_list(): we recheck
282  * the page count inside the lock to see whether shrink_inactive_list()
283  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
284  * will free it.
285  */
286 void release_pages(struct page **pages, int nr, int cold)
287 {
288 	int i;
289 	struct pagevec pages_to_free;
290 	struct zone *zone = NULL;
291 	unsigned long uninitialized_var(flags);
292 
293 	pagevec_init(&pages_to_free, cold);
294 	for (i = 0; i < nr; i++) {
295 		struct page *page = pages[i];
296 
297 		if (unlikely(PageCompound(page))) {
298 			if (zone) {
299 				spin_unlock_irqrestore(&zone->lru_lock, flags);
300 				zone = NULL;
301 			}
302 			put_compound_page(page);
303 			continue;
304 		}
305 
306 		if (!put_page_testzero(page))
307 			continue;
308 
309 		if (PageLRU(page)) {
310 			struct zone *pagezone = page_zone(page);
311 			if (pagezone != zone) {
312 				if (zone)
313 					spin_unlock_irqrestore(&zone->lru_lock,
314 									flags);
315 				zone = pagezone;
316 				spin_lock_irqsave(&zone->lru_lock, flags);
317 			}
318 			VM_BUG_ON(!PageLRU(page));
319 			__ClearPageLRU(page);
320 			del_page_from_lru(zone, page);
321 		}
322 
323 		if (!pagevec_add(&pages_to_free, page)) {
324 			if (zone) {
325 				spin_unlock_irqrestore(&zone->lru_lock, flags);
326 				zone = NULL;
327 			}
328 			__pagevec_free(&pages_to_free);
329 			pagevec_reinit(&pages_to_free);
330   		}
331 	}
332 	if (zone)
333 		spin_unlock_irqrestore(&zone->lru_lock, flags);
334 
335 	pagevec_free(&pages_to_free);
336 }
337 
338 /*
339  * The pages which we're about to release may be in the deferred lru-addition
340  * queues.  That would prevent them from really being freed right now.  That's
341  * OK from a correctness point of view but is inefficient - those pages may be
342  * cache-warm and we want to give them back to the page allocator ASAP.
343  *
344  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
345  * and __pagevec_lru_add_active() call release_pages() directly to avoid
346  * mutual recursion.
347  */
348 void __pagevec_release(struct pagevec *pvec)
349 {
350 	lru_add_drain();
351 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
352 	pagevec_reinit(pvec);
353 }
354 
355 EXPORT_SYMBOL(__pagevec_release);
356 
357 /*
358  * pagevec_release() for pages which are known to not be on the LRU
359  *
360  * This function reinitialises the caller's pagevec.
361  */
362 void __pagevec_release_nonlru(struct pagevec *pvec)
363 {
364 	int i;
365 	struct pagevec pages_to_free;
366 
367 	pagevec_init(&pages_to_free, pvec->cold);
368 	for (i = 0; i < pagevec_count(pvec); i++) {
369 		struct page *page = pvec->pages[i];
370 
371 		VM_BUG_ON(PageLRU(page));
372 		if (put_page_testzero(page))
373 			pagevec_add(&pages_to_free, page);
374 	}
375 	pagevec_free(&pages_to_free);
376 	pagevec_reinit(pvec);
377 }
378 
379 /*
380  * Add the passed pages to the LRU, then drop the caller's refcount
381  * on them.  Reinitialises the caller's pagevec.
