xref: /linux/mm/swap.c (revision ea8a163e02d6925773129e2dd86e419e491b791d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swap.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * This file contains the default values for the operation of the
10  * Linux VM subsystem. Fine-tuning documentation can be found in
11  * Documentation/admin-guide/sysctl/vm.rst.
12  * Started 18.12.91
13  * Swap aging added 23.2.95, Stephen Tweedie.
14  * Buffermem limits added 12.3.98, Rik van Riel.
15  */
16 
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
40 
41 #include "internal.h"
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
45 
46 /* How many pages do we try to swap or page in/out together? */
47 int page_cluster;
48 
49 /* Protecting only lru_rotate.pvec which requires disabling interrupts */
50 struct lru_rotate {
51 	local_lock_t lock;
52 	struct pagevec pvec;
53 };
54 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
55 	.lock = INIT_LOCAL_LOCK(lock),
56 };
57 
58 /*
59  * The following struct pagevec are grouped together because they are protected
60  * by disabling preemption (and interrupts remain enabled).
61  */
62 struct lru_pvecs {
63 	local_lock_t lock;
64 	struct pagevec lru_add;
65 	struct pagevec lru_deactivate_file;
66 	struct pagevec lru_deactivate;
67 	struct pagevec lru_lazyfree;
68 #ifdef CONFIG_SMP
69 	struct pagevec activate_page;
70 #endif
71 };
72 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
73 	.lock = INIT_LOCAL_LOCK(lock),
74 };
75 
76 /*
77  * This path almost never happens for VM activity - pages are normally
78  * freed via pagevecs.  But it gets used by networking.
79  */
80 static void __page_cache_release(struct page *page)
81 {
82 	if (PageLRU(page)) {
83 		struct folio *folio = page_folio(page);
84 		struct lruvec *lruvec;
85 		unsigned long flags;
86 
87 		lruvec = folio_lruvec_lock_irqsave(folio, &flags);
88 		del_page_from_lru_list(page, lruvec);
89 		__clear_page_lru_flags(page);
90 		unlock_page_lruvec_irqrestore(lruvec, flags);
91 	}
92 	__ClearPageWaiters(page);
93 }
94 
95 static void __put_single_page(struct page *page)
96 {
97 	__page_cache_release(page);
98 	mem_cgroup_uncharge(page_folio(page));
99 	free_unref_page(page, 0);
100 }
101 
102 static void __put_compound_page(struct page *page)
103 {
104 	/*
105 	 * __page_cache_release() is supposed to be called for thp, not for
106 	 * hugetlb. This is because hugetlb page does never have PageLRU set
107 	 * (it's never listed to any LRU lists) and no memcg routines should
108 	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
109 	 */
110 	if (!PageHuge(page))
111 		__page_cache_release(page);
112 	destroy_compound_page(page);
113 }
114 
115 void __put_page(struct page *page)
116 {
117 	if (is_zone_device_page(page)) {
118 		put_dev_pagemap(page->pgmap);
119 
120 		/*
121 		 * The page belongs to the device that created pgmap. Do
122 		 * not return it to page allocator.
123 		 */
124 		return;
125 	}
126 
127 	if (unlikely(PageCompound(page)))
128 		__put_compound_page(page);
129 	else
130 		__put_single_page(page);
131 }
132 EXPORT_SYMBOL(__put_page);
133 
134 /**
135  * put_pages_list() - release a list of pages
136  * @pages: list of pages threaded on page->lru
137  *
138  * Release a list of pages which are strung together on page.lru.
139  */
140 void put_pages_list(struct list_head *pages)
141 {
142 	struct page *page, *next;
143 
144 	list_for_each_entry_safe(page, next, pages, lru) {
145 		if (!put_page_testzero(page)) {
146 			list_del(&page->lru);
147 			continue;
148 		}
149 		if (PageHead(page)) {
150 			list_del(&page->lru);
151 			__put_compound_page(page);
152 			continue;
153 		}
154 		/* Cannot be PageLRU because it's passed to us using the lru */
155 		__ClearPageWaiters(page);
156 	}
157 
158 	free_unref_page_list(pages);
159 }
160 EXPORT_SYMBOL(put_pages_list);
161 
162 /*
163  * get_kernel_pages() - pin kernel pages in memory
164  * @kiov:	An array of struct kvec structures
165  * @nr_segs:	number of segments to pin
166  * @write:	pinning for read/write, currently ignored
167  * @pages:	array that receives pointers to the pages pinned.
168  *		Should be at least nr_segs long.
169  *
170  * Returns number of pages pinned. This may be fewer than the number
171  * requested. If nr_pages is 0 or negative, returns 0. If no pages
172  * were pinned, returns -errno. Each page returned must be released
173  * with a put_page() call when it is finished with.
