xref: /linux/mm/swap.c (revision d9afbb3509900a953f5cf90bc57e793ee80c1108)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swap.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * This file contains the default values for the operation of the
10  * Linux VM subsystem. Fine-tuning documentation can be found in
11  * Documentation/admin-guide/sysctl/vm.rst.
12  * Started 18.12.91
13  * Swap aging added 23.2.95, Stephen Tweedie.
14  * Buffermem limits added 12.3.98, Rik van Riel.
15  */
16 
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 
40 #include "internal.h"
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/pagemap.h>
44 
45 /* How many pages do we try to swap or page in/out together? */
46 int page_cluster;
47 
48 /* Protecting only lru_rotate.pvec which requires disabling interrupts */
49 struct lru_rotate {
50 	local_lock_t lock;
51 	struct pagevec pvec;
52 };
53 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
54 	.lock = INIT_LOCAL_LOCK(lock),
55 };
56 
57 /*
58  * The following struct pagevec are grouped together because they are protected
59  * by disabling preemption (and interrupts remain enabled).
60  */
61 struct lru_pvecs {
62 	local_lock_t lock;
63 	struct pagevec lru_add;
64 	struct pagevec lru_deactivate_file;
65 	struct pagevec lru_deactivate;
66 	struct pagevec lru_lazyfree;
67 #ifdef CONFIG_SMP
68 	struct pagevec activate_page;
69 #endif
70 };
71 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
72 	.lock = INIT_LOCAL_LOCK(lock),
73 };
74 
75 /*
76  * This path almost never happens for VM activity - pages are normally
77  * freed via pagevecs.  But it gets used by networking.
78  */
79 static void __page_cache_release(struct page *page)
80 {
81 	if (PageLRU(page)) {
82 		pg_data_t *pgdat = page_pgdat(page);
83 		struct lruvec *lruvec;
84 		unsigned long flags;
85 
86 		spin_lock_irqsave(&pgdat->lru_lock, flags);
87 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
88 		VM_BUG_ON_PAGE(!PageLRU(page), page);
89 		__ClearPageLRU(page);
90 		del_page_from_lru_list(page, lruvec, page_off_lru(page));
91 		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
92 	}
93 	__ClearPageWaiters(page);
94 }
95 
96 static void __put_single_page(struct page *page)
97 {
98 	__page_cache_release(page);
99 	mem_cgroup_uncharge(page);
100 	free_unref_page(page);
101 }
102 
103 static void __put_compound_page(struct page *page)
104 {
105 	compound_page_dtor *dtor;
106 
107 	/*
108 	 * __page_cache_release() is supposed to be called for thp, not for
109 	 * hugetlb. This is because hugetlb page does never have PageLRU set
110 	 * (it's never listed to any LRU lists) and no memcg routines should
111 	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
112 	 */
113 	if (!PageHuge(page))
114 		__page_cache_release(page);
115 	dtor = get_compound_page_dtor(page);
116 	(*dtor)(page);
117 }
118 
119 void __put_page(struct page *page)
120 {
121 	if (is_zone_device_page(page)) {
122 		put_dev_pagemap(page->pgmap);
123 
124 		/*
125 		 * The page belongs to the device that created pgmap. Do
126 		 * not return it to page allocator.
127 		 */
128 		return;
129 	}
130 
131 	if (unlikely(PageCompound(page)))
132 		__put_compound_page(page);
133 	else
134 		__put_single_page(page);
135 }
136 EXPORT_SYMBOL(__put_page);
137 
138 /**
139  * put_pages_list() - release a list of pages
140  * @pages: list of pages threaded on page->lru
141  *
142  * Release a list of pages which are strung together on page.lru.  Currently
143  * used by read_cache_pages() and related error recovery code.
144  */
145 void put_pages_list(struct list_head *pages)
146 {
147 	while (!list_empty(pages)) {
148 		struct page *victim;
149 
150 		victim = lru_to_page(pages);
151 		list_del(&victim->lru);
152 		put_page(victim);
153 	}
154 }
155 EXPORT_SYMBOL(put_pages_list);
156 
157 /*
158  * get_kernel_pages() - pin kernel pages in memory
159  * @kiov:	An array of struct kvec structures
160  * @nr_segs:	number of segments to pin
161  * @write:	pinning for read/write, currently ignored
162  * @pages:	array that receives pointers to the pages pinned.
163  *		Should be at least nr_segs long.
