xref: /linux/mm/swap.c (revision ed3174d93c342b8b2eeba6bbd124707d55304a7b)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page() */
27 #include <linux/percpu_counter.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 
34 /* How many pages do we try to swap or page in/out together? */
35 int page_cluster;
36 
37 static DEFINE_PER_CPU(struct pagevec, lru_add_pvecs) = { 0, };
38 static DEFINE_PER_CPU(struct pagevec, lru_add_active_pvecs) = { 0, };
39 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs) = { 0, };
40 
41 /*
42  * This path almost never happens for VM activity - pages are normally
43  * freed via pagevecs.  But it gets used by networking.
44  */
45 static void __page_cache_release(struct page *page)
46 {
47 	if (PageLRU(page)) {
48 		unsigned long flags;
49 		struct zone *zone = page_zone(page);
50 
51 		spin_lock_irqsave(&zone->lru_lock, flags);
52 		VM_BUG_ON(!PageLRU(page));
53 		__ClearPageLRU(page);
54 		del_page_from_lru(zone, page);
55 		spin_unlock_irqrestore(&zone->lru_lock, flags);
56 	}
57 	free_hot_page(page);
58 }
59 
60 static void put_compound_page(struct page *page)
61 {
62 	page = compound_head(page);
63 	if (put_page_testzero(page)) {
64 		compound_page_dtor *dtor;
65 
66 		dtor = get_compound_page_dtor(page);
67 		(*dtor)(page);
68 	}
69 }
70 
71 void put_page(struct page *page)
72 {
73 	if (unlikely(PageCompound(page)))
74 		put_compound_page(page);
75 	else if (put_page_testzero(page))
76 		__page_cache_release(page);
77 }
78 EXPORT_SYMBOL(put_page);
79 
80 /**
81  * put_pages_list(): release a list of pages
82  *
83  * Release a list of pages which are strung together on page.lru.  Currently
84  * used by read_cache_pages() and related error recovery code.
85  *
86  * @pages: list of pages threaded on page->lru
87  */
88 void put_pages_list(struct list_head *pages)
89 {
90 	while (!list_empty(pages)) {
91 		struct page *victim;
92 
93 		victim = list_entry(pages->prev, struct page, lru);
94 		list_del(&victim->lru);
95 		page_cache_release(victim);
96 	}
97 }
98 EXPORT_SYMBOL(put_pages_list);
99 
100 /*
101  * pagevec_move_tail() must be called with IRQ disabled.
102  * Otherwise this may cause nasty races.
103  */
104 static void pagevec_move_tail(struct pagevec *pvec)
105 {
106 	int i;
107 	int pgmoved = 0;
108 	struct zone *zone = NULL;
109 
110 	for (i = 0; i < pagevec_count(pvec); i++) {
111 		struct page *page = pvec->pages[i];
112 		struct zone *pagezone = page_zone(page);
113 
114 		if (pagezone != zone) {
115 			if (zone)
116 				spin_unlock(&zone->lru_lock);
117 			zone = pagezone;
118 			spin_lock(&zone->lru_lock);
119 		}
120 		if (PageLRU(page) && !PageActive(page)) {
121 			list_move_tail(&page->lru, &zone->inactive_list);
122 			pgmoved++;
123 		}
124 	}
125 	if (zone)
126 		spin_unlock(&zone->lru_lock);
127 	__count_vm_events(PGROTATED, pgmoved);
128 	release_pages(pvec->pages, pvec->nr, pvec->cold);
129 	pagevec_reinit(pvec);
130 }
131 
132 /*
133  * Writeback is about to end against a page which has been marked for immediate
134  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
135  * inactive list.
136  *
137  * Returns zero if it cleared PG_writeback.
138  */
139 int rotate_reclaimable_page(struct page *page)
140 {
141 	struct pagevec *pvec;
142 	unsigned long flags;
143 
144 	if (PageLocked(page))
145 		return 1;
146 	if (PageDirty(page))
147 		return 1;
148 	if (PageActive(page))
149 		return 1;
150 	if (!PageLRU(page))
151 		return 1;
152 
153 	page_cache_get(page);
154 	local_irq_save(flags);
155 	pvec = &__get_cpu_var(lru_rotate_pvecs);
156 	if (!pagevec_add(pvec, page))
157 		pagevec_move_tail(pvec);
158 	local_irq_restore(flags);
159 
160 	if (!test_clear_page_writeback(page))
161 		BUG();
162 
163 	return 0;
164 }
165 
166 /*
167  * FIXME: speed this up?
