1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swap.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * This file contains the default values for the operation of the 10 * Linux VM subsystem. Fine-tuning documentation can be found in 11 * Documentation/admin-guide/sysctl/vm.rst. 12 * Started 18.12.91 13 * Swap aging added 23.2.95, Stephen Tweedie. 14 * Buffermem limits added 12.3.98, Rik van Riel. 15 */ 16 17 #include <linux/mm.h> 18 #include <linux/sched.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/mman.h> 22 #include <linux/pagemap.h> 23 #include <linux/pagevec.h> 24 #include <linux/init.h> 25 #include <linux/export.h> 26 #include <linux/mm_inline.h> 27 #include <linux/percpu_counter.h> 28 #include <linux/memremap.h> 29 #include <linux/percpu.h> 30 #include <linux/cpu.h> 31 #include <linux/notifier.h> 32 #include <linux/backing-dev.h> 33 #include <linux/memcontrol.h> 34 #include <linux/gfp.h> 35 #include <linux/uio.h> 36 #include <linux/hugetlb.h> 37 #include <linux/page_idle.h> 38 #include <linux/local_lock.h> 39 #include <linux/buffer_head.h> 40 41 #include "internal.h" 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/pagemap.h> 45 46 /* How many pages do we try to swap or page in/out together? */ 47 int page_cluster; 48 49 /* Protecting only lru_rotate.pvec which requires disabling interrupts */ 50 struct lru_rotate { 51 local_lock_t lock; 52 struct pagevec pvec; 53 }; 54 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = { 55 .lock = INIT_LOCAL_LOCK(lock), 56 }; 57 58 /* 59 * The following struct pagevec are grouped together because they are protected 60 * by disabling preemption (and interrupts remain enabled). 61 */ 62 struct lru_pvecs { 63 local_lock_t lock; 64 struct pagevec lru_add; 65 struct pagevec lru_deactivate_file; 66 struct pagevec lru_deactivate; 67 struct pagevec lru_lazyfree; 68 #ifdef CONFIG_SMP 69 struct pagevec activate_page; 70 #endif 71 }; 72 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = { 73 .lock = INIT_LOCAL_LOCK(lock), 74 }; 75 76 /* 77 * This path almost never happens for VM activity - pages are normally 78 * freed via pagevecs. But it gets used by networking. 79 */ 80 static void __page_cache_release(struct page *page) 81 { 82 if (PageLRU(page)) { 83 struct folio *folio = page_folio(page); 84 struct lruvec *lruvec; 85 unsigned long flags; 86 87 lruvec = folio_lruvec_lock_irqsave(folio, &flags); 88 del_page_from_lru_list(page, lruvec); 89 __clear_page_lru_flags(page); 90 unlock_page_lruvec_irqrestore(lruvec, flags); 91 } 92 __ClearPageWaiters(page); 93 } 94 95 static void __put_single_page(struct page *page) 96 { 97 __page_cache_release(page); 98 mem_cgroup_uncharge(page_folio(page)); 99 free_unref_page(page, 0); 100 } 101 102 static void __put_compound_page(struct page *page) 103 { 104 /* 105 * __page_cache_release() is supposed to be called for thp, not for 106 * hugetlb. This is because hugetlb page does never have PageLRU set 107 * (it's never listed to any LRU lists) and no memcg routines should 108 * be called for hugetlb (it has a separate hugetlb_cgroup.) 109 */ 110 if (!PageHuge(page)) 111 __page_cache_release(page); 112 destroy_compound_page(page); 113 } 114 115 void __put_page(struct page *page) 116 { 117 if (is_zone_device_page(page)) { 118 put_dev_pagemap(page->pgmap); 119 120 /* 121 * The page belongs to the device that created pgmap. Do 122 * not return it to page allocator. 123 */ 124 return; 125 } 126 127 if (unlikely(PageCompound(page))) 128 __put_compound_page(page); 129 else 130 __put_single_page(page); 131 } 132 EXPORT_SYMBOL(__put_page); 133 134 /** 135 * put_pages_list() - release a list of pages 136 * @pages: list of pages threaded on page->lru 137 * 138 * Release a list of pages which are strung together on page.lru. 139 */ 140 void put_pages_list(struct list_head *pages) 141 { 142 struct page *page, *next; 143 144 list_for_each_entry_safe(page, next, pages, lru) { 145 if (!put_page_testzero(page)) { 146 list_del(&page->lru); 147 continue; 148 } 149 if (PageHead(page)) { 150 list_del(&page->lru); 151 __put_compound_page(page); 152 continue; 153 } 154 /* Cannot be PageLRU because it's passed to us using the lru */ 155 __ClearPageWaiters(page); 156 } 157 158 free_unref_page_list(pages); 159 } 160 EXPORT_SYMBOL(put_pages_list); 161 162 /* 163 * get_kernel_pages() - pin kernel pages in memory 164 * @kiov: An array of struct kvec structures 165 * @nr_segs: number of segments to pin 166 * @write: pinning for read/write, currently ignored 167 * @pages: array that receives pointers to the pages pinned. 