382  */
383 void __pagevec_lru_add(struct pagevec *pvec)
384 {
385 	int i;
386 	struct zone *zone = NULL;
387 
388 	for (i = 0; i < pagevec_count(pvec); i++) {
389 		struct page *page = pvec->pages[i];
390 		struct zone *pagezone = page_zone(page);
391 
392 		if (pagezone != zone) {
393 			if (zone)
394 				spin_unlock_irq(&zone->lru_lock);
395 			zone = pagezone;
396 			spin_lock_irq(&zone->lru_lock);
397 		}
398 		VM_BUG_ON(PageLRU(page));
399 		SetPageLRU(page);
400 		add_page_to_inactive_list(zone, page);
401 	}
402 	if (zone)
403 		spin_unlock_irq(&zone->lru_lock);
404 	release_pages(pvec->pages, pvec->nr, pvec->cold);
405 	pagevec_reinit(pvec);
406 }
407 
408 EXPORT_SYMBOL(__pagevec_lru_add);
409 
410 void __pagevec_lru_add_active(struct pagevec *pvec)
411 {
412 	int i;
413 	struct zone *zone = NULL;
414 
415 	for (i = 0; i < pagevec_count(pvec); i++) {
416 		struct page *page = pvec->pages[i];
417 		struct zone *pagezone = page_zone(page);
418 
419 		if (pagezone != zone) {
420 			if (zone)
421 				spin_unlock_irq(&zone->lru_lock);
422 			zone = pagezone;
423 			spin_lock_irq(&zone->lru_lock);
424 		}
425 		VM_BUG_ON(PageLRU(page));
426 		SetPageLRU(page);
427 		VM_BUG_ON(PageActive(page));
428 		SetPageActive(page);
429 		add_page_to_active_list(zone, page);
430 	}
431 	if (zone)
432 		spin_unlock_irq(&zone->lru_lock);
433 	release_pages(pvec->pages, pvec->nr, pvec->cold);
434 	pagevec_reinit(pvec);
435 }
436 
437 /*
438  * Try to drop buffers from the pages in a pagevec
439  */
440 void pagevec_strip(struct pagevec *pvec)
441 {
442 	int i;
443 
444 	for (i = 0; i < pagevec_count(pvec); i++) {
445 		struct page *page = pvec->pages[i];
446 
447 		if (PagePrivate(page) && trylock_page(page)) {
448 			if (PagePrivate(page))
449 				try_to_release_page(page, 0);
450 			unlock_page(page);
451 		}
452 	}
453 }
454 
455 /**
456  * pagevec_lookup - gang pagecache lookup
457  * @pvec:	Where the resulting pages are placed
458  * @mapping:	The address_space to search
459  * @start:	The starting page index
460  * @nr_pages:	The maximum number of pages
461  *
462  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
463  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
464  * reference against the pages in @pvec.
465  *
466  * The search returns a group of mapping-contiguous pages with ascending
467  * indexes.  There may be holes in the indices due to not-present pages.
468  *
469  * pagevec_lookup() returns the number of pages which were found.
470  */
471 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
472 		pgoff_t start, unsigned nr_pages)
473 {
474 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
475 	return pagevec_count(pvec);
476 }
477 
478 EXPORT_SYMBOL(pagevec_lookup);
479 
480 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
481 		pgoff_t *index, int tag, unsigned nr_pages)
482 {
483 	pvec->nr = find_get_pages_tag(mapping, index, tag,
484 					nr_pages, pvec->pages);
485 	return pagevec_count(pvec);
486 }
487 
488 EXPORT_SYMBOL(pagevec_lookup_tag);
489 
490 #ifdef CONFIG_SMP
491 /*
492  * We tolerate a little inaccuracy to avoid ping-ponging the counter between
493  * CPUs
494  */
495 #define ACCT_THRESHOLD	max(16, NR_CPUS * 2)
496 
497 static DEFINE_PER_CPU(long, committed_space);
498 
499 void vm_acct_memory(long pages)
500 {
501 	long *local;
502 
503 	preempt_disable();
504 	local = &__get_cpu_var(committed_space);
505 	*local += pages;
506 	if (*local > ACCT_THRESHOLD || *local < -ACCT_THRESHOLD) {
507 		atomic_long_add(*local, &vm_committed_space);
508 		*local = 0;
509 	}
510 	preempt_enable();
511 }
512 
513 #ifdef CONFIG_HOTPLUG_CPU
514 
515 /* Drop the CPU's cached committed space back into the central pool. */
516 static int cpu_swap_callback(struct notifier_block *nfb,
517 			     unsigned long action,
518 			     void *hcpu)
519 {
520 	long *committed;
521 
522 	committed = &per_cpu(committed_space, (long)hcpu);
523 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
524 		atomic_long_add(*committed, &vm_committed_space);
525 		*committed = 0;
526 		drain_cpu_pagevecs((long)hcpu);
527 	}
528 	return NOTIFY_OK;
529 }
530 #endif /* CONFIG_HOTPLUG_CPU */
531 #endif /* CONFIG_SMP */
532 
533 /*
534  * Perform any setup for the swap system
535  */
536 void __init swap_setup(void)
537 {
538 	unsigned long megs = num_physpages >> (20 - PAGE_SHIFT);
539 
540 #ifdef CONFIG_SWAP
541 	bdi_init(swapper_space.backing_dev_info);
542 #endif
543 
544 	/* Use a smaller cluster for small-memory machines */
545 	if (megs < 16)
546 		page_cluster = 2;
547 	else
548 		page_cluster = 3;
549 	/*
550 	 * Right now other parts of the system means that we
551 	 * _really_ don't want to cluster much more
552 	 */
553 #ifdef CONFIG_HOTPLUG_CPU
554 	hotcpu_notifier(cpu_swap_callback, 0);
555 #endif
556 }
557