1 /* 2 * linux/mm/swap.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * This file contains the default values for the opereation of the 9 * Linux VM subsystem. Fine-tuning documentation can be found in 10 * Documentation/sysctl/vm.txt. 11 * Started 18.12.91 12 * Swap aging added 23.2.95, Stephen Tweedie. 13 * Buffermem limits added 12.3.98, Rik van Riel. 14 */ 15 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/swap.h> 20 #include <linux/mman.h> 21 #include <linux/pagemap.h> 22 #include <linux/pagevec.h> 23 #include <linux/init.h> 24 #include <linux/module.h> 25 #include <linux/mm_inline.h> 26 #include <linux/buffer_head.h> /* for try_to_release_page() */ 27 #include <linux/module.h> 28 #include <linux/percpu_counter.h> 29 #include <linux/percpu.h> 30 #include <linux/cpu.h> 31 #include <linux/notifier.h> 32 #include <linux/init.h> 33 34 /* How many pages do we try to swap or page in/out together? */ 35 int page_cluster; 36 37 static void put_compound_page(struct page *page) 38 { 39 page = (struct page *)page_private(page); 40 if (put_page_testzero(page)) { 41 void (*dtor)(struct page *page); 42 43 dtor = (void (*)(struct page *))page[1].lru.next; 44 (*dtor)(page); 45 } 46 } 47 48 void put_page(struct page *page) 49 { 50 if (unlikely(PageCompound(page))) 51 put_compound_page(page); 52 else if (put_page_testzero(page)) 53 __page_cache_release(page); 54 } 55 EXPORT_SYMBOL(put_page); 56 57 /** 58 * put_pages_list(): release a list of pages 59 * 60 * Release a list of pages which are strung together on page.lru. Currently 61 * used by read_cache_pages() and related error recovery code. 62 * 63 * @pages: list of pages threaded on page->lru 64 */ 65 void put_pages_list(struct list_head *pages) 66 { 67 while (!list_empty(pages)) { 68 struct page *victim; 69 70 victim = list_entry(pages->prev, struct page, lru); 71 list_del(&victim->lru); 72 page_cache_release(victim); 73 } 74 } 75 EXPORT_SYMBOL(put_pages_list); 76 77 /* 78 * Writeback is about to end against a page which has been marked for immediate 79 * reclaim. If it still appears to be reclaimable, move it to the tail of the 80 * inactive list. The page still has PageWriteback set, which will pin it. 81 * 82 * We don't expect many pages to come through here, so don't bother batching 83 * things up. 84 * 85 * To avoid placing the page at the tail of the LRU while PG_writeback is still 86 * set, this function will clear PG_writeback before performing the page 87 * motion. Do that inside the lru lock because once PG_writeback is cleared 88 * we may not touch the page. 89 * 90 * Returns zero if it cleared PG_writeback. 91 */ 92 int rotate_reclaimable_page(struct page *page) 93 { 94 struct zone *zone; 95 unsigned long flags; 96 97 if (PageLocked(page)) 98 return 1; 99 if (PageDirty(page)) 100 return 1; 101 if (PageActive(page)) 102 return 1; 103 if (!PageLRU(page)) 104 return 1; 105 106 zone = page_zone(page); 107 spin_lock_irqsave(&zone->lru_lock, flags); 108 if (PageLRU(page) && !PageActive(page)) { 109 list_move_tail(&page->lru, &zone->inactive_list); 110 __count_vm_event(PGROTATED); 111 } 112 if (!test_clear_page_writeback(page)) 113 BUG(); 114 spin_unlock_irqrestore(&zone->lru_lock, flags); 115 return 0; 116 } 117 118 /* 119 * FIXME: speed this up? 120 */ 121 void fastcall activate_page(struct page *page) 122 { 123 struct zone *zone = page_zone(page); 124 125 spin_lock_irq(&zone->lru_lock); 126 if (PageLRU(page) && !PageActive(page)) { 127 del_page_from_inactive_list(zone, page); 128 SetPageActive(page); 129 add_page_to_active_list(zone, page); 130 __count_vm_event(PGACTIVATE); 131 } 132 spin_unlock_irq(&zone->lru_lock); 133 } 134 135 /* 136 * Mark a page as having seen activity. 