168 * Should be at least nr_segs long. 169 * 170 * Returns number of pages pinned. This may be fewer than the number 171 * requested. If nr_pages is 0 or negative, returns 0. If no pages 172 * were pinned, returns -errno. Each page returned must be released 173 * with a put_page() call when it is finished with. 174 */ 175 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, 176 struct page **pages) 177 { 178 int seg; 179 180 for (seg = 0; seg < nr_segs; seg++) { 181 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) 182 return seg; 183 184 pages[seg] = kmap_to_page(kiov[seg].iov_base); 185 get_page(pages[seg]); 186 } 187 188 return seg; 189 } 190 EXPORT_SYMBOL_GPL(get_kernel_pages); 191 192 static void pagevec_lru_move_fn(struct pagevec *pvec, 193 void (*move_fn)(struct page *page, struct lruvec *lruvec)) 194 { 195 int i; 196 struct lruvec *lruvec = NULL; 197 unsigned long flags = 0; 198 199 for (i = 0; i < pagevec_count(pvec); i++) { 200 struct page *page = pvec->pages[i]; 201 struct folio *folio = page_folio(page); 202 203 /* block memcg migration during page moving between lru */ 204 if (!TestClearPageLRU(page)) 205 continue; 206 207 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags); 208 (*move_fn)(page, lruvec); 209 210 SetPageLRU(page); 211 } 212 if (lruvec) 213 unlock_page_lruvec_irqrestore(lruvec, flags); 214 release_pages(pvec->pages, pvec->nr); 215 pagevec_reinit(pvec); 216 } 217 218 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec) 219 { 220 struct folio *folio = page_folio(page); 221 222 if (!folio_test_unevictable(folio)) { 223 lruvec_del_folio(lruvec, folio); 224 folio_clear_active(folio); 225 lruvec_add_folio_tail(lruvec, folio); 226 __count_vm_events(PGROTATED, folio_nr_pages(folio)); 227 } 228 } 229 230 /* return true if pagevec needs to drain */ 231 static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page) 232 { 233 bool ret = false; 234 235 if (!pagevec_add(pvec, page) || PageCompound(page) || 236 lru_cache_disabled()) 237 ret = true; 238 239 return ret; 240 } 241 242 /* 243 * Writeback is about to end against a folio which has been marked for 244 * immediate reclaim. If it still appears to be reclaimable, move it 245 * to the tail of the inactive list. 246 * 247 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races. 248 */ 249 void folio_rotate_reclaimable(struct folio *folio) 250 { 251 if (!folio_test_locked(folio) && !folio_test_dirty(folio) && 252 !folio_test_unevictable(folio) && folio_test_lru(folio)) { 253 struct pagevec *pvec; 254 unsigned long flags; 255 256 folio_get(folio); 257 local_lock_irqsave(&lru_rotate.lock, flags); 258 pvec = this_cpu_ptr(&lru_rotate.pvec); 259 if (pagevec_add_and_need_flush(pvec, &folio->page)) 260 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn); 261 local_unlock_irqrestore(&lru_rotate.lock, flags); 262 } 263 } 264 265 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages) 266 { 267 do { 268 unsigned long lrusize; 269 270 /* 271 * Hold lruvec->lru_lock is safe here, since 272 * 1) The pinned lruvec in reclaim, or 273 * 2) From a pre-LRU page during refault (which also holds the 274 * rcu lock, so would be safe even if the page was on the LRU 275 * and could move simultaneously to a new lruvec). 276 */ 277 spin_lock_irq(&lruvec->lru_lock); 278 /* Record cost event */ 279 if (file) 280 lruvec->file_cost += nr_pages; 281 else 282 lruvec->anon_cost += nr_pages; 283 284 /* 285 * Decay previous events 286 * 287 * Because workloads change over time (and to avoid 288 * overflow) we keep these statistics as a floating 289 * average, which ends up weighing recent refaults 290 * more than old ones. 291 */ 292 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) + 293 lruvec_page_state(lruvec, NR_ACTIVE_ANON) + 294 lruvec_page_state(lruvec, NR_INACTIVE_FILE) + 295 lruvec_page_state(lruvec, NR_ACTIVE_FILE); 296 297 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) { 298 lruvec->file_cost /= 2; 299 lruvec->anon_cost /= 2; 300 } 301 spin_unlock_irq(&lruvec->lru_lock); 302 } while ((lruvec = parent_lruvec(lruvec))); 303 } 304 305 void lru_note_cost_folio(struct folio *folio) 306 { 307 lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio), 308 folio_nr_pages(folio)); 309 } 310 311 static void __folio_activate(struct folio *folio, struct lruvec *lruvec) 312 { 313 if (!folio_test_active(folio) && !folio_test_unevictable(folio)) { 314 long nr_pages = folio_nr_pages(folio); 