xref: /linux/mm/swap.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the opereation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page() */
27 #include <linux/module.h>
28 #include <linux/percpu_counter.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/init.h>
33 
34 /* How many pages do we try to swap or page in/out together? */
35 int page_cluster;
36 
37 static void put_compound_page(struct page *page)
38 {
39 	page = (struct page *)page_private(page);
40 	if (put_page_testzero(page)) {
41 		void (*dtor)(struct page *page);
42 
43 		dtor = (void (*)(struct page *))page[1].lru.next;
44 		(*dtor)(page);
45 	}
46 }
47 
48 void put_page(struct page *page)
49 {
50 	if (unlikely(PageCompound(page)))
51 		put_compound_page(page);
52 	else if (put_page_testzero(page))
53 		__page_cache_release(page);
54 }
55 EXPORT_SYMBOL(put_page);
56 
57 /*
58  * Writeback is about to end against a page which has been marked for immediate
59  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
60  * inactive list.  The page still has PageWriteback set, which will pin it.
61  *
62  * We don't expect many pages to come through here, so don't bother batching
63  * things up.
64  *
65  * To avoid placing the page at the tail of the LRU while PG_writeback is still
66  * set, this function will clear PG_writeback before performing the page
67  * motion.  Do that inside the lru lock because once PG_writeback is cleared
68  * we may not touch the page.
69  *
70  * Returns zero if it cleared PG_writeback.
71  */
72 int rotate_reclaimable_page(struct page *page)
73 {
74 	struct zone *zone;
75 	unsigned long flags;
76 
77 	if (PageLocked(page))
78 		return 1;
79 	if (PageDirty(page))
80 		return 1;
81 	if (PageActive(page))
82 		return 1;
83 	if (!PageLRU(page))
84 		return 1;
85 
86 	zone = page_zone(page);
87 	spin_lock_irqsave(&zone->lru_lock, flags);
88 	if (PageLRU(page) && !PageActive(page)) {
89 		list_del(&page->lru);
90 		list_add_tail(&page->lru, &zone->inactive_list);
91 		inc_page_state(pgrotated);
92 	}
93 	if (!test_clear_page_writeback(page))
94 		BUG();
95 	spin_unlock_irqrestore(&zone->lru_lock, flags);
96 	return 0;
97 }
98 
99 /*
100  * FIXME: speed this up?
101  */
102 void fastcall activate_page(struct page *page)
103 {
104 	struct zone *zone = page_zone(page);
105 
106 	spin_lock_irq(&zone->lru_lock);
107 	if (PageLRU(page) && !PageActive(page)) {
108 		del_page_from_inactive_list(zone, page);
109 		SetPageActive(page);
110 		add_page_to_active_list(zone, page);
111 		inc_page_state(pgactivate);
112 	}
113 	spin_unlock_irq(&zone->lru_lock);
114 }
115 
116 /*
117  * Mark a page as having seen activity.
118  *
119  * inactive,unreferenced	->	inactive,referenced
120  * inactive,referenced		->	active,unreferenced
121  * active,unreferenced		->	active,referenced
122  */
123 void fastcall mark_page_accessed(struct page *page)
124 {
125 	if (!PageActive(page) && PageReferenced(page) && PageLRU(page)) {
126 		activate_page(page);
127 		ClearPageReferenced(page);
128 	} else if (!PageReferenced(page)) {
129 		SetPageReferenced(page);
130 	}
131 }
132 
133 EXPORT_SYMBOL(mark_page_accessed);
134 
135 /**
136  * lru_cache_add: add a page to the page lists
137  * @page: the page to add
138  */
139 static DEFINE_PER_CPU(struct pagevec, lru_add_pvecs) = { 0, };
140 static DEFINE_PER_CPU(struct pagevec, lru_add_active_pvecs) = { 0, };
141 
142 void fastcall lru_cache_add(struct page *page)
143 {
144 	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs);
145 
146 	page_cache_get(page);
147 	if (!pagevec_add(pvec, page))
148 		__pagevec_lru_add(pvec);
149 	put_cpu_var(lru_add_pvecs);
150 }
151 
152 void fastcall lru_cache_add_active(struct page *page)
153 {