174  */
175 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
176 		struct page **pages)
177 {
178 	int seg;
179 
180 	for (seg = 0; seg < nr_segs; seg++) {
181 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
182 			return seg;
183 
184 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
185 		get_page(pages[seg]);
186 	}
187 
188 	return seg;
189 }
190 EXPORT_SYMBOL_GPL(get_kernel_pages);
191 
192 static void pagevec_lru_move_fn(struct pagevec *pvec,
193 	void (*move_fn)(struct page *page, struct lruvec *lruvec))
194 {
195 	int i;
196 	struct lruvec *lruvec = NULL;
197 	unsigned long flags = 0;
198 
199 	for (i = 0; i < pagevec_count(pvec); i++) {
200 		struct page *page = pvec->pages[i];
201 		struct folio *folio = page_folio(page);
202 
203 		/* block memcg migration during page moving between lru */
204 		if (!TestClearPageLRU(page))
205 			continue;
206 
207 		lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
208 		(*move_fn)(page, lruvec);
209 
210 		SetPageLRU(page);
211 	}
212 	if (lruvec)
213 		unlock_page_lruvec_irqrestore(lruvec, flags);
214 	release_pages(pvec->pages, pvec->nr);
215 	pagevec_reinit(pvec);
216 }
217 
218 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec)
219 {
220 	struct folio *folio = page_folio(page);
221 
222 	if (!folio_test_unevictable(folio)) {
223 		lruvec_del_folio(lruvec, folio);
224 		folio_clear_active(folio);
225 		lruvec_add_folio_tail(lruvec, folio);
226 		__count_vm_events(PGROTATED, folio_nr_pages(folio));
227 	}
228 }
229 
230 /* return true if pagevec needs to drain */
231 static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page)
232 {
233 	bool ret = false;
234 
235 	if (!pagevec_add(pvec, page) || PageCompound(page) ||
236 			lru_cache_disabled())
237 		ret = true;
238 
239 	return ret;
240 }
241 
242 /*
243  * Writeback is about to end against a folio which has been marked for
244  * immediate reclaim.  If it still appears to be reclaimable, move it
245  * to the tail of the inactive list.
246  *
247  * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
248  */
249 void folio_rotate_reclaimable(struct folio *folio)
250 {
251 	if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
252 	    !folio_test_unevictable(folio) && folio_test_lru(folio)) {
253 		struct pagevec *pvec;
254 		unsigned long flags;
255 
256 		folio_get(folio);
257 		local_lock_irqsave(&lru_rotate.lock, flags);
258 		pvec = this_cpu_ptr(&lru_rotate.pvec);
259 		if (pagevec_add_and_need_flush(pvec, &folio->page))
260 			pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
261 		local_unlock_irqrestore(&lru_rotate.lock, flags);
262 	}
263 }
264 
265 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
266 {
267 	do {
268 		unsigned long lrusize;
269 
270 		/*
271 		 * Hold lruvec->lru_lock is safe here, since
272 		 * 1) The pinned lruvec in reclaim, or
273 		 * 2) From a pre-LRU page during refault (which also holds the
274 		 *    rcu lock, so would be safe even if the page was on the LRU
275 		 *    and could move simultaneously to a new lruvec).
276 		 */
277 		spin_lock_irq(&lruvec->lru_lock);
278 		/* Record cost event */
279 		if (file)
280 			lruvec->file_cost += nr_pages;
281 		else
282 			lruvec->anon_cost += nr_pages;
283 
284 		/*
285 		 * Decay previous events
286 		 *
287 		 * Because workloads change over time (and to avoid
288 		 * overflow) we keep these statistics as a floating
289 		 * average, which ends up weighing recent refaults
290 		 * more than old ones.