315 316 lruvec_del_folio(lruvec, folio); 317 folio_set_active(folio); 318 lruvec_add_folio(lruvec, folio); 319 trace_mm_lru_activate(folio); 320 321 __count_vm_events(PGACTIVATE, nr_pages); 322 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, 323 nr_pages); 324 } 325 } 326 327 #ifdef CONFIG_SMP 328 static void __activate_page(struct page *page, struct lruvec *lruvec) 329 { 330 return __folio_activate(page_folio(page), lruvec); 331 } 332 333 static void activate_page_drain(int cpu) 334 { 335 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu); 336 337 if (pagevec_count(pvec)) 338 pagevec_lru_move_fn(pvec, __activate_page); 339 } 340 341 static bool need_activate_page_drain(int cpu) 342 { 343 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0; 344 } 345 346 static void folio_activate(struct folio *folio) 347 { 348 if (folio_test_lru(folio) && !folio_test_active(folio) && 349 !folio_test_unevictable(folio)) { 350 struct pagevec *pvec; 351 352 folio_get(folio); 353 local_lock(&lru_pvecs.lock); 354 pvec = this_cpu_ptr(&lru_pvecs.activate_page); 355 if (pagevec_add_and_need_flush(pvec, &folio->page)) 356 pagevec_lru_move_fn(pvec, __activate_page); 357 local_unlock(&lru_pvecs.lock); 358 } 359 } 360 361 #else 362 static inline void activate_page_drain(int cpu) 363 { 364 } 365 366 static void folio_activate(struct folio *folio) 367 { 368 struct lruvec *lruvec; 369 370 if (folio_test_clear_lru(folio)) { 371 lruvec = folio_lruvec_lock_irq(folio); 372 __folio_activate(folio, lruvec); 373 unlock_page_lruvec_irq(lruvec); 374 folio_set_lru(folio); 375 } 376 } 377 #endif 378 379 static void __lru_cache_activate_folio(struct folio *folio) 380 { 381 struct pagevec *pvec; 382 int i; 383 384 local_lock(&lru_pvecs.lock); 385 pvec = this_cpu_ptr(&lru_pvecs.lru_add); 386 387 /* 388 * Search backwards on the optimistic assumption that the page being 389 * activated has just been added to this pagevec. Note that only 390 * the local pagevec is examined as a !PageLRU page could be in the 391 * process of being released, reclaimed, migrated or on a remote 392 * pagevec that is currently being drained. Furthermore, marking 393 * a remote pagevec's page PageActive potentially hits a race where 394 * a page is marked PageActive just after it is added to the inactive 395 * list causing accounting errors and BUG_ON checks to trigger. 396 */ 397 for (i = pagevec_count(pvec) - 1; i >= 0; i--) { 398 struct page *pagevec_page = pvec->pages[i]; 399 400 if (pagevec_page == &folio->page) { 401 folio_set_active(folio); 402 break; 403 } 404 } 405 406 local_unlock(&lru_pvecs.lock); 407 } 408 409 /* 410 * Mark a page as having seen activity. 411 * 412 * inactive,unreferenced -> inactive,referenced 413 * inactive,referenced -> active,unreferenced 414 * active,unreferenced -> active,referenced 415 * 416 * When a newly allocated page is not yet visible, so safe for non-atomic ops, 417 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page). 418 */ 419 void folio_mark_accessed(struct folio *folio) 420 { 421 if (!folio_test_referenced(folio)) { 422 folio_set_referenced(folio); 423 } else if (folio_test_unevictable(folio)) { 424 /* 425 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But, 426 * this list is never rotated or maintained, so marking an 427 * evictable page accessed has no effect. 428 */ 429 } else if (!folio_test_active(folio)) { 430 /* 431 * If the page is on the LRU, queue it for activation via 432 * lru_pvecs.activate_page. Otherwise, assume the page is on a 433 * pagevec, mark it active and it'll be moved to the active 434 * LRU on the next drain. 435 */ 436 if (folio_test_lru(folio)) 437 folio_activate(folio); 438 else 439 __lru_cache_activate_folio(folio); 440 folio_clear_referenced(folio); 441 workingset_activation(folio); 442 } 443 if (folio_test_idle(folio)) 444 folio_clear_idle(folio); 445 } 446 EXPORT_SYMBOL(folio_mark_accessed); 447 448 /** 449 * folio_add_lru - Add a folio to an LRU list. 450 * @folio: The folio to be added to the LRU. 451 * 452 * Queue the folio for addition to the LRU. The decision on whether 453 * to add the page to the [in]active [file|anon] list is deferred until the 454 * pagevec is drained. This gives a chance for the caller of folio_add_lru() 455 * have the folio added to the active list using folio_mark_accessed(). 