154 	struct pagevec *pvec = &get_cpu_var(lru_add_active_pvecs);
155 
156 	page_cache_get(page);
157 	if (!pagevec_add(pvec, page))
158 		__pagevec_lru_add_active(pvec);
159 	put_cpu_var(lru_add_active_pvecs);
160 }
161 
162 static void __lru_add_drain(int cpu)
163 {
164 	struct pagevec *pvec = &per_cpu(lru_add_pvecs, cpu);
165 
166 	/* CPU is dead, so no locking needed. */
167 	if (pagevec_count(pvec))
168 		__pagevec_lru_add(pvec);
169 	pvec = &per_cpu(lru_add_active_pvecs, cpu);
170 	if (pagevec_count(pvec))
171 		__pagevec_lru_add_active(pvec);
172 }
173 
174 void lru_add_drain(void)
175 {
176 	__lru_add_drain(get_cpu());
177 	put_cpu();
178 }
179 
180 #ifdef CONFIG_NUMA
181 static void lru_add_drain_per_cpu(void *dummy)
182 {
183 	lru_add_drain();
184 }
185 
186 /*
187  * Returns 0 for success
188  */
189 int lru_add_drain_all(void)
190 {
191 	return schedule_on_each_cpu(lru_add_drain_per_cpu, NULL);
192 }
193 
194 #else
195 
196 /*
197  * Returns 0 for success
198  */
199 int lru_add_drain_all(void)
200 {
201 	lru_add_drain();
202 	return 0;
203 }
204 #endif
205 
206 /*
207  * This path almost never happens for VM activity - pages are normally
208  * freed via pagevecs.  But it gets used by networking.
209  */
210 void fastcall __page_cache_release(struct page *page)
211 {
212 	if (PageLRU(page)) {
213 		unsigned long flags;
214 		struct zone *zone = page_zone(page);
215 
216 		spin_lock_irqsave(&zone->lru_lock, flags);
217 		BUG_ON(!PageLRU(page));
218 		__ClearPageLRU(page);
219 		del_page_from_lru(zone, page);
220 		spin_unlock_irqrestore(&zone->lru_lock, flags);
221 	}
222 	free_hot_page(page);
223 }
224 EXPORT_SYMBOL(__page_cache_release);
225 
226 /*
227  * Batched page_cache_release().  Decrement the reference count on all the
228  * passed pages.  If it fell to zero then remove the page from the LRU and
229  * free it.
230  *
231  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
232  * for the remainder of the operation.
233  *
234  * The locking in this function is against shrink_cache(): we recheck the
235  * page count inside the lock to see whether shrink_cache grabbed the page
236  * via the LRU.  If it did, give up: shrink_cache will free it.
237  */
238 void release_pages(struct page **pages, int nr, int cold)
239 {
240 	int i;
241 	struct pagevec pages_to_free;
242 	struct zone *zone = NULL;
243 
244 	pagevec_init(&pages_to_free, cold);
245 	for (i = 0; i < nr; i++) {
246 		struct page *page = pages[i];
247 
248 		if (unlikely(PageCompound(page))) {
249 			if (zone) {
250 				spin_unlock_irq(&zone->lru_lock);
251 				zone = NULL;
252 			}
253 			put_compound_page(page);
254 			continue;
255 		}
256 
257 		if (!put_page_testzero(page))
258 			continue;
259 
260 		if (PageLRU(page)) {
261 			struct zone *pagezone = page_zone(page);
262 			if (pagezone != zone) {
263 				if (zone)
264 					spin_unlock_irq(&zone->lru_lock);
265 				zone = pagezone;
266 				spin_lock_irq(&zone->lru_lock);
267 			}
268 			BUG_ON(!PageLRU(page));
269 			__ClearPageLRU(page);
270 			del_page_from_lru(zone, page);
271 		}
272 
273 		if (!pagevec_add(&pages_to_free, page)) {
274 			if (zone) {
275 				spin_unlock_irq(&zone->lru_lock);
276 				zone = NULL;
277 			}
278 			__pagevec_free(&pages_to_free);
279 			pagevec_reinit(&pages_to_free);
280   		}
281 	}
282 	if (zone)
283 		spin_unlock_irq(&zone->lru_lock);
284 
285 	pagevec_free(&pages_to_free);
286 }
287 
288 /*
289  * The pages which we're about to release may be in the deferred lru-addition
290  * queues.  That would prevent them from really being freed right now.  That's
291  * OK from a correctness point of view but is inefficient - those pages may be
292  * cache-warm and we want to give them back to the page allocator ASAP.