164  *
165  * Returns number of pages pinned. This may be fewer than the number
166  * requested. If nr_pages is 0 or negative, returns 0. If no pages
167  * were pinned, returns -errno. Each page returned must be released
168  * with a put_page() call when it is finished with.
169  */
170 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
171 		struct page **pages)
172 {
173 	int seg;
174 
175 	for (seg = 0; seg < nr_segs; seg++) {
176 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
177 			return seg;
178 
179 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
180 		get_page(pages[seg]);
181 	}
182 
183 	return seg;
184 }
185 EXPORT_SYMBOL_GPL(get_kernel_pages);
186 
187 /*
188  * get_kernel_page() - pin a kernel page in memory
189  * @start:	starting kernel address
190  * @write:	pinning for read/write, currently ignored
191  * @pages:	array that receives pointer to the page pinned.
192  *		Must be at least nr_segs long.
193  *
194  * Returns 1 if page is pinned. If the page was not pinned, returns
195  * -errno. The page returned must be released with a put_page() call
196  * when it is finished with.
197  */
198 int get_kernel_page(unsigned long start, int write, struct page **pages)
199 {
200 	const struct kvec kiov = {
201 		.iov_base = (void *)start,
202 		.iov_len = PAGE_SIZE
203 	};
204 
205 	return get_kernel_pages(&kiov, 1, write, pages);
206 }
207 EXPORT_SYMBOL_GPL(get_kernel_page);
208 
209 static void pagevec_lru_move_fn(struct pagevec *pvec,
210 	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
211 	void *arg)
212 {
213 	int i;
214 	struct pglist_data *pgdat = NULL;
215 	struct lruvec *lruvec;
216 	unsigned long flags = 0;
217 
218 	for (i = 0; i < pagevec_count(pvec); i++) {
219 		struct page *page = pvec->pages[i];
220 		struct pglist_data *pagepgdat = page_pgdat(page);
221 
222 		if (pagepgdat != pgdat) {
223 			if (pgdat)
224 				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
225 			pgdat = pagepgdat;
226 			spin_lock_irqsave(&pgdat->lru_lock, flags);
227 		}
228 
229 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
230 		(*move_fn)(page, lruvec, arg);
231 	}
232 	if (pgdat)
233 		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
234 	release_pages(pvec->pages, pvec->nr);
235 	pagevec_reinit(pvec);
236 }
237 
238 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
239 				 void *arg)
240 {
241 	int *pgmoved = arg;
242 
243 	if (PageLRU(page) && !PageUnevictable(page)) {
244 		del_page_from_lru_list(page, lruvec, page_lru(page));
245 		ClearPageActive(page);
246 		add_page_to_lru_list_tail(page, lruvec, page_lru(page));
247 		(*pgmoved)++;
248 	}
249 }
250 
251 /*
252  * pagevec_move_tail() must be called with IRQ disabled.
253  * Otherwise this may cause nasty races.
254  */
255 static void pagevec_move_tail(struct pagevec *pvec)
256 {
257 	int pgmoved = 0;
258 
259 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
260 	__count_vm_events(PGROTATED, pgmoved);
261 }
262 
263 /*
264  * Writeback is about to end against a page which has been marked for immediate
265  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
266  * inactive list.