456 */ 457 void folio_add_lru(struct folio *folio) 458 { 459 struct pagevec *pvec; 460 461 VM_BUG_ON_FOLIO(folio_test_active(folio) && folio_test_unevictable(folio), folio); 462 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 463 464 folio_get(folio); 465 local_lock(&lru_pvecs.lock); 466 pvec = this_cpu_ptr(&lru_pvecs.lru_add); 467 if (pagevec_add_and_need_flush(pvec, &folio->page)) 468 __pagevec_lru_add(pvec); 469 local_unlock(&lru_pvecs.lock); 470 } 471 EXPORT_SYMBOL(folio_add_lru); 472 473 /** 474 * lru_cache_add_inactive_or_unevictable 475 * @page: the page to be added to LRU 476 * @vma: vma in which page is mapped for determining reclaimability 477 * 478 * Place @page on the inactive or unevictable LRU list, depending on its 479 * evictability. 480 */ 481 void lru_cache_add_inactive_or_unevictable(struct page *page, 482 struct vm_area_struct *vma) 483 { 484 bool unevictable; 485 486 VM_BUG_ON_PAGE(PageLRU(page), page); 487 488 unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED; 489 if (unlikely(unevictable) && !TestSetPageMlocked(page)) { 490 int nr_pages = thp_nr_pages(page); 491 /* 492 * We use the irq-unsafe __mod_zone_page_state because this 493 * counter is not modified from interrupt context, and the pte 494 * lock is held(spinlock), which implies preemption disabled. 495 */ 496 __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages); 497 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages); 498 } 499 lru_cache_add(page); 500 } 501 502 /* 503 * If the page can not be invalidated, it is moved to the 504 * inactive list to speed up its reclaim. It is moved to the 505 * head of the list, rather than the tail, to give the flusher 506 * threads some time to write it out, as this is much more 507 * effective than the single-page writeout from reclaim. 508 * 509 * If the page isn't page_mapped and dirty/writeback, the page 510 * could reclaim asap using PG_reclaim. 511 * 512 * 1. active, mapped page -> none 513 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim 514 * 3. inactive, mapped page -> none 515 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim 516 * 5. inactive, clean -> inactive, tail 517 * 6. Others -> none 518 * 519 * In 4, why it moves inactive's head, the VM expects the page would 520 * be write it out by flusher threads as this is much more effective 521 * than the single-page writeout from reclaim. 522 */ 523 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec) 524 { 525 bool active = PageActive(page); 526 int nr_pages = thp_nr_pages(page); 527 528 if (PageUnevictable(page)) 529 return; 530 531 /* Some processes are using the page */ 532 if (page_mapped(page)) 533 return; 534 535 del_page_from_lru_list(page, lruvec); 536 ClearPageActive(page); 537 ClearPageReferenced(page); 538 539 if (PageWriteback(page) || PageDirty(page)) { 540 /* 541 * PG_reclaim could be raced with end_page_writeback 542 * It can make readahead confusing. But race window 543 * is _really_ small and it's non-critical problem. 544 */ 545 add_page_to_lru_list(page, lruvec); 546 SetPageReclaim(page); 547 } else { 548 /* 549 * The page's writeback ends up during pagevec 550 * We move that page into tail of inactive. 551 */ 552 add_page_to_lru_list_tail(page, lruvec); 553 __count_vm_events(PGROTATED, nr_pages); 554 } 555 556 if (active) { 557 __count_vm_events(PGDEACTIVATE, nr_pages); 558 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 559 nr_pages); 560 } 561 } 562 563 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec) 564 { 565 if (PageActive(page) && !PageUnevictable(page)) { 566 int nr_pages = thp_nr_pages(page); 567 568 del_page_from_lru_list(page, lruvec); 569 ClearPageActive(page); 570 ClearPageReferenced(page); 571 add_page_to_lru_list(page, lruvec); 572 573 __count_vm_events(PGDEACTIVATE, nr_pages); 574 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 575 nr_pages); 576 } 577 } 578 579 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec) 580 { 581 if (PageAnon(page) && PageSwapBacked(page) && 582 !PageSwapCache(page) && !PageUnevictable(page)) { 583 int nr_pages = thp_nr_pages(page); 584 585 del_page_from_lru_list(page, lruvec); 586 ClearPageActive(page); 587 ClearPageReferenced(page); 588 /* 589 * Lazyfree pages are clean anonymous pages. They have 590 * PG_swapbacked flag cleared, to distinguish them from normal 591 * anonymous pages 592 */ 593 ClearPageSwapBacked(page); 594 add_page_to_lru_list(page, lruvec); 595 596 __count_vm_events(PGLAZYFREE, nr_pages); 597 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, 598 nr_pages); 599 } 600 } 601 602 /* 603 * Drain pages out of the cpu's pagevecs. 