137 * 138 * inactive,unreferenced -> inactive,referenced 139 * inactive,referenced -> active,unreferenced 140 * active,unreferenced -> active,referenced 141 */ 142 void fastcall mark_page_accessed(struct page *page) 143 { 144 if (!PageActive(page) && PageReferenced(page) && PageLRU(page)) { 145 activate_page(page); 146 ClearPageReferenced(page); 147 } else if (!PageReferenced(page)) { 148 SetPageReferenced(page); 149 } 150 } 151 152 EXPORT_SYMBOL(mark_page_accessed); 153 154 /** 155 * lru_cache_add: add a page to the page lists 156 * @page: the page to add 157 */ 158 static DEFINE_PER_CPU(struct pagevec, lru_add_pvecs) = { 0, }; 159 static DEFINE_PER_CPU(struct pagevec, lru_add_active_pvecs) = { 0, }; 160 161 void fastcall lru_cache_add(struct page *page) 162 { 163 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs); 164 165 page_cache_get(page); 166 if (!pagevec_add(pvec, page)) 167 __pagevec_lru_add(pvec); 168 put_cpu_var(lru_add_pvecs); 169 } 170 171 void fastcall lru_cache_add_active(struct page *page) 172 { 173 struct pagevec *pvec = &get_cpu_var(lru_add_active_pvecs); 174 175 page_cache_get(page); 176 if (!pagevec_add(pvec, page)) 177 __pagevec_lru_add_active(pvec); 178 put_cpu_var(lru_add_active_pvecs); 179 } 180 181 static void __lru_add_drain(int cpu) 182 { 183 struct pagevec *pvec = &per_cpu(lru_add_pvecs, cpu); 184 185 /* CPU is dead, so no locking needed. */ 186 if (pagevec_count(pvec)) 187 __pagevec_lru_add(pvec); 188 pvec = &per_cpu(lru_add_active_pvecs, cpu); 189 if (pagevec_count(pvec)) 190 __pagevec_lru_add_active(pvec); 191 } 192 193 void lru_add_drain(void) 194 { 195 __lru_add_drain(get_cpu()); 196 put_cpu(); 197 } 198 199 #ifdef CONFIG_NUMA 200 static void lru_add_drain_per_cpu(void *dummy) 201 { 202 lru_add_drain(); 203 } 204 205 /* 206 * Returns 0 for success 207 */ 208 int lru_add_drain_all(void) 209 { 210 return schedule_on_each_cpu(lru_add_drain_per_cpu, NULL); 211 } 212 213 #else 214 215 /* 216 * Returns 0 for success 217 */ 218 int lru_add_drain_all(void) 219 { 220 lru_add_drain(); 221 return 0; 222 } 223 #endif 224 225 /* 226 * This path almost never happens for VM activity - pages are normally 227 * freed via pagevecs. But it gets used by networking. 228 */ 229 void fastcall __page_cache_release(struct page *page) 230 { 231 if (PageLRU(page)) { 232 unsigned long flags; 233 struct zone *zone = page_zone(page); 234 235 spin_lock_irqsave(&zone->lru_lock, flags); 236 BUG_ON(!PageLRU(page)); 237 __ClearPageLRU(page); 238 del_page_from_lru(zone, page); 239 spin_unlock_irqrestore(&zone->lru_lock, flags); 240 } 241 free_hot_page(page); 242 } 243 EXPORT_SYMBOL(__page_cache_release); 244 245 /* 246 * Batched page_cache_release(). Decrement the reference count on all the 247 * passed pages. If it fell to zero then remove the page from the LRU and 248 * free it. 249 * 250 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it 251 * for the remainder of the operation. 