168  */
169 void activate_page(struct page *page)
170 {
171 	struct zone *zone = page_zone(page);
172 
173 	spin_lock_irq(&zone->lru_lock);
174 	if (PageLRU(page) && !PageActive(page)) {
175 		del_page_from_inactive_list(zone, page);
176 		SetPageActive(page);
177 		add_page_to_active_list(zone, page);
178 		__count_vm_event(PGACTIVATE);
179 		mem_cgroup_move_lists(page_get_page_cgroup(page), true);
180 	}
181 	spin_unlock_irq(&zone->lru_lock);
182 }
183 
184 /*
185  * Mark a page as having seen activity.
186  *
187  * inactive,unreferenced	->	inactive,referenced
188  * inactive,referenced		->	active,unreferenced
189  * active,unreferenced		->	active,referenced
190  */
191 void mark_page_accessed(struct page *page)
192 {
193 	if (!PageActive(page) && PageReferenced(page) && PageLRU(page)) {
194 		activate_page(page);
195 		ClearPageReferenced(page);
196 	} else if (!PageReferenced(page)) {
197 		SetPageReferenced(page);
198 	}
199 }
200 
201 EXPORT_SYMBOL(mark_page_accessed);
202 
203 /**
204  * lru_cache_add: add a page to the page lists
205  * @page: the page to add
206  */
207 void lru_cache_add(struct page *page)
208 {
209 	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs);
210 
211 	page_cache_get(page);
212 	if (!pagevec_add(pvec, page))
213 		__pagevec_lru_add(pvec);
214 	put_cpu_var(lru_add_pvecs);
215 }
216 
217 void lru_cache_add_active(struct page *page)
218 {
219 	struct pagevec *pvec = &get_cpu_var(lru_add_active_pvecs);
220 
221 	page_cache_get(page);
222 	if (!pagevec_add(pvec, page))
223 		__pagevec_lru_add_active(pvec);
224 	put_cpu_var(lru_add_active_pvecs);
225 }
226 
227 /*
228  * Drain pages out of the cpu's pagevecs.
229  * Either "cpu" is the current CPU, and preemption has already been
230  * disabled; or "cpu" is being hot-unplugged, and is already dead.
231  */
232 static void drain_cpu_pagevecs(int cpu)
233 {
234 	struct pagevec *pvec;
235 
236 	pvec = &per_cpu(lru_add_pvecs, cpu);
237 	if (pagevec_count(pvec))
238 		__pagevec_lru_add(pvec);
239 
240 	pvec = &per_cpu(lru_add_active_pvecs, cpu);
241 	if (pagevec_count(pvec))
242 		__pagevec_lru_add_active(pvec);
243 
244 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
245 	if (pagevec_count(pvec)) {
246 		unsigned long flags;
247 
248 		/* No harm done if a racing interrupt already did this */
249 		local_irq_save(flags);
250 		pagevec_move_tail(pvec);
251 		local_irq_restore(flags);
252 	}
253 }
254 
255 void lru_add_drain(void)
256 {
257 	drain_cpu_pagevecs(get_cpu());
258 	put_cpu();
259 }
260 
261 #ifdef CONFIG_NUMA
262 static void lru_add_drain_per_cpu(struct work_struct *dummy)
263 {
264 	lru_add_drain();
265 }
266 
267 /*
268  * Returns 0 for success
269  */
270 int lru_add_drain_all(void)
271 {
272 	return schedule_on_each_cpu(lru_add_drain_per_cpu);
273 }
274 
275 #else
276 
277 /*
278  * Returns 0 for success
279  */
280 int lru_add_drain_all(void)
281 {
282 	lru_add_drain();
283 	return 0;
284 }
285 #endif
286 
287 /*
288  * Batched page_cache_release().  Decrement the reference count on all the
289  * passed pages.  If it fell to zero then remove the page from the LRU and
290  * free it.
291  *
292  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
293  * for the remainder of the operation.
294  *
295  * The locking in this function is against shrink_cache(): we recheck the
296  * page count inside the lock to see whether shrink_cache grabbed the page
297  * via the LRU.  If it did, give up: shrink_cache will free it.