604 * Either "cpu" is the current CPU, and preemption has already been 605 * disabled; or "cpu" is being hot-unplugged, and is already dead. 606 */ 607 void lru_add_drain_cpu(int cpu) 608 { 609 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu); 610 611 if (pagevec_count(pvec)) 612 __pagevec_lru_add(pvec); 613 614 pvec = &per_cpu(lru_rotate.pvec, cpu); 615 /* Disabling interrupts below acts as a compiler barrier. */ 616 if (data_race(pagevec_count(pvec))) { 617 unsigned long flags; 618 619 /* No harm done if a racing interrupt already did this */ 620 local_lock_irqsave(&lru_rotate.lock, flags); 621 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn); 622 local_unlock_irqrestore(&lru_rotate.lock, flags); 623 } 624 625 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu); 626 if (pagevec_count(pvec)) 627 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn); 628 629 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu); 630 if (pagevec_count(pvec)) 631 pagevec_lru_move_fn(pvec, lru_deactivate_fn); 632 633 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu); 634 if (pagevec_count(pvec)) 635 pagevec_lru_move_fn(pvec, lru_lazyfree_fn); 636 637 activate_page_drain(cpu); 638 } 639 640 /** 641 * deactivate_file_page - forcefully deactivate a file page 642 * @page: page to deactivate 643 * 644 * This function hints the VM that @page is a good reclaim candidate, 645 * for example if its invalidation fails due to the page being dirty 646 * or under writeback. 647 */ 648 void deactivate_file_page(struct page *page) 649 { 650 /* 651 * In a workload with many unevictable page such as mprotect, 652 * unevictable page deactivation for accelerating reclaim is pointless. 653 */ 654 if (PageUnevictable(page)) 655 return; 656 657 if (likely(get_page_unless_zero(page))) { 658 struct pagevec *pvec; 659 660 local_lock(&lru_pvecs.lock); 661 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file); 662 663 if (pagevec_add_and_need_flush(pvec, page)) 664 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn); 665 local_unlock(&lru_pvecs.lock); 666 } 667 } 668 669 /* 670 * deactivate_page - deactivate a page 671 * @page: page to deactivate 672 * 673 * deactivate_page() moves @page to the inactive list if @page was on the active 674 * list and was not an unevictable page. This is done to accelerate the reclaim 675 * of @page. 676 */ 677 void deactivate_page(struct page *page) 678 { 679 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) { 680 struct pagevec *pvec; 681 682 local_lock(&lru_pvecs.lock); 683 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate); 684 get_page(page); 685 if (pagevec_add_and_need_flush(pvec, page)) 686 pagevec_lru_move_fn(pvec, lru_deactivate_fn); 687 local_unlock(&lru_pvecs.lock); 688 } 689 } 690 691 /** 692 * mark_page_lazyfree - make an anon page lazyfree 693 * @page: page to deactivate 694 * 695 * mark_page_lazyfree() moves @page to the inactive file list. 696 * This is done to accelerate the reclaim of @page. 697 */ 698 void mark_page_lazyfree(struct page *page) 699 { 700 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) && 701 !PageSwapCache(page) && !PageUnevictable(page)) { 702 struct pagevec *pvec; 703 704 local_lock(&lru_pvecs.lock); 705 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree); 706 get_page(page); 707 if (pagevec_add_and_need_flush(pvec, page)) 708 pagevec_lru_move_fn(pvec, lru_lazyfree_fn); 709 local_unlock(&lru_pvecs.lock); 710 } 711 } 712 713 void lru_add_drain(void) 714 { 715 local_lock(&lru_pvecs.lock); 716 lru_add_drain_cpu(smp_processor_id()); 717 local_unlock(&lru_pvecs.lock); 718 } 719 720 /* 721 * It's called from per-cpu workqueue context in SMP case so 722 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on 723 * the same cpu. It shouldn't be a problem in !SMP case since 724 * the core is only one and the locks will disable preemption. 725 */ 726 static void lru_add_and_bh_lrus_drain(void) 727 { 728 local_lock(&lru_pvecs.lock); 729 lru_add_drain_cpu(smp_processor_id()); 730 local_unlock(&lru_pvecs.lock); 731 invalidate_bh_lrus_cpu(); 732 } 733 734 void lru_add_drain_cpu_zone(struct zone *zone) 735 { 736 local_lock(&lru_pvecs.lock); 737 lru_add_drain_cpu(smp_processor_id()); 738 drain_local_pages(zone); 739 local_unlock(&lru_pvecs.lock); 740 } 741 742 #ifdef CONFIG_SMP 743 744 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); 745 746 static void lru_add_drain_per_cpu(struct work_struct *dummy) 747 { 748 lru_add_and_bh_lrus_drain(); 749 } 750 751 /* 752 * Doesn't need any cpu hotplug locking because we do rely on per-cpu 753 * kworkers being shut down before our page_alloc_cpu_dead callback is 754 * executed on the offlined cpu. 755 * Calling this function with cpu hotplug locks held can actually lead 756 * to obscure indirect dependencies via WQ context. 