291 		 */
292 		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
293 			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
294 			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
295 			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
296 
297 		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
298 			lruvec->file_cost /= 2;
299 			lruvec->anon_cost /= 2;
300 		}
301 		spin_unlock_irq(&lruvec->lru_lock);
302 	} while ((lruvec = parent_lruvec(lruvec)));
303 }
304 
305 void lru_note_cost_folio(struct folio *folio)
306 {
307 	lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
308 			folio_nr_pages(folio));
309 }
310 
311 static void __folio_activate(struct folio *folio, struct lruvec *lruvec)
312 {
313 	if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
314 		long nr_pages = folio_nr_pages(folio);
315 
316 		lruvec_del_folio(lruvec, folio);
317 		folio_set_active(folio);
318 		lruvec_add_folio(lruvec, folio);
319 		trace_mm_lru_activate(folio);
320 
321 		__count_vm_events(PGACTIVATE, nr_pages);
322 		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
323 				     nr_pages);
324 	}
325 }
326 
327 #ifdef CONFIG_SMP
328 static void __activate_page(struct page *page, struct lruvec *lruvec)
329 {
330 	return __folio_activate(page_folio(page), lruvec);
331 }
332 
333 static void activate_page_drain(int cpu)
334 {
335 	struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
336 
337 	if (pagevec_count(pvec))
338 		pagevec_lru_move_fn(pvec, __activate_page);
339 }
340 
341 static bool need_activate_page_drain(int cpu)
342 {
343 	return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
344 }
345 
346 static void folio_activate(struct folio *folio)
347 {
348 	if (folio_test_lru(folio) && !folio_test_active(folio) &&
349 	    !folio_test_unevictable(folio)) {
350 		struct pagevec *pvec;
351 
352 		folio_get(folio);
353 		local_lock(&lru_pvecs.lock);
354 		pvec = this_cpu_ptr(&lru_pvecs.activate_page);
355 		if (pagevec_add_and_need_flush(pvec, &folio->page))
356 			pagevec_lru_move_fn(pvec, __activate_page);
357 		local_unlock(&lru_pvecs.lock);
358 	}
359 }
360 
361 #else
362 static inline void activate_page_drain(int cpu)
363 {
364 }
365 
366 static void folio_activate(struct folio *folio)
367 {
368 	struct lruvec *lruvec;
369 
370 	if (folio_test_clear_lru(folio)) {
371 		lruvec = folio_lruvec_lock_irq(folio);
372 		__folio_activate(folio, lruvec);
373 		unlock_page_lruvec_irq(lruvec);
374 		folio_set_lru(folio);
375 	}
376 }
377 #endif
378 
379 static void __lru_cache_activate_folio(struct folio *folio)
380 {
381 	struct pagevec *pvec;
382 	int i;
383 
384 	local_lock(&lru_pvecs.lock);
385 	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
386 
387 	/*
388 	 * Search backwards on the optimistic assumption that the page being
389 	 * activated has just been added to this pagevec. Note that only
390 	 * the local pagevec is examined as a !PageLRU page could be in the
391 	 * process of being released, reclaimed, migrated or on a remote
392 	 * pagevec that is currently being drained. Furthermore, marking
393 	 * a remote pagevec's page PageActive potentially hits a race where
394 	 * a page is marked PageActive just after it is added to the inactive
395 	 * list causing accounting errors and BUG_ON checks to trigger.
396 	 */
397 	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
398 		struct page *pagevec_page = pvec->pages[i];
399 
400 		if (pagevec_page == &folio->page) {
401 			folio_set_active(folio);
402 			break;
403 		}
404 	}
405 
406 	local_unlock(&lru_pvecs.lock);
407 }
408 
409 /*
410  * Mark a page as having seen activity.
411  *
412  * inactive,unreferenced	->	inactive,referenced
413  * inactive,referenced		->	active,unreferenced
414  * active,unreferenced		->	active,referenced
415  *
416  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
417  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
418  */
419 void folio_mark_accessed(struct folio *folio)
420 {
421 	if (!folio_test_referenced(folio)) {
422 		folio_set_referenced(folio);
423 	} else if (folio_test_unevictable(folio)) {
424 		/*
425 		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
426 		 * this list is never rotated or maintained, so marking an
427 		 * evictable page accessed has no effect.
428 		 */
429 	} else if (!folio_test_active(folio)) {
430 		/*
431 		 * If the page is on the LRU, queue it for activation via
432 		 * lru_pvecs.activate_page. Otherwise, assume the page is on a
433 		 * pagevec, mark it active and it'll be moved to the active
434 		 * LRU on the next drain.
435 		 */
436 		if (folio_test_lru(folio))
437 			folio_activate(folio);
438 		else
439 			__lru_cache_activate_folio(folio);
440 		folio_clear_referenced(folio);
441 		workingset_activation(folio);
442 	}
443 	if (folio_test_idle(folio))
444 		folio_clear_idle(folio);
445 }
446 EXPORT_SYMBOL(folio_mark_accessed);
447 
448 /**
449  * folio_add_lru - Add a folio to an LRU list.
450  * @folio: The folio to be added to the LRU.
451  *
452  * Queue the folio for addition to the LRU. The decision on whether
453  * to add the page to the [in]active [file|anon] list is deferred until the
454  * pagevec is drained. This gives a chance for the caller of folio_add_lru()
455  * have the folio added to the active list using folio_mark_accessed().
456  */
457 void folio_add_lru(struct folio *folio)
458 {
459 	struct pagevec *pvec;
460 
461 	VM_BUG_ON_FOLIO(folio_test_active(folio) && folio_test_unevictable(folio), folio);
462 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
463 
464 	folio_get(folio);
465 	local_lock(&lru_pvecs.lock);
466 	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
467 	if (pagevec_add_and_need_flush(pvec, &folio->page))
468 		__pagevec_lru_add(pvec);
469 	local_unlock(&lru_pvecs.lock);
470 }
471 EXPORT_SYMBOL(folio_add_lru);
472 
473 /**
474  * lru_cache_add_inactive_or_unevictable
475  * @page:  the page to be added to LRU
476  * @vma:   vma in which page is mapped for determining reclaimability
477  *
478  * Place @page on the inactive or unevictable LRU list, depending on its
479  * evictability.