267  */
268 void rotate_reclaimable_page(struct page *page)
269 {
270 	if (!PageLocked(page) && !PageDirty(page) &&
271 	    !PageUnevictable(page) && PageLRU(page)) {
272 		struct pagevec *pvec;
273 		unsigned long flags;
274 
275 		get_page(page);
276 		local_lock_irqsave(&lru_rotate.lock, flags);
277 		pvec = this_cpu_ptr(&lru_rotate.pvec);
278 		if (!pagevec_add(pvec, page) || PageCompound(page))
279 			pagevec_move_tail(pvec);
280 		local_unlock_irqrestore(&lru_rotate.lock, flags);
281 	}
282 }
283 
284 static void update_page_reclaim_stat(struct lruvec *lruvec,
285 				     int file, int rotated)
286 {
287 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
288 
289 	reclaim_stat->recent_scanned[file]++;
290 	if (rotated)
291 		reclaim_stat->recent_rotated[file]++;
292 }
293 
294 static void __activate_page(struct page *page, struct lruvec *lruvec,
295 			    void *arg)
296 {
297 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
298 		int file = page_is_file_lru(page);
299 		int lru = page_lru_base_type(page);
300 
301 		del_page_from_lru_list(page, lruvec, lru);
302 		SetPageActive(page);
303 		lru += LRU_ACTIVE;
304 		add_page_to_lru_list(page, lruvec, lru);
305 		trace_mm_lru_activate(page);
306 
307 		__count_vm_event(PGACTIVATE);
308 		update_page_reclaim_stat(lruvec, file, 1);
309 	}
310 }
311 
312 #ifdef CONFIG_SMP
313 static void activate_page_drain(int cpu)
314 {
315 	struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
316 
317 	if (pagevec_count(pvec))
318 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
319 }
320 
321 static bool need_activate_page_drain(int cpu)
322 {
323 	return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
324 }
325 
326 void activate_page(struct page *page)
327 {
328 	page = compound_head(page);
329 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
330 		struct pagevec *pvec;
331 
332 		local_lock(&lru_pvecs.lock);
333 		pvec = this_cpu_ptr(&lru_pvecs.activate_page);
334 		get_page(page);
335 		if (!pagevec_add(pvec, page) || PageCompound(page))
336 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
337 		local_unlock(&lru_pvecs.lock);
338 	}
339 }
340 
341 #else
342 static inline void activate_page_drain(int cpu)
343 {
344 }
345 
346 void activate_page(struct page *page)
347 {
348 	pg_data_t *pgdat = page_pgdat(page);
349 
350 	page = compound_head(page);
351 	spin_lock_irq(&pgdat->lru_lock);
352 	__activate_page(page, mem_cgroup_page_lruvec(page, pgdat), NULL);
353 	spin_unlock_irq(&pgdat->lru_lock);
354 }
355 #endif
356 
357 static void __lru_cache_activate_page(struct page *page)
358 {
359 	struct pagevec *pvec;
360 	int i;
361 
362 	local_lock(&lru_pvecs.lock);
363 	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
364 
365 	/*
366 	 * Search backwards on the optimistic assumption that the page being
367 	 * activated has just been added to this pagevec. Note that only
368 	 * the local pagevec is examined as a !PageLRU page could be in the
369 	 * process of being released, reclaimed, migrated or on a remote
370 	 * pagevec that is currently being drained. Furthermore, marking
371 	 * a remote pagevec's page PageActive potentially hits a race where
372 	 * a page is marked PageActive just after it is added to the inactive
373 	 * list causing accounting errors and BUG_ON checks to trigger.
374 	 */
375 	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
376 		struct page *pagevec_page = pvec->pages[i];
377 
378 		if (pagevec_page == page) {
379 			SetPageActive(page);
380 			break;
381 		}
382 	}
383 
384 	local_unlock(&lru_pvecs.lock);
385 }
386 
387 /*
388  * Mark a page as having seen activity.
389  *
390  * inactive,unreferenced	->	inactive,referenced
391  * inactive,referenced		->	active,unreferenced
392  * active,unreferenced		->	active,referenced
393  *
394  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
395  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
396  */
397 void mark_page_accessed(struct page *page)
398 {
399 	page = compound_head(page);
400 
401 	if (!PageReferenced(page)) {
402 		SetPageReferenced(page);
403 	} else if (PageUnevictable(page)) {
404 		/*
405 		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
406 		 * this list is never rotated or maintained, so marking an
407 		 * evictable page accessed has no effect.
408 		 */
409 	} else if (!PageActive(page)) {
410 		/*
411 		 * If the page is on the LRU, queue it for activation via
412 		 * lru_pvecs.activate_page. Otherwise, assume the page is on a
413 		 * pagevec, mark it active and it'll be moved to the active
414 		 * LRU on the next drain.
415 		 */
416 		if (PageLRU(page))
417 			activate_page(page);
418 		else
419 			__lru_cache_activate_page(page);
420 		ClearPageReferenced(page);
421 		if (page_is_file_lru(page))
422 			workingset_activation(page);
423 	}
424 	if (page_is_idle(page))
425 		clear_page_idle(page);
426 }
427 EXPORT_SYMBOL(mark_page_accessed);
428 
429 static void __lru_cache_add(struct page *page)
430 {
431 	struct pagevec *pvec;
432 
433 	local_lock(&lru_pvecs.lock);
434 	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
435 	get_page(page);
436 	if (!pagevec_add(pvec, page) || PageCompound(page))
437 		__pagevec_lru_add(pvec);
438 	local_unlock(&lru_pvecs.lock);
439 }
440 
441 /**
442  * lru_cache_add_anon - add a page to the page lists
443  * @page: the page to add
444  */
445 void lru_cache_add_anon(struct page *page)
446 {
447 	if (PageActive(page))
448 		ClearPageActive(page);
449 	__lru_cache_add(page);
450 }
451 
452 void lru_cache_add_file(struct page *page)
453 {
454 	if (PageActive(page))
455 		ClearPageActive(page);
456 	__lru_cache_add(page);
457 }
458 EXPORT_SYMBOL(lru_cache_add_file);
459 
460 /**
461  * lru_cache_add - add a page to a page list
462  * @page: the page to be added to the LRU.