298  */
299 void release_pages(struct page **pages, int nr, int cold)
300 {
301 	int i;
302 	struct pagevec pages_to_free;
303 	struct zone *zone = NULL;
304 	unsigned long uninitialized_var(flags);
305 
306 	pagevec_init(&pages_to_free, cold);
307 	for (i = 0; i < nr; i++) {
308 		struct page *page = pages[i];
309 
310 		if (unlikely(PageCompound(page))) {
311 			if (zone) {
312 				spin_unlock_irqrestore(&zone->lru_lock, flags);
313 				zone = NULL;
314 			}
315 			put_compound_page(page);
316 			continue;
317 		}
318 
319 		if (!put_page_testzero(page))
320 			continue;
321 
322 		if (PageLRU(page)) {
323 			struct zone *pagezone = page_zone(page);
324 			if (pagezone != zone) {
325 				if (zone)
326 					spin_unlock_irqrestore(&zone->lru_lock,
327 									flags);
328 				zone = pagezone;
329 				spin_lock_irqsave(&zone->lru_lock, flags);
330 			}
331 			VM_BUG_ON(!PageLRU(page));
332 			__ClearPageLRU(page);
333 			del_page_from_lru(zone, page);
334 		}
335 
336 		if (!pagevec_add(&pages_to_free, page)) {
337 			if (zone) {
338 				spin_unlock_irqrestore(&zone->lru_lock, flags);
339 				zone = NULL;
340 			}
341 			__pagevec_free(&pages_to_free);
342 			pagevec_reinit(&pages_to_free);
343   		}
344 	}
345 	if (zone)
346 		spin_unlock_irqrestore(&zone->lru_lock, flags);
347 
348 	pagevec_free(&pages_to_free);
349 }
350 
351 /*
352  * The pages which we're about to release may be in the deferred lru-addition
353  * queues.  That would prevent them from really being freed right now.  That's
354  * OK from a correctness point of view but is inefficient - those pages may be
355  * cache-warm and we want to give them back to the page allocator ASAP.
356  *
357  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
358  * and __pagevec_lru_add_active() call release_pages() directly to avoid
359  * mutual recursion.
360  */
361 void __pagevec_release(struct pagevec *pvec)
362 {
363 	lru_add_drain();
364 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
365 	pagevec_reinit(pvec);
366 }
367 
368 EXPORT_SYMBOL(__pagevec_release);
369 
370 /*
371  * pagevec_release() for pages which are known to not be on the LRU
372  *
373  * This function reinitialises the caller's pagevec.
374  */
375 void __pagevec_release_nonlru(struct pagevec *pvec)
376 {
377 	int i;
378 	struct pagevec pages_to_free;
379 
380 	pagevec_init(&pages_to_free, pvec->cold);
381 	for (i = 0; i < pagevec_count(pvec); i++) {
382 		struct page *page = pvec->pages[i];
383 
384 		VM_BUG_ON(PageLRU(page));
385 		if (put_page_testzero(page))
386 			pagevec_add(&pages_to_free, page);
387 	}
388 	pagevec_free(&pages_to_free);
389 	pagevec_reinit(pvec);
390 }
391 
392 /*
393  * Add the passed pages to the LRU, then drop the caller's refcount
394  * on them.  Reinitialises the caller's pagevec.
395  */
396 void __pagevec_lru_add(struct pagevec *pvec)
397 {
398 	int i;
399 	struct zone *zone = NULL;
400 
401 	for (i = 0; i < pagevec_count(pvec); i++) {
402 		struct page *page = pvec->pages[i];
403 		struct zone *pagezone = page_zone(page);
404 
405 		if (pagezone != zone) {
406 			if (zone)
407 				spin_unlock_irq(&zone->lru_lock);
408 			zone = pagezone;
409 			spin_lock_irq(&zone->lru_lock);
410 		}
411 		VM_BUG_ON(PageLRU(page));
412 		SetPageLRU(page);
413 		add_page_to_inactive_list(zone, page);
414 	}
415 	if (zone)
416 		spin_unlock_irq(&zone->lru_lock);
417 	release_pages(pvec->pages, pvec->nr, pvec->cold);
418 	pagevec_reinit(pvec);
419 }
420 
421 EXPORT_SYMBOL(__pagevec_lru_add);
422 
423 void __pagevec_lru_add_active(struct pagevec *pvec)
424 {
425 	int i;
426 	struct zone *zone = NULL;
427 
428 	for (i = 0; i < pagevec_count(pvec); i++) {
429 		struct page *page = pvec->pages[i];
430 		struct zone *pagezone = page_zone(page);
431 
432 		if (pagezone != zone) {
433 			if (zone)