480  */
481 void lru_cache_add_inactive_or_unevictable(struct page *page,
482 					 struct vm_area_struct *vma)
483 {
484 	bool unevictable;
485 
486 	VM_BUG_ON_PAGE(PageLRU(page), page);
487 
488 	unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
489 	if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
490 		int nr_pages = thp_nr_pages(page);
491 		/*
492 		 * We use the irq-unsafe __mod_zone_page_state because this
493 		 * counter is not modified from interrupt context, and the pte
494 		 * lock is held(spinlock), which implies preemption disabled.
495 		 */
496 		__mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
497 		count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
498 	}
499 	lru_cache_add(page);
500 }
501 
502 /*
503  * If the page can not be invalidated, it is moved to the
504  * inactive list to speed up its reclaim.  It is moved to the
505  * head of the list, rather than the tail, to give the flusher
506  * threads some time to write it out, as this is much more
507  * effective than the single-page writeout from reclaim.
508  *
509  * If the page isn't page_mapped and dirty/writeback, the page
510  * could reclaim asap using PG_reclaim.
511  *
512  * 1. active, mapped page -> none
513  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
514  * 3. inactive, mapped page -> none
515  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
516  * 5. inactive, clean -> inactive, tail
517  * 6. Others -> none
518  *
519  * In 4, why it moves inactive's head, the VM expects the page would
520  * be write it out by flusher threads as this is much more effective
521  * than the single-page writeout from reclaim.
522  */
523 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec)
524 {
525 	bool active = PageActive(page);
526 	int nr_pages = thp_nr_pages(page);
527 
528 	if (PageUnevictable(page))
529 		return;
530 
531 	/* Some processes are using the page */
532 	if (page_mapped(page))
533 		return;
534 
535 	del_page_from_lru_list(page, lruvec);
536 	ClearPageActive(page);
537 	ClearPageReferenced(page);
538 
539 	if (PageWriteback(page) || PageDirty(page)) {
540 		/*
541 		 * PG_reclaim could be raced with end_page_writeback
542 		 * It can make readahead confusing.  But race window
543 		 * is _really_ small and  it's non-critical problem.
544 		 */
545 		add_page_to_lru_list(page, lruvec);
546 		SetPageReclaim(page);
547 	} else {
548 		/*
549 		 * The page's writeback ends up during pagevec
550 		 * We move that page into tail of inactive.
551 		 */
552 		add_page_to_lru_list_tail(page, lruvec);
553 		__count_vm_events(PGROTATED, nr_pages);
554 	}
555 
556 	if (active) {
557 		__count_vm_events(PGDEACTIVATE, nr_pages);
558 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
559 				     nr_pages);
560 	}
561 }
562 
563 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec)
564 {
565 	if (PageActive(page) && !PageUnevictable(page)) {
566 		int nr_pages = thp_nr_pages(page);
567 
568 		del_page_from_lru_list(page, lruvec);
569 		ClearPageActive(page);
570 		ClearPageReferenced(page);
571 		add_page_to_lru_list(page, lruvec);
572 
573 		__count_vm_events(PGDEACTIVATE, nr_pages);
574 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
575 				     nr_pages);
576 	}
577 }
578 
579 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec)
580 {
581 	if (PageAnon(page) && PageSwapBacked(page) &&
582 	    !PageSwapCache(page) && !PageUnevictable(page)) {
583 		int nr_pages = thp_nr_pages(page);
584 
585 		del_page_from_lru_list(page, lruvec);
586 		ClearPageActive(page);
587 		ClearPageReferenced(page);
588 		/*
589 		 * Lazyfree pages are clean anonymous pages.  They have
590 		 * PG_swapbacked flag cleared, to distinguish them from normal
591 		 * anonymous pages
592 		 */
593 		ClearPageSwapBacked(page);
594 		add_page_to_lru_list(page, lruvec);
595 
596 		__count_vm_events(PGLAZYFREE, nr_pages);
597 		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
598 				     nr_pages);
599 	}
600 }
601 
602 /*
603  * Drain pages out of the cpu's pagevecs.
604  * Either "cpu" is the current CPU, and preemption has already been
605  * disabled; or "cpu" is being hot-unplugged, and is already dead.