463  *
464  * Queue the page for addition to the LRU via pagevec. The decision on whether
465  * to add the page to the [in]active [file|anon] list is deferred until the
466  * pagevec is drained. This gives a chance for the caller of lru_cache_add()
467  * have the page added to the active list using mark_page_accessed().
468  */
469 void lru_cache_add(struct page *page)
470 {
471 	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
472 	VM_BUG_ON_PAGE(PageLRU(page), page);
473 	__lru_cache_add(page);
474 }
475 
476 /**
477  * lru_cache_add_active_or_unevictable
478  * @page:  the page to be added to LRU
479  * @vma:   vma in which page is mapped for determining reclaimability
480  *
481  * Place @page on the active or unevictable LRU list, depending on its
482  * evictability.  Note that if the page is not evictable, it goes
483  * directly back onto it's zone's unevictable list, it does NOT use a
484  * per cpu pagevec.
485  */
486 void lru_cache_add_active_or_unevictable(struct page *page,
487 					 struct vm_area_struct *vma)
488 {
489 	VM_BUG_ON_PAGE(PageLRU(page), page);
490 
491 	if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED))
492 		SetPageActive(page);
493 	else if (!TestSetPageMlocked(page)) {
494 		/*
495 		 * We use the irq-unsafe __mod_zone_page_stat because this
496 		 * counter is not modified from interrupt context, and the pte
497 		 * lock is held(spinlock), which implies preemption disabled.
498 		 */
499 		__mod_zone_page_state(page_zone(page), NR_MLOCK,
500 				    hpage_nr_pages(page));
501 		count_vm_event(UNEVICTABLE_PGMLOCKED);
502 	}
503 	lru_cache_add(page);
504 }
505 
506 /*
507  * If the page can not be invalidated, it is moved to the
508  * inactive list to speed up its reclaim.  It is moved to the
509  * head of the list, rather than the tail, to give the flusher
510  * threads some time to write it out, as this is much more
511  * effective than the single-page writeout from reclaim.
512  *
513  * If the page isn't page_mapped and dirty/writeback, the page
514  * could reclaim asap using PG_reclaim.
515  *
516  * 1. active, mapped page -> none
517  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
518  * 3. inactive, mapped page -> none
519  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
520  * 5. inactive, clean -> inactive, tail
521  * 6. Others -> none
522  *
523  * In 4, why it moves inactive's head, the VM expects the page would
524  * be write it out by flusher threads as this is much more effective
525  * than the single-page writeout from reclaim.
526  */
527 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
528 			      void *arg)
529 {
530 	int lru, file;
531 	bool active;
532 
533 	if (!PageLRU(page))
534 		return;
535 
536 	if (PageUnevictable(page))
537 		return;
538 
539 	/* Some processes are using the page */
540 	if (page_mapped(page))
541 		return;
542 
543 	active = PageActive(page);
544 	file = page_is_file_lru(page);
545 	lru = page_lru_base_type(page);
546 
547 	del_page_from_lru_list(page, lruvec, lru + active);
548 	ClearPageActive(page);
549 	ClearPageReferenced(page);
550 
551 	if (PageWriteback(page) || PageDirty(page)) {
552 		/*
553 		 * PG_reclaim could be raced with end_page_writeback
554 		 * It can make readahead confusing.  But race window
555 		 * is _really_ small and  it's non-critical problem.
556 		 */
557 		add_page_to_lru_list(page, lruvec, lru);
558 		SetPageReclaim(page);
559 	} else {
560 		/*
561 		 * The page's writeback ends up during pagevec
562 		 * We moves tha page into tail of inactive.