434 				spin_unlock_irq(&zone->lru_lock);
435 			zone = pagezone;
436 			spin_lock_irq(&zone->lru_lock);
437 		}
438 		VM_BUG_ON(PageLRU(page));
439 		SetPageLRU(page);
440 		VM_BUG_ON(PageActive(page));
441 		SetPageActive(page);
442 		add_page_to_active_list(zone, page);
443 	}
444 	if (zone)
445 		spin_unlock_irq(&zone->lru_lock);
446 	release_pages(pvec->pages, pvec->nr, pvec->cold);
447 	pagevec_reinit(pvec);
448 }
449 
450 /*
451  * Try to drop buffers from the pages in a pagevec
452  */
453 void pagevec_strip(struct pagevec *pvec)
454 {
455 	int i;
456 
457 	for (i = 0; i < pagevec_count(pvec); i++) {
458 		struct page *page = pvec->pages[i];
459 
460 		if (PagePrivate(page) && !TestSetPageLocked(page)) {
461 			if (PagePrivate(page))
462 				try_to_release_page(page, 0);
463 			unlock_page(page);
464 		}
465 	}
466 }
467 
468 /**
469  * pagevec_lookup - gang pagecache lookup
470  * @pvec:	Where the resulting pages are placed
471  * @mapping:	The address_space to search
472  * @start:	The starting page index
473  * @nr_pages:	The maximum number of pages
474  *
475  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
476  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
477  * reference against the pages in @pvec.
478  *
479  * The search returns a group of mapping-contiguous pages with ascending
480  * indexes.  There may be holes in the indices due to not-present pages.
481  *
482  * pagevec_lookup() returns the number of pages which were found.
483  */
484 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
485 		pgoff_t start, unsigned nr_pages)
486 {
487 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
488 	return pagevec_count(pvec);
489 }
490 
491 EXPORT_SYMBOL(pagevec_lookup);
492 
493 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
494 		pgoff_t *index, int tag, unsigned nr_pages)
495 {
496 	pvec->nr = find_get_pages_tag(mapping, index, tag,
497 					nr_pages, pvec->pages);
498 	return pagevec_count(pvec);
499 }
500 
501 EXPORT_SYMBOL(pagevec_lookup_tag);
502 
503 #ifdef CONFIG_SMP
504 /*
505  * We tolerate a little inaccuracy to avoid ping-ponging the counter between
506  * CPUs
507  */
508 #define ACCT_THRESHOLD	max(16, NR_CPUS * 2)
509 
510 static DEFINE_PER_CPU(long, committed_space) = 0;
511 
512 void vm_acct_memory(long pages)
513 {
514 	long *local;
515 
516 	preempt_disable();
517 	local = &__get_cpu_var(committed_space);
518 	*local += pages;
519 	if (*local > ACCT_THRESHOLD || *local < -ACCT_THRESHOLD) {
520 		atomic_add(*local, &vm_committed_space);
521 		*local = 0;
522 	}
523 	preempt_enable();
524 }
525 
526 #ifdef CONFIG_HOTPLUG_CPU
527 
528 /* Drop the CPU's cached committed space back into the central pool. */
529 static int cpu_swap_callback(struct notifier_block *nfb,
530 			     unsigned long action,
531 			     void *hcpu)
532 {
533 	long *committed;
534 
535 	committed = &per_cpu(committed_space, (long)hcpu);
536 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
537 		atomic_add(*committed, &vm_committed_space);
538 		*committed = 0;
539 		drain_cpu_pagevecs((long)hcpu);
540 	}
541 	return NOTIFY_OK;
542 }
543 #endif /* CONFIG_HOTPLUG_CPU */
544 #endif /* CONFIG_SMP */
545 
546 /*
547  * Perform any setup for the swap system
548  */
549 void __init swap_setup(void)
550 {
551 	unsigned long megs = num_physpages >> (20 - PAGE_SHIFT);
552 
553 #ifdef CONFIG_SWAP
554 	bdi_init(swapper_space.backing_dev_info);
555 #endif
556 
557 	/* Use a smaller cluster for small-memory machines */
558 	if (megs < 16)
559 		page_cluster = 2;
560 	else
561 		page_cluster = 3;
562 	/*
563 	 * Right now other parts of the system means that we
564 	 * _really_ don't want to cluster much more
565 	 */
566 #ifdef CONFIG_HOTPLUG_CPU
567 	hotcpu_notifier(cpu_swap_callback, 0);
568 #endif
569 }
570