606  */
607 void lru_add_drain_cpu(int cpu)
608 {
609 	struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
610 
611 	if (pagevec_count(pvec))
612 		__pagevec_lru_add(pvec);
613 
614 	pvec = &per_cpu(lru_rotate.pvec, cpu);
615 	/* Disabling interrupts below acts as a compiler barrier. */
616 	if (data_race(pagevec_count(pvec))) {
617 		unsigned long flags;
618 
619 		/* No harm done if a racing interrupt already did this */
620 		local_lock_irqsave(&lru_rotate.lock, flags);
621 		pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
622 		local_unlock_irqrestore(&lru_rotate.lock, flags);
623 	}
624 
625 	pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
626 	if (pagevec_count(pvec))
627 		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
628 
629 	pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
630 	if (pagevec_count(pvec))
631 		pagevec_lru_move_fn(pvec, lru_deactivate_fn);
632 
633 	pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
634 	if (pagevec_count(pvec))
635 		pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
636 
637 	activate_page_drain(cpu);
638 }
639 
640 /**
641  * deactivate_file_page - forcefully deactivate a file page
642  * @page: page to deactivate
643  *
644  * This function hints the VM that @page is a good reclaim candidate,
645  * for example if its invalidation fails due to the page being dirty
646  * or under writeback.
647  */
648 void deactivate_file_page(struct page *page)
649 {
650 	/*
651 	 * In a workload with many unevictable page such as mprotect,
652 	 * unevictable page deactivation for accelerating reclaim is pointless.
653 	 */
654 	if (PageUnevictable(page))
655 		return;
656 
657 	if (likely(get_page_unless_zero(page))) {
658 		struct pagevec *pvec;
659 
660 		local_lock(&lru_pvecs.lock);
661 		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
662 
663 		if (pagevec_add_and_need_flush(pvec, page))
664 			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
665 		local_unlock(&lru_pvecs.lock);
666 	}
667 }
668 
669 /*
670  * deactivate_page - deactivate a page
671  * @page: page to deactivate
672  *
673  * deactivate_page() moves @page to the inactive list if @page was on the active
674  * list and was not an unevictable page.  This is done to accelerate the reclaim
675  * of @page.
676  */
677 void deactivate_page(struct page *page)
678 {
679 	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
680 		struct pagevec *pvec;
681 
682 		local_lock(&lru_pvecs.lock);
683 		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
684 		get_page(page);
685 		if (pagevec_add_and_need_flush(pvec, page))
686 			pagevec_lru_move_fn(pvec, lru_deactivate_fn);
687 		local_unlock(&lru_pvecs.lock);
688 	}
689 }
690 
691 /**
692  * mark_page_lazyfree - make an anon page lazyfree
693  * @page: page to deactivate
694  *
695  * mark_page_lazyfree() moves @page to the inactive file list.
696  * This is done to accelerate the reclaim of @page.
697  */
698 void mark_page_lazyfree(struct page *page)
699 {
700 	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
701 	    !PageSwapCache(page) && !PageUnevictable(page)) {
702 		struct pagevec *pvec;
703 
704 		local_lock(&lru_pvecs.lock);
705 		pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
706 		get_page(page);
707 		if (pagevec_add_and_need_flush(pvec, page))
708 			pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
709 		local_unlock(&lru_pvecs.lock);
710 	}
711 }
712 
713 void lru_add_drain(void)
714 {
715 	local_lock(&lru_pvecs.lock);
716 	lru_add_drain_cpu(smp_processor_id());
717 	local_unlock(&lru_pvecs.lock);
718 }
719 
720 /*
721  * It's called from per-cpu workqueue context in SMP case so
722  * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
723  * the same cpu. It shouldn't be a problem in !SMP case since
724  * the core is only one and the locks will disable preemption.
725  */
726 static void lru_add_and_bh_lrus_drain(void)
727 {
728 	local_lock(&lru_pvecs.lock);
729 	lru_add_drain_cpu(smp_processor_id());
730 	local_unlock(&lru_pvecs.lock);
731 	invalidate_bh_lrus_cpu();
732 }
733 
734 void lru_add_drain_cpu_zone(struct zone *zone)
735 {
736 	local_lock(&lru_pvecs.lock);
737 	lru_add_drain_cpu(smp_processor_id());
738 	drain_local_pages(zone);
739 	local_unlock(&lru_pvecs.lock);
740 }
741 
742 #ifdef CONFIG_SMP
743 
744 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
745 
746 static void lru_add_drain_per_cpu(struct work_struct *dummy)
747 {
748 	lru_add_and_bh_lrus_drain();
749 }
750 
751 /*
752  * Doesn't need any cpu hotplug locking because we do rely on per-cpu
753  * kworkers being shut down before our page_alloc_cpu_dead callback is
754  * executed on the offlined cpu.
755  * Calling this function with cpu hotplug locks held can actually lead
756  * to obscure indirect dependencies via WQ context.
757  */
758 inline void __lru_add_drain_all(bool force_all_cpus)
759 {
760 	/*
761 	 * lru_drain_gen - Global pages generation number
762 	 *
763 	 * (A) Definition: global lru_drain_gen = x implies that all generations
764 	 *     0 < n <= x are already *scheduled* for draining.