563 		 */
564 		add_page_to_lru_list_tail(page, lruvec, lru);
565 		__count_vm_event(PGROTATED);
566 	}
567 
568 	if (active)
569 		__count_vm_event(PGDEACTIVATE);
570 	update_page_reclaim_stat(lruvec, file, 0);
571 }
572 
573 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
574 			    void *arg)
575 {
576 	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
577 		int file = page_is_file_lru(page);
578 		int lru = page_lru_base_type(page);
579 
580 		del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
581 		ClearPageActive(page);
582 		ClearPageReferenced(page);
583 		add_page_to_lru_list(page, lruvec, lru);
584 
585 		__count_vm_events(PGDEACTIVATE, hpage_nr_pages(page));
586 		update_page_reclaim_stat(lruvec, file, 0);
587 	}
588 }
589 
590 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
591 			    void *arg)
592 {
593 	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
594 	    !PageSwapCache(page) && !PageUnevictable(page)) {
595 		bool active = PageActive(page);
596 
597 		del_page_from_lru_list(page, lruvec,
598 				       LRU_INACTIVE_ANON + active);
599 		ClearPageActive(page);
600 		ClearPageReferenced(page);
601 		/*
602 		 * Lazyfree pages are clean anonymous pages.  They have
603 		 * PG_swapbacked flag cleared, to distinguish them from normal
604 		 * anonymous pages
605 		 */
606 		ClearPageSwapBacked(page);
607 		add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
608 
609 		__count_vm_events(PGLAZYFREE, hpage_nr_pages(page));
610 		count_memcg_page_event(page, PGLAZYFREE);
611 		update_page_reclaim_stat(lruvec, 1, 0);
612 	}
613 }
614 
615 /*
616  * Drain pages out of the cpu's pagevecs.
617  * Either "cpu" is the current CPU, and preemption has already been
618  * disabled; or "cpu" is being hot-unplugged, and is already dead.
619  */
620 void lru_add_drain_cpu(int cpu)
621 {
622 	struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
623 
624 	if (pagevec_count(pvec))
625 		__pagevec_lru_add(pvec);
626 
627 	pvec = &per_cpu(lru_rotate.pvec, cpu);
628 	if (pagevec_count(pvec)) {
629 		unsigned long flags;
630 
631 		/* No harm done if a racing interrupt already did this */
632 		local_lock_irqsave(&lru_rotate.lock, flags);
633 		pagevec_move_tail(pvec);
634 		local_unlock_irqrestore(&lru_rotate.lock, flags);
635 	}
636 
637 	pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
638 	if (pagevec_count(pvec))
639 		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
640 
641 	pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
642 	if (pagevec_count(pvec))
643 		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
644 
645 	pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
646 	if (pagevec_count(pvec))
647 		pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
648 
649 	activate_page_drain(cpu);
650 }
651 
652 /**
653  * deactivate_file_page - forcefully deactivate a file page
654  * @page: page to deactivate
655  *
656  * This function hints the VM that @page is a good reclaim candidate,
657  * for example if its invalidation fails due to the page being dirty
658  * or under writeback.
659  */
660 void deactivate_file_page(struct page *page)
661 {
662 	/*
663 	 * In a workload with many unevictable page such as mprotect,
664 	 * unevictable page deactivation for accelerating reclaim is pointless.
665 	 */
666 	if (PageUnevictable(page))
667 		return;
668 
669 	if (likely(get_page_unless_zero(page))) {
670 		struct pagevec *pvec;
671 
672 		local_lock(&lru_pvecs.lock);
673 		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
674 
675 		if (!pagevec_add(pvec, page) || PageCompound(page))
676 			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
677 		local_unlock(&lru_pvecs.lock);
678 	}
679 }
680 
681 /*
682  * deactivate_page - deactivate a page
683  * @page: page to deactivate
684  *
685  * deactivate_page() moves @page to the inactive list if @page was on the active
686  * list and was not an unevictable page.  This is done to accelerate the reclaim
687  * of @page.
688  */
689 void deactivate_page(struct page *page)
690 {
691 	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
692 		struct pagevec *pvec;
693 
694 		local_lock(&lru_pvecs.lock);
695 		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
696 		get_page(page);
697 		if (!pagevec_add(pvec, page) || PageCompound(page))
698 			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
699 		local_unlock(&lru_pvecs.lock);
700 	}
701 }
702 
703 /**
704  * mark_page_lazyfree - make an anon page lazyfree
705  * @page: page to deactivate
706  *
707  * mark_page_lazyfree() moves @page to the inactive file list.
708  * This is done to accelerate the reclaim of @page.