757 */ 758 inline void __lru_add_drain_all(bool force_all_cpus) 759 { 760 /* 761 * lru_drain_gen - Global pages generation number 762 * 763 * (A) Definition: global lru_drain_gen = x implies that all generations 764 * 0 < n <= x are already *scheduled* for draining. 765 * 766 * This is an optimization for the highly-contended use case where a 767 * user space workload keeps constantly generating a flow of pages for 768 * each CPU. 769 */ 770 static unsigned int lru_drain_gen; 771 static struct cpumask has_work; 772 static DEFINE_MUTEX(lock); 773 unsigned cpu, this_gen; 774 775 /* 776 * Make sure nobody triggers this path before mm_percpu_wq is fully 777 * initialized. 778 */ 779 if (WARN_ON(!mm_percpu_wq)) 780 return; 781 782 /* 783 * Guarantee pagevec counter stores visible by this CPU are visible to 784 * other CPUs before loading the current drain generation. 785 */ 786 smp_mb(); 787 788 /* 789 * (B) Locally cache global LRU draining generation number 790 * 791 * The read barrier ensures that the counter is loaded before the mutex 792 * is taken. It pairs with smp_mb() inside the mutex critical section 793 * at (D). 794 */ 795 this_gen = smp_load_acquire(&lru_drain_gen); 796 797 mutex_lock(&lock); 798 799 /* 800 * (C) Exit the draining operation if a newer generation, from another 801 * lru_add_drain_all(), was already scheduled for draining. Check (A). 802 */ 803 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus)) 804 goto done; 805 806 /* 807 * (D) Increment global generation number 808 * 809 * Pairs with smp_load_acquire() at (B), outside of the critical 810 * section. Use a full memory barrier to guarantee that the new global 811 * drain generation number is stored before loading pagevec counters. 812 * 813 * This pairing must be done here, before the for_each_online_cpu loop 814 * below which drains the page vectors. 815 * 816 * Let x, y, and z represent some system CPU numbers, where x < y < z. 817 * Assume CPU #z is in the middle of the for_each_online_cpu loop 818 * below and has already reached CPU #y's per-cpu data. CPU #x comes 819 * along, adds some pages to its per-cpu vectors, then calls 820 * lru_add_drain_all(). 821 * 822 * If the paired barrier is done at any later step, e.g. after the 823 * loop, CPU #x will just exit at (C) and miss flushing out all of its 824 * added pages. 825 */ 826 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1); 827 smp_mb(); 828 829 cpumask_clear(&has_work); 830 for_each_online_cpu(cpu) { 831 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); 832 833 if (force_all_cpus || 834 pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) || 835 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) || 836 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) || 837 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) || 838 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) || 839 need_activate_page_drain(cpu) || 840 has_bh_in_lru(cpu, NULL)) { 841 INIT_WORK(work, lru_add_drain_per_cpu); 842 queue_work_on(cpu, mm_percpu_wq, work); 843 __cpumask_set_cpu(cpu, &has_work); 844 } 845 } 846 847 for_each_cpu(cpu, &has_work) 848 flush_work(&per_cpu(lru_add_drain_work, cpu)); 849 850 done: 851 mutex_unlock(&lock); 852 } 853 854 void lru_add_drain_all(void) 855 { 856 __lru_add_drain_all(false); 857 } 858 #else 859 void lru_add_drain_all(void) 860 { 861 lru_add_drain(); 862 } 863 #endif /* CONFIG_SMP */ 864 865 atomic_t lru_disable_count = ATOMIC_INIT(0); 866 867 /* 868 * lru_cache_disable() needs to be called before we start compiling 869 * a list of pages to be migrated using isolate_lru_page(). 870 * It drains pages on LRU cache and then disable on all cpus until 871 * lru_cache_enable is called. 872 * 873 * Must be paired with a call to lru_cache_enable(). 874 */ 875 void lru_cache_disable(void) 876 { 877 atomic_inc(&lru_disable_count); 878 #ifdef CONFIG_SMP 879 /* 880 * lru_add_drain_all in the force mode will schedule draining on 881 * all online CPUs so any calls of lru_cache_disabled wrapped by 882 * local_lock or preemption disabled would be ordered by that. 883 * The atomic operation doesn't need to have stronger ordering 884 * requirements because that is enforeced by the scheduling 885 * guarantees. 