765 	 *
766 	 * This is an optimization for the highly-contended use case where a
767 	 * user space workload keeps constantly generating a flow of pages for
768 	 * each CPU.
769 	 */
770 	static unsigned int lru_drain_gen;
771 	static struct cpumask has_work;
772 	static DEFINE_MUTEX(lock);
773 	unsigned cpu, this_gen;
774 
775 	/*
776 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
777 	 * initialized.
778 	 */
779 	if (WARN_ON(!mm_percpu_wq))
780 		return;
781 
782 	/*
783 	 * Guarantee pagevec counter stores visible by this CPU are visible to
784 	 * other CPUs before loading the current drain generation.
785 	 */
786 	smp_mb();
787 
788 	/*
789 	 * (B) Locally cache global LRU draining generation number
790 	 *
791 	 * The read barrier ensures that the counter is loaded before the mutex
792 	 * is taken. It pairs with smp_mb() inside the mutex critical section
793 	 * at (D).
794 	 */
795 	this_gen = smp_load_acquire(&lru_drain_gen);
796 
797 	mutex_lock(&lock);
798 
799 	/*
800 	 * (C) Exit the draining operation if a newer generation, from another
801 	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
802 	 */
803 	if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
804 		goto done;
805 
806 	/*
807 	 * (D) Increment global generation number
808 	 *
809 	 * Pairs with smp_load_acquire() at (B), outside of the critical
810 	 * section. Use a full memory barrier to guarantee that the new global
811 	 * drain generation number is stored before loading pagevec counters.
812 	 *
813 	 * This pairing must be done here, before the for_each_online_cpu loop
814 	 * below which drains the page vectors.
815 	 *
816 	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
817 	 * Assume CPU #z is in the middle of the for_each_online_cpu loop
818 	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
819 	 * along, adds some pages to its per-cpu vectors, then calls
820 	 * lru_add_drain_all().
821 	 *
822 	 * If the paired barrier is done at any later step, e.g. after the
823 	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
824 	 * added pages.
825 	 */
826 	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
827 	smp_mb();
828 
829 	cpumask_clear(&has_work);
830 	for_each_online_cpu(cpu) {
831 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
832 
833 		if (force_all_cpus ||
834 		    pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
835 		    data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
836 		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
837 		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
838 		    pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
839 		    need_activate_page_drain(cpu) ||
840 		    has_bh_in_lru(cpu, NULL)) {
841 			INIT_WORK(work, lru_add_drain_per_cpu);
842 			queue_work_on(cpu, mm_percpu_wq, work);
843 			__cpumask_set_cpu(cpu, &has_work);
844 		}
845 	}
846 
847 	for_each_cpu(cpu, &has_work)
848 		flush_work(&per_cpu(lru_add_drain_work, cpu));
849 
850 done:
851 	mutex_unlock(&lock);
852 }
853 
854 void lru_add_drain_all(void)
855 {
856 	__lru_add_drain_all(false);
857 }
858 #else
859 void lru_add_drain_all(void)
860 {
861 	lru_add_drain();
862 }
863 #endif /* CONFIG_SMP */
864 
865 atomic_t lru_disable_count = ATOMIC_INIT(0);
866 
867 /*
868  * lru_cache_disable() needs to be called before we start compiling
869  * a list of pages to be migrated using isolate_lru_page().
870  * It drains pages on LRU cache and then disable on all cpus until
871  * lru_cache_enable is called.
872  *
873  * Must be paired with a call to lru_cache_enable().
874  */
875 void lru_cache_disable(void)
876 {
877 	atomic_inc(&lru_disable_count);
878 #ifdef CONFIG_SMP
879 	/*
880 	 * lru_add_drain_all in the force mode will schedule draining on
881 	 * all online CPUs so any calls of lru_cache_disabled wrapped by
882 	 * local_lock or preemption disabled would be ordered by that.
883 	 * The atomic operation doesn't need to have stronger ordering
884 	 * requirements because that is enforeced by the scheduling
885 	 * guarantees.
886 	 */
887 	__lru_add_drain_all(true);
888 #else
889 	lru_add_and_bh_lrus_drain();
890 #endif
891 }
892 
893 /**
894  * release_pages - batched put_page()
895  * @pages: array of pages to release
896  * @nr: number of pages
897  *
898  * Decrement the reference count on all the pages in @pages.  If it
899  * fell to zero, remove the page from the LRU and free it.