293  *
294  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
295  * and __pagevec_lru_add_active() call release_pages() directly to avoid
296  * mutual recursion.
297  */
298 void __pagevec_release(struct pagevec *pvec)
299 {
300 	lru_add_drain();
301 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
302 	pagevec_reinit(pvec);
303 }
304 
305 EXPORT_SYMBOL(__pagevec_release);
306 
307 /*
308  * pagevec_release() for pages which are known to not be on the LRU
309  *
310  * This function reinitialises the caller's pagevec.
311  */
312 void __pagevec_release_nonlru(struct pagevec *pvec)
313 {
314 	int i;
315 	struct pagevec pages_to_free;
316 
317 	pagevec_init(&pages_to_free, pvec->cold);
318 	for (i = 0; i < pagevec_count(pvec); i++) {
319 		struct page *page = pvec->pages[i];
320 
321 		BUG_ON(PageLRU(page));
322 		if (put_page_testzero(page))
323 			pagevec_add(&pages_to_free, page);
324 	}
325 	pagevec_free(&pages_to_free);
326 	pagevec_reinit(pvec);
327 }
328 
329 /*
330  * Add the passed pages to the LRU, then drop the caller's refcount
331  * on them.  Reinitialises the caller's pagevec.
332  */
333 void __pagevec_lru_add(struct pagevec *pvec)
334 {
335 	int i;
336 	struct zone *zone = NULL;
337 
338 	for (i = 0; i < pagevec_count(pvec); i++) {
339 		struct page *page = pvec->pages[i];
340 		struct zone *pagezone = page_zone(page);
341 
342 		if (pagezone != zone) {
343 			if (zone)
344 				spin_unlock_irq(&zone->lru_lock);
345 			zone = pagezone;
346 			spin_lock_irq(&zone->lru_lock);
347 		}
348 		BUG_ON(PageLRU(page));
349 		SetPageLRU(page);
350 		add_page_to_inactive_list(zone, page);
351 	}
352 	if (zone)
353 		spin_unlock_irq(&zone->lru_lock);
354 	release_pages(pvec->pages, pvec->nr, pvec->cold);
355 	pagevec_reinit(pvec);
356 }
357 
358 EXPORT_SYMBOL(__pagevec_lru_add);
359 
360 void __pagevec_lru_add_active(struct pagevec *pvec)
361 {
362 	int i;
363 	struct zone *zone = NULL;
364 
365 	for (i = 0; i < pagevec_count(pvec); i++) {
366 		struct page *page = pvec->pages[i];
367 		struct zone *pagezone = page_zone(page);
368 
369 		if (pagezone != zone) {
370 			if (zone)
371 				spin_unlock_irq(&zone->lru_lock);
372 			zone = pagezone;
373 			spin_lock_irq(&zone->lru_lock);
374 		}
375 		BUG_ON(PageLRU(page));
376 		SetPageLRU(page);
377 		BUG_ON(PageActive(page));
378 		SetPageActive(page);
379 		add_page_to_active_list(zone, page);
380 	}
381 	if (zone)
382 		spin_unlock_irq(&zone->lru_lock);
383 	release_pages(pvec->pages, pvec->nr, pvec->cold);
384 	pagevec_reinit(pvec);
385 }
386 
387 /*
388  * Try to drop buffers from the pages in a pagevec
389  */
390 void pagevec_strip(struct pagevec *pvec)
391 {
392 	int i;
393 
394 	for (i = 0; i < pagevec_count(pvec); i++) {
395 		struct page *page = pvec->pages[i];
396 
397 		if (PagePrivate(page) && !TestSetPageLocked(page)) {
398 			if (PagePrivate(page))
399 				try_to_release_page(page, 0);
400 			unlock_page(page);
401 		}
402 	}
403 }
404 
405 /**
406  * pagevec_lookup - gang pagecache lookup
407  * @pvec:	Where the resulting pages are placed
408  * @mapping:	The address_space to search
409  * @start:	The starting page index
410  * @nr_pages:	The maximum number of pages
411  *
412  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
413  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
414  * reference against the pages in @pvec.