886 */ 887 __lru_add_drain_all(true); 888 #else 889 lru_add_and_bh_lrus_drain(); 890 #endif 891 } 892 893 /** 894 * release_pages - batched put_page() 895 * @pages: array of pages to release 896 * @nr: number of pages 897 * 898 * Decrement the reference count on all the pages in @pages. If it 899 * fell to zero, remove the page from the LRU and free it. 900 */ 901 void release_pages(struct page **pages, int nr) 902 { 903 int i; 904 LIST_HEAD(pages_to_free); 905 struct lruvec *lruvec = NULL; 906 unsigned long flags = 0; 907 unsigned int lock_batch; 908 909 for (i = 0; i < nr; i++) { 910 struct page *page = pages[i]; 911 struct folio *folio = page_folio(page); 912 913 /* 914 * Make sure the IRQ-safe lock-holding time does not get 915 * excessive with a continuous string of pages from the 916 * same lruvec. The lock is held only if lruvec != NULL. 917 */ 918 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) { 919 unlock_page_lruvec_irqrestore(lruvec, flags); 920 lruvec = NULL; 921 } 922 923 page = &folio->page; 924 if (is_huge_zero_page(page)) 925 continue; 926 927 if (is_zone_device_page(page)) { 928 if (lruvec) { 929 unlock_page_lruvec_irqrestore(lruvec, flags); 930 lruvec = NULL; 931 } 932 /* 933 * ZONE_DEVICE pages that return 'false' from 934 * page_is_devmap_managed() do not require special 935 * processing, and instead, expect a call to 936 * put_page_testzero(). 937 */ 938 if (page_is_devmap_managed(page)) { 939 put_devmap_managed_page(page); 940 continue; 941 } 942 if (put_page_testzero(page)) 943 put_dev_pagemap(page->pgmap); 944 continue; 945 } 946 947 if (!put_page_testzero(page)) 948 continue; 949 950 if (PageCompound(page)) { 951 if (lruvec) { 952 unlock_page_lruvec_irqrestore(lruvec, flags); 953 lruvec = NULL; 954 } 955 __put_compound_page(page); 956 continue; 957 } 958 959 if (PageLRU(page)) { 960 struct lruvec *prev_lruvec = lruvec; 961 962 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, 963 &flags); 964 if (prev_lruvec != lruvec) 965 lock_batch = 0; 966 967 del_page_from_lru_list(page, lruvec); 968 __clear_page_lru_flags(page); 969 } 970 971 __ClearPageWaiters(page); 972 973 list_add(&page->lru, &pages_to_free); 974 } 975 if (lruvec) 976 unlock_page_lruvec_irqrestore(lruvec, flags); 977 978 mem_cgroup_uncharge_list(&pages_to_free); 979 free_unref_page_list(&pages_to_free); 980 } 981 EXPORT_SYMBOL(release_pages); 982 983 /* 984 * The pages which we're about to release may be in the deferred lru-addition 985 * queues. That would prevent them from really being freed right now. That's 986 * OK from a correctness point of view but is inefficient - those pages may be 987 * cache-warm and we want to give them back to the page allocator ASAP. 988 * 989 * So __pagevec_release() will drain those queues here. __pagevec_lru_add() 990 * and __pagevec_lru_add_active() call release_pages() directly to avoid 991 * mutual recursion. 992 */ 993 void __pagevec_release(struct pagevec *pvec) 994 { 995 if (!pvec->percpu_pvec_drained) { 996 lru_add_drain(); 997 pvec->percpu_pvec_drained = true; 998 } 999 release_pages(pvec->pages, pagevec_count(pvec)); 1000 pagevec_reinit(pvec); 1001 } 1002 EXPORT_SYMBOL(__pagevec_release); 1003 1004 static void __pagevec_lru_add_fn(struct folio *folio, struct lruvec *lruvec) 1005 { 1006 int was_unevictable = folio_test_clear_unevictable(folio); 1007 long nr_pages = folio_nr_pages(folio); 1008 1009 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 1010 1011 /* 1012 * A folio becomes evictable in two ways: 1013 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()]. 1014 * 2) Before acquiring LRU lock to put the folio on the correct LRU 1015 * and then 1016 * a) do PageLRU check with lock [check_move_unevictable_pages] 1017 * b) do PageLRU check before lock [clear_page_mlock] 1018 * 1019 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need 1020 * following strict ordering: 1021 * 1022 * #0: __pagevec_lru_add_fn #1: clear_page_mlock 1023 * 1024 * folio_set_lru() folio_test_clear_mlocked() 1025 * smp_mb() // explicit ordering // above provides strict 1026 * // ordering 1027 * folio_test_mlocked() folio_test_lru() 1028 * 1029 * 1030 * if '#1' does not observe setting of PG_lru by '#0' and 1031 * fails isolation, the explicit barrier will make sure that 1032 * folio_evictable check will put the folio on the correct 1033 * LRU. Without smp_mb(), folio_set_lru() can be reordered 1034 * after folio_test_mlocked() check and can make '#1' fail the 1035 * isolation of the folio whose mlocked