900  */
901 void release_pages(struct page **pages, int nr)
902 {
903 	int i;
904 	LIST_HEAD(pages_to_free);
905 	struct lruvec *lruvec = NULL;
906 	unsigned long flags = 0;
907 	unsigned int lock_batch;
908 
909 	for (i = 0; i < nr; i++) {
910 		struct page *page = pages[i];
911 		struct folio *folio = page_folio(page);
912 
913 		/*
914 		 * Make sure the IRQ-safe lock-holding time does not get
915 		 * excessive with a continuous string of pages from the
916 		 * same lruvec. The lock is held only if lruvec != NULL.
917 		 */
918 		if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
919 			unlock_page_lruvec_irqrestore(lruvec, flags);
920 			lruvec = NULL;
921 		}
922 
923 		page = &folio->page;
924 		if (is_huge_zero_page(page))
925 			continue;
926 
927 		if (is_zone_device_page(page)) {
928 			if (lruvec) {
929 				unlock_page_lruvec_irqrestore(lruvec, flags);
930 				lruvec = NULL;
931 			}
932 			/*
933 			 * ZONE_DEVICE pages that return 'false' from
934 			 * page_is_devmap_managed() do not require special
935 			 * processing, and instead, expect a call to
936 			 * put_page_testzero().
937 			 */
938 			if (page_is_devmap_managed(page)) {
939 				put_devmap_managed_page(page);
940 				continue;
941 			}
942 			if (put_page_testzero(page))
943 				put_dev_pagemap(page->pgmap);
944 			continue;
945 		}
946 
947 		if (!put_page_testzero(page))
948 			continue;
949 
950 		if (PageCompound(page)) {
951 			if (lruvec) {
952 				unlock_page_lruvec_irqrestore(lruvec, flags);
953 				lruvec = NULL;
954 			}
955 			__put_compound_page(page);
956 			continue;
957 		}
958 
959 		if (PageLRU(page)) {
960 			struct lruvec *prev_lruvec = lruvec;
961 
962 			lruvec = folio_lruvec_relock_irqsave(folio, lruvec,
963 									&flags);
964 			if (prev_lruvec != lruvec)
965 				lock_batch = 0;
966 
967 			del_page_from_lru_list(page, lruvec);
968 			__clear_page_lru_flags(page);
969 		}
970 
971 		__ClearPageWaiters(page);
972 
973 		list_add(&page->lru, &pages_to_free);
974 	}
975 	if (lruvec)
976 		unlock_page_lruvec_irqrestore(lruvec, flags);
977 
978 	mem_cgroup_uncharge_list(&pages_to_free);
979 	free_unref_page_list(&pages_to_free);
980 }
981 EXPORT_SYMBOL(release_pages);
982 
983 /*
984  * The pages which we're about to release may be in the deferred lru-addition
985  * queues.  That would prevent them from really being freed right now.  That's
986  * OK from a correctness point of view but is inefficient - those pages may be
987  * cache-warm and we want to give them back to the page allocator ASAP.
988  *
989  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
990  * and __pagevec_lru_add_active() call release_pages() directly to avoid
991  * mutual recursion.
992  */
993 void __pagevec_release(struct pagevec *pvec)
994 {
995 	if (!pvec->percpu_pvec_drained) {
996 		lru_add_drain();
997 		pvec->percpu_pvec_drained = true;
998 	}
999 	release_pages(pvec->pages, pagevec_count(pvec));
1000 	pagevec_reinit(pvec);
1001 }
1002 EXPORT_SYMBOL(__pagevec_release);
1003 
1004 static void __pagevec_lru_add_fn(struct folio *folio, struct lruvec *lruvec)
1005 {
1006 	int was_unevictable = folio_test_clear_unevictable(folio);
1007 	long nr_pages = folio_nr_pages(folio);
1008 
1009 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1010 
1011 	/*
1012 	 * A folio becomes evictable in two ways:
1013 	 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
1014 	 * 2) Before acquiring LRU lock to put the folio on the correct LRU
1015 	 *    and then
1016 	 *   a) do PageLRU check with lock [check_move_unevictable_pages]
1017 	 *   b) do PageLRU check before lock [clear_page_mlock]
1018 	 *
1019 	 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
1020 	 * following strict ordering:
1021 	 *
1022 	 * #0: __pagevec_lru_add_fn		#1: clear_page_mlock
1023 	 *
1024 	 * folio_set_lru()			folio_test_clear_mlocked()
1025 	 * smp_mb() // explicit ordering	// above provides strict
1026 	 *					// ordering
1027 	 * folio_test_mlocked()			folio_test_lru()
1028 	 *
1029 	 *
1030 	 * if '#1' does not observe setting of PG_lru by '#0' and
1031 	 * fails isolation, the explicit barrier will make sure that
1032 	 * folio_evictable check will put the folio on the correct
1033 	 * LRU. Without smp_mb(), folio_set_lru() can be reordered
1034 	 * after folio_test_mlocked() check and can make '#1' fail the
1035 	 * isolation of the folio whose mlocked bit is cleared (#0 is
1036 	 * also looking at the same folio) and the evictable folio will
1037 	 * be stranded on an unevictable LRU.