415  *
416  * The search returns a group of mapping-contiguous pages with ascending
417  * indexes.  There may be holes in the indices due to not-present pages.
418  *
419  * pagevec_lookup() returns the number of pages which were found.
420  */
421 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
422 		pgoff_t start, unsigned nr_pages)
423 {
424 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
425 	return pagevec_count(pvec);
426 }
427 
428 EXPORT_SYMBOL(pagevec_lookup);
429 
430 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
431 		pgoff_t *index, int tag, unsigned nr_pages)
432 {
433 	pvec->nr = find_get_pages_tag(mapping, index, tag,
434 					nr_pages, pvec->pages);
435 	return pagevec_count(pvec);
436 }
437 
438 EXPORT_SYMBOL(pagevec_lookup_tag);
439 
440 #ifdef CONFIG_SMP
441 /*
442  * We tolerate a little inaccuracy to avoid ping-ponging the counter between
443  * CPUs
444  */
445 #define ACCT_THRESHOLD	max(16, NR_CPUS * 2)
446 
447 static DEFINE_PER_CPU(long, committed_space) = 0;
448 
449 void vm_acct_memory(long pages)
450 {
451 	long *local;
452 
453 	preempt_disable();
454 	local = &__get_cpu_var(committed_space);
455 	*local += pages;
456 	if (*local > ACCT_THRESHOLD || *local < -ACCT_THRESHOLD) {
457 		atomic_add(*local, &vm_committed_space);
458 		*local = 0;
459 	}
460 	preempt_enable();
461 }
462 
463 #ifdef CONFIG_HOTPLUG_CPU
464 
465 /* Drop the CPU's cached committed space back into the central pool. */
466 static int cpu_swap_callback(struct notifier_block *nfb,
467 			     unsigned long action,
468 			     void *hcpu)
469 {
470 	long *committed;
471 
472 	committed = &per_cpu(committed_space, (long)hcpu);
473 	if (action == CPU_DEAD) {
474 		atomic_add(*committed, &vm_committed_space);
475 		*committed = 0;
476 		__lru_add_drain((long)hcpu);
477 	}
478 	return NOTIFY_OK;
479 }
480 #endif /* CONFIG_HOTPLUG_CPU */
481 #endif /* CONFIG_SMP */
482 
483 #ifdef CONFIG_SMP
484 void percpu_counter_mod(struct percpu_counter *fbc, long amount)
485 {
486 	long count;
487 	long *pcount;
488 	int cpu = get_cpu();
489 
490 	pcount = per_cpu_ptr(fbc->counters, cpu);
491 	count = *pcount + amount;
492 	if (count >= FBC_BATCH || count <= -FBC_BATCH) {
493 		spin_lock(&fbc->lock);
494 		fbc->count += count;
495 		*pcount = 0;
496 		spin_unlock(&fbc->lock);
497 	} else {
498 		*pcount = count;
499 	}
500 	put_cpu();
501 }
502 EXPORT_SYMBOL(percpu_counter_mod);
503 
504 /*
505  * Add up all the per-cpu counts, return the result.  This is a more accurate
506  * but much slower version of percpu_counter_read_positive()
507  */
508 long percpu_counter_sum(struct percpu_counter *fbc)
509 {
510 	long ret;
511 	int cpu;
512 
513 	spin_lock(&fbc->lock);
514 	ret = fbc->count;
515 	for_each_possible_cpu(cpu) {
516 		long *pcount = per_cpu_ptr(fbc->counters, cpu);
517 		ret += *pcount;
518 	}
519 	spin_unlock(&fbc->lock);
520 	return ret < 0 ? 0 : ret;
521 }
522 EXPORT_SYMBOL(percpu_counter_sum);
523 #endif
524 
525 /*
526  * Perform any setup for the swap system
527  */
528 void __init swap_setup(void)
529 {
530 	unsigned long megs = num_physpages >> (20 - PAGE_SHIFT);
531 
532 	/* Use a smaller cluster for small-memory machines */
533 	if (megs < 16)
534 		page_cluster = 2;
535 	else
536 		page_cluster = 3;
537 	/*
538 	 * Right now other parts of the system means that we
539 	 * _really_ don't want to cluster much more
540 	 */
541 	hotcpu_notifier(cpu_swap_callback, 0);
542 }
543