bit is cleared (#0 is 1036 * also looking at the same folio) and the evictable folio will 1037 * be stranded on an unevictable LRU. 1038 */ 1039 folio_set_lru(folio); 1040 smp_mb__after_atomic(); 1041 1042 if (folio_evictable(folio)) { 1043 if (was_unevictable) 1044 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages); 1045 } else { 1046 folio_clear_active(folio); 1047 folio_set_unevictable(folio); 1048 if (!was_unevictable) 1049 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages); 1050 } 1051 1052 lruvec_add_folio(lruvec, folio); 1053 trace_mm_lru_insertion(folio); 1054 } 1055 1056 /* 1057 * Add the passed pages to the LRU, then drop the caller's refcount 1058 * on them. Reinitialises the caller's pagevec. 1059 */ 1060 void __pagevec_lru_add(struct pagevec *pvec) 1061 { 1062 int i; 1063 struct lruvec *lruvec = NULL; 1064 unsigned long flags = 0; 1065 1066 for (i = 0; i < pagevec_count(pvec); i++) { 1067 struct folio *folio = page_folio(pvec->pages[i]); 1068 1069 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags); 1070 __pagevec_lru_add_fn(folio, lruvec); 1071 } 1072 if (lruvec) 1073 unlock_page_lruvec_irqrestore(lruvec, flags); 1074 release_pages(pvec->pages, pvec->nr); 1075 pagevec_reinit(pvec); 1076 } 1077 1078 /** 1079 * pagevec_remove_exceptionals - pagevec exceptionals pruning 1080 * @pvec: The pagevec to prune 1081 * 1082 * find_get_entries() fills both pages and XArray value entries (aka 1083 * exceptional entries) into the pagevec. This function prunes all 1084 * exceptionals from @pvec without leaving holes, so that it can be 1085 * passed on to page-only pagevec operations. 1086 */ 1087 void pagevec_remove_exceptionals(struct pagevec *pvec) 1088 { 1089 int i, j; 1090 1091 for (i = 0, j = 0; i < pagevec_count(pvec); i++) { 1092 struct page *page = pvec->pages[i]; 1093 if (!xa_is_value(page)) 1094 pvec->pages[j++] = page; 1095 } 1096 pvec->nr = j; 1097 } 1098 1099 /** 1100 * pagevec_lookup_range - gang pagecache lookup 1101 * @pvec: Where the resulting pages are placed 1102 * @mapping: The address_space to search 1103 * @start: The starting page index 1104 * @end: The final page index 1105 * 1106 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE 1107 * pages in the mapping starting from index @start and upto index @end 1108 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a 1109 * reference against the pages in @pvec. 1110 * 1111 * The search returns a group of mapping-contiguous pages with ascending 1112 * indexes. There may be holes in the indices due to not-present pages. We 1113 * also update @start to index the next page for the traversal. 1114 * 1115 * pagevec_lookup_range() returns the number of pages which were found. If this 1116 * number is smaller than PAGEVEC_SIZE, the end of specified range has been 1117 * reached. 1118 */ 1119 unsigned pagevec_lookup_range(struct pagevec *pvec, 1120 struct address_space *mapping, pgoff_t *start, pgoff_t end) 1121 { 1122 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE, 1123 pvec->pages); 1124 return pagevec_count(pvec); 1125 } 1126 EXPORT_SYMBOL(pagevec_lookup_range); 1127 1128 unsigned pagevec_lookup_range_tag(struct pagevec *pvec, 1129 struct address_space *mapping, pgoff_t *index, pgoff_t end, 1130 xa_mark_t tag) 1131 { 1132 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag, 1133 PAGEVEC_SIZE, pvec->pages); 1134 return pagevec_count(pvec); 1135 } 1136 EXPORT_SYMBOL(pagevec_lookup_range_tag); 1137 1138 /* 1139 * Perform any setup for the swap system 1140 */ 1141 void __init swap_setup(void) 1142 { 1143 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT); 1144 1145 /* Use a smaller cluster for small-memory machines */ 1146 if (megs < 16) 1147 page_cluster = 2; 1148 else 1149 page_cluster = 3; 1150 /* 1151 * Right now other parts of the system means that we 1152 * _really_ don't want to cluster much more 1153 */ 1154 } 1155 1156 #ifdef CONFIG_DEV_PAGEMAP_OPS 1157 void put_devmap_managed_page(struct page *page) 1158 { 1159 int count; 1160 1161 if (WARN_ON_ONCE(!page_is_devmap_managed(page))) 1162 return; 1163 1164 count = page_ref_dec_return(page); 1165 1166 /* 1167 * devmap page refcounts are 1-based, rather than 0-based: if 1168 * refcount is 1, then the page is free and the refcount is 1169 * stable because nobody holds a reference on the page. 1170 */ 1171 if (count == 1) 1172 free_devmap_managed_page(page); 1173 else if (!count) 1174 __put_page(page); 1175 } 1176 EXPORT_SYMBOL(put_devmap_managed_page); 1177 #endif 1178