252 * 253 * The locking in this function is against shrink_cache(): we recheck the 254 * page count inside the lock to see whether shrink_cache grabbed the page 255 * via the LRU. If it did, give up: shrink_cache will free it. 256 */ 257 void release_pages(struct page **pages, int nr, int cold) 258 { 259 int i; 260 struct pagevec pages_to_free; 261 struct zone *zone = NULL; 262 263 pagevec_init(&pages_to_free, cold); 264 for (i = 0; i < nr; i++) { 265 struct page *page = pages[i]; 266 267 if (unlikely(PageCompound(page))) { 268 if (zone) { 269 spin_unlock_irq(&zone->lru_lock); 270 zone = NULL; 271 } 272 put_compound_page(page); 273 continue; 274 } 275 276 if (!put_page_testzero(page)) 277 continue; 278 279 if (PageLRU(page)) { 280 struct zone *pagezone = page_zone(page); 281 if (pagezone != zone) { 282 if (zone) 283 spin_unlock_irq(&zone->lru_lock); 284 zone = pagezone; 285 spin_lock_irq(&zone->lru_lock); 286 } 287 BUG_ON(!PageLRU(page)); 288 __ClearPageLRU(page); 289 del_page_from_lru(zone, page); 290 } 291 292 if (!pagevec_add(&pages_to_free, page)) { 293 if (zone) { 294 spin_unlock_irq(&zone->lru_lock); 295 zone = NULL; 296 } 297 __pagevec_free(&pages_to_free); 298 pagevec_reinit(&pages_to_free); 299 } 300 } 301 if (zone) 302 spin_unlock_irq(&zone->lru_lock); 303 304 pagevec_free(&pages_to_free); 305 } 306 307 /* 308 * The pages which we're about to release may be in the deferred lru-addition 309 * queues. That would prevent them from really being freed right now. That's 310 * OK from a correctness point of view but is inefficient - those pages may be 311 * cache-warm and we want to give them back to the page allocator ASAP. 312 * 313 * So __pagevec_release() will drain those queues here. __pagevec_lru_add() 314 * and __pagevec_lru_add_active() call release_pages() directly to avoid 315 * mutual recursion. 316 */ 317 void __pagevec_release(struct pagevec *pvec) 318 { 319 lru_add_drain(); 320 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold); 321 pagevec_reinit(pvec); 322 } 323 324 EXPORT_SYMBOL(__pagevec_release); 325 326 /* 327 * pagevec_release() for pages which are known to not be on the LRU 328 * 329 * This function reinitialises the caller's pagevec. 330 */ 331 void __pagevec_release_nonlru(struct pagevec *pvec) 332 { 333 int i; 334 struct pagevec pages_to_free; 335 336 pagevec_init(&pages_to_free, pvec->cold); 337 for (i = 0; i < pagevec_count(pvec); i++) { 338 struct page *page = pvec->pages[i]; 339 340 BUG_ON(PageLRU(page)); 341 if (put_page_testzero(page)) 342 pagevec_add(&pages_to_free, page); 343 } 344 pagevec_free(&pages_to_free); 345 pagevec_reinit(pvec); 346 } 347 348 /* 349 * Add the passed pages to the LRU, then drop the caller's refcount 350 * on them. Reinitialises the caller's pagevec. 351 */ 352 void __pagevec_lru_add(struct pagevec *pvec) 353 { 354 int i; 355 struct zone *zone = NULL; 356 357 for (i = 0; i < pagevec_count(pvec); i++) { 358 struct page *page = pvec->pages[i]; 359 struct zone *pagezone = page_zone(page); 360 361 if (pagezone != zone) { 362 if (zone) 363 spin_unlock_irq(&zone->lru_lock); 364 zone = pagezone; 365 spin_lock_irq(&zone->lru_lock); 366 } 367 BUG_ON(PageLRU(page)); 368 SetPageLRU(page); 369 add_page_to_inactive_list(zone, page); 370 } 371 if (zone) 372 spin_unlock_irq(&zone->lru_lock); 373 release_pages(pvec->pages, pvec->nr, pvec->cold); 374 pagevec_reinit(pvec); 375 } 376 377 EXPORT_SYMBOL(__pagevec_lru_add); 378 379 void __pagevec_lru_add_active(struct pagevec *pvec) 380 { 381 int i; 382 struct zone *zone = NULL; 383 384 for (i = 0; i < pagevec_count(pvec); i++) { 385 struct page *page = pvec->pages[i]; 386 struct zone *pagezone = page_zone(page); 387 388 if (pagezone != zone) { 389 if (zone) 390 spin_unlock_irq(&zone->lru_lock); 391 zone = pagezone; 392 spin_lock_irq(&zone->lru_lock); 393 } 394 BUG_ON(PageLRU(page)); 395 SetPageLRU(page); 396 BUG_ON(PageActive(page)); 397 SetPageActive(page); 398 add_page_to_active_list(zone, page); 399 } 400 if (zone) 401 spin_unlock_irq(&zone->lru_lock); 402 release_pages(pvec->pages, pvec->nr, pvec->cold); 403 pagevec_reinit(pvec); 404 } 405 406 /* 407 * Try to drop buffers from the pages in a pagevec 408 */ 409 void pagevec_strip(struct pagevec *pvec) 410 { 411 int i; 412 413 for (i = 0; i < pagevec_count(pvec); i++) { 414 struct page *page = pvec->pages[i]; 415 416 if (PagePrivate(page) && !TestSetPageLocked(page)) { 417 if (PagePrivate(page)) 418 try_to_release_page(page, 0); 419 unlock_page(page); 420 } 421 } 422 } 423 424 /** 425 * pagevec_lookup - gang pagecache lookup 426 * @pvec: Where the resulting pages are placed 427 * @mapping: The address_space to search 428 * @start: The starting page index 429 * @nr_pages: The maximum number of pages 430 * 431 * pagevec_lookup() will search for and return a group of up to @nr_pages pages 432 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a 433 * reference against the pages in @pvec. 434 * 435 * The search returns a group of mapping-contiguous pages with ascending 436 * indexes. There may be holes in the indices due to not-present pages. 437 * 438 * pagevec_lookup() returns the number of pages which were found. 439 */ 440 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping, 441 pgoff_t start, unsigned nr_pages) 442 { 443 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages); 444 return pagevec_count(pvec); 445 } 446 447 EXPORT_SYMBOL(pagevec_lookup); 448 449 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping, 450 pgoff_t *index, int tag, unsigned nr_pages) 451 { 452 pvec->nr = find_get_pages_tag(mapping, index, tag, 453 nr_pages, pvec->pages); 454 return pagevec_count(pvec); 455 } 456 457 EXPORT_SYMBOL(pagevec_lookup_tag); 458 459 #ifdef CONFIG_SMP 460 /* 461 * We tolerate a little inaccuracy to avoid ping-ponging the counter between 462 * CPUs 463 */ 464 #define ACCT_THRESHOLD max(16, NR_CPUS * 2) 465 466 static DEFINE_PER_CPU(long, committed_space) = 0; 467 468 void vm_acct_memory(long pages) 469 { 470 long *local; 471 472 preempt_disable(); 473 local = &__get_cpu_var(committed_space); 474 *local += pages; 475 if (*local > ACCT_THRESHOLD || *local < -ACCT_THRESHOLD) { 476 atomic_add(*local, &vm_committed_space); 477 *local = 0; 478 } 479 preempt_enable(); 480 } 481 482 #ifdef CONFIG_HOTPLUG_CPU 483 484 /* Drop the CPU's cached committed space back into the central pool. */ 485 static int cpu_swap_callback(struct notifier_block *nfb, 486 unsigned long action, 487 void *hcpu) 488 { 489 long *committed; 490 491 committed = &per_cpu(committed_space, (long)hcpu); 492 if (action == CPU_DEAD) { 493 atomic_add(*committed, &vm_committed_space); 494 *committed = 0; 495 __lru_add_drain((long)hcpu); 496 } 497 return NOTIFY_OK; 498 } 499 #endif /* CONFIG_HOTPLUG_CPU */ 500 #endif /* CONFIG_SMP */ 501 502 /* 503 * Perform any setup for the swap system 504 */ 505 void __init swap_setup(void) 506 { 507 unsigned long megs = num_physpages >> (20 - PAGE_SHIFT); 508 509 /* Use a smaller cluster for small-memory machines */ 510 if (megs < 16) 511 page_cluster = 2; 512 else 513 page_cluster = 3; 514 /* 515 * Right now other parts of the system means that we 516 * _really_ don't want to cluster much more 517 */ 518 hotcpu_notifier(cpu_swap_callback, 0); 519 } 520