1038 	 */
1039 	folio_set_lru(folio);
1040 	smp_mb__after_atomic();
1041 
1042 	if (folio_evictable(folio)) {
1043 		if (was_unevictable)
1044 			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
1045 	} else {
1046 		folio_clear_active(folio);
1047 		folio_set_unevictable(folio);
1048 		if (!was_unevictable)
1049 			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
1050 	}
1051 
1052 	lruvec_add_folio(lruvec, folio);
1053 	trace_mm_lru_insertion(folio);
1054 }
1055 
1056 /*
1057  * Add the passed pages to the LRU, then drop the caller's refcount
1058  * on them.  Reinitialises the caller's pagevec.
1059  */
1060 void __pagevec_lru_add(struct pagevec *pvec)
1061 {
1062 	int i;
1063 	struct lruvec *lruvec = NULL;
1064 	unsigned long flags = 0;
1065 
1066 	for (i = 0; i < pagevec_count(pvec); i++) {
1067 		struct folio *folio = page_folio(pvec->pages[i]);
1068 
1069 		lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
1070 		__pagevec_lru_add_fn(folio, lruvec);
1071 	}
1072 	if (lruvec)
1073 		unlock_page_lruvec_irqrestore(lruvec, flags);
1074 	release_pages(pvec->pages, pvec->nr);
1075 	pagevec_reinit(pvec);
1076 }
1077 
1078 /**
1079  * pagevec_remove_exceptionals - pagevec exceptionals pruning
1080  * @pvec:	The pagevec to prune
1081  *
1082  * find_get_entries() fills both pages and XArray value entries (aka
1083  * exceptional entries) into the pagevec.  This function prunes all
1084  * exceptionals from @pvec without leaving holes, so that it can be
1085  * passed on to page-only pagevec operations.
1086  */
1087 void pagevec_remove_exceptionals(struct pagevec *pvec)
1088 {
1089 	int i, j;
1090 
1091 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1092 		struct page *page = pvec->pages[i];
1093 		if (!xa_is_value(page))
1094 			pvec->pages[j++] = page;
1095 	}
1096 	pvec->nr = j;
1097 }
1098 
1099 /**
1100  * pagevec_lookup_range - gang pagecache lookup
1101  * @pvec:	Where the resulting pages are placed
1102  * @mapping:	The address_space to search
1103  * @start:	The starting page index
1104  * @end:	The final page index
1105  *
1106  * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1107  * pages in the mapping starting from index @start and upto index @end
1108  * (inclusive).  The pages are placed in @pvec.  pagevec_lookup() takes a
1109  * reference against the pages in @pvec.
1110  *
1111  * The search returns a group of mapping-contiguous pages with ascending
1112  * indexes.  There may be holes in the indices due to not-present pages. We
1113  * also update @start to index the next page for the traversal.
1114  *
1115  * pagevec_lookup_range() returns the number of pages which were found. If this
1116  * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1117  * reached.
1118  */
1119 unsigned pagevec_lookup_range(struct pagevec *pvec,
1120 		struct address_space *mapping, pgoff_t *start, pgoff_t end)
1121 {
1122 	pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1123 					pvec->pages);
1124 	return pagevec_count(pvec);
1125 }
1126 EXPORT_SYMBOL(pagevec_lookup_range);
1127 
1128 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1129 		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1130 		xa_mark_t tag)
1131 {
1132 	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1133 					PAGEVEC_SIZE, pvec->pages);
1134 	return pagevec_count(pvec);
1135 }
1136 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1137 
1138 /*
1139  * Perform any setup for the swap system
1140  */
1141 void __init swap_setup(void)
1142 {
1143 	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1144 
1145 	/* Use a smaller cluster for small-memory machines */
1146 	if (megs < 16)
1147 		page_cluster = 2;
1148 	else
1149 		page_cluster = 3;
1150 	/*
1151 	 * Right now other parts of the system means that we
1152 	 * _really_ don't want to cluster much more
1153 	 */
1154 }
1155 
1156 #ifdef CONFIG_DEV_PAGEMAP_OPS
1157 void put_devmap_managed_page(struct page *page)
1158 {
1159 	int count;
1160 
1161 	if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1162 		return;
1163 
1164 	count = page_ref_dec_return(page);
1165 
1166 	/*
1167 	 * devmap page refcounts are 1-based, rather than 0-based: if
1168 	 * refcount is 1, then the page is free and the refcount is
1169 	 * stable because nobody holds a reference on the page.
1170 	 */
1171 	if (count == 1)
1172 		free_devmap_managed_page(page);
1173 	else if (!count)
1174 		__put_page(page);
1175 }
1176 EXPORT_SYMBOL(put_devmap_managed_page);
1177 #endif
1178