709  */
710 void mark_page_lazyfree(struct page *page)
711 {
712 	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
713 	    !PageSwapCache(page) && !PageUnevictable(page)) {
714 		struct pagevec *pvec;
715 
716 		local_lock(&lru_pvecs.lock);
717 		pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
718 		get_page(page);
719 		if (!pagevec_add(pvec, page) || PageCompound(page))
720 			pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
721 		local_unlock(&lru_pvecs.lock);
722 	}
723 }
724 
725 void lru_add_drain(void)
726 {
727 	local_lock(&lru_pvecs.lock);
728 	lru_add_drain_cpu(smp_processor_id());
729 	local_unlock(&lru_pvecs.lock);
730 }
731 
732 void lru_add_drain_cpu_zone(struct zone *zone)
733 {
734 	local_lock(&lru_pvecs.lock);
735 	lru_add_drain_cpu(smp_processor_id());
736 	drain_local_pages(zone);
737 	local_unlock(&lru_pvecs.lock);
738 }
739 
740 #ifdef CONFIG_SMP
741 
742 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
743 
744 static void lru_add_drain_per_cpu(struct work_struct *dummy)
745 {
746 	lru_add_drain();
747 }
748 
749 /*
750  * Doesn't need any cpu hotplug locking because we do rely on per-cpu
751  * kworkers being shut down before our page_alloc_cpu_dead callback is
752  * executed on the offlined cpu.
753  * Calling this function with cpu hotplug locks held can actually lead
754  * to obscure indirect dependencies via WQ context.
755  */
756 void lru_add_drain_all(void)
757 {
758 	static seqcount_t seqcount = SEQCNT_ZERO(seqcount);
759 	static DEFINE_MUTEX(lock);
760 	static struct cpumask has_work;
761 	int cpu, seq;
762 
763 	/*
764 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
765 	 * initialized.
766 	 */
767 	if (WARN_ON(!mm_percpu_wq))
768 		return;
769 
770 	seq = raw_read_seqcount_latch(&seqcount);
771 
772 	mutex_lock(&lock);
773 
774 	/*
775 	 * Piggyback on drain started and finished while we waited for lock:
776 	 * all pages pended at the time of our enter were drained from vectors.
777 	 */
778 	if (__read_seqcount_retry(&seqcount, seq))
779 		goto done;
780 
781 	raw_write_seqcount_latch(&seqcount);
782 
783 	cpumask_clear(&has_work);
784 
785 	for_each_online_cpu(cpu) {
786 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
787 
788 		if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
789 		    pagevec_count(&per_cpu(lru_rotate.pvec, cpu)) ||
790 		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
791 		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
792 		    pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
793 		    need_activate_page_drain(cpu)) {
794 			INIT_WORK(work, lru_add_drain_per_cpu);
795 			queue_work_on(cpu, mm_percpu_wq, work);
796 			cpumask_set_cpu(cpu, &has_work);
797 		}
798 	}
799 
800 	for_each_cpu(cpu, &has_work)
801 		flush_work(&per_cpu(lru_add_drain_work, cpu));
802 
803 done:
804 	mutex_unlock(&lock);
805 }
806 #else
807 void lru_add_drain_all(void)
808 {
809 	lru_add_drain();
810 }
811 #endif
812 
813 /**
814  * release_pages - batched put_page()
815  * @pages: array of pages to release
816  * @nr: number of pages
817  *
818  * Decrement the reference count on all the pages in @pages.  If it
819  * fell to zero, remove the page from the LRU and free it.
820  */
821 void release_pages(struct page **pages, int nr)
822 {
823 	int i;
824 	LIST_HEAD(pages_to_free);
825 	struct pglist_data *locked_pgdat = NULL;
826 	struct lruvec *lruvec;
827 	unsigned long uninitialized_var(flags);
828 	unsigned int uninitialized_var(lock_batch);
829 
830 	for (i = 0; i < nr; i++) {
831 		struct page *page = pages[i];
832 
833 		/*
834 		 * Make sure the IRQ-safe lock-holding time does not get
835 		 * excessive with a continuous string of pages from the
836 		 * same pgdat. The lock is held only if pgdat != NULL.
837 		 */
838 		if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
839 			spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
840 			locked_pgdat = NULL;
841 		}
842 
843 		if (is_huge_zero_page(page))
844 			continue;
845 
846 		if (is_zone_device_page(page)) {
847 			if (locked_pgdat) {
848 				spin_unlock_irqrestore(&locked_pgdat->lru_lock,
849 						       flags);
850 				locked_pgdat = NULL;
851 			}
852 			/*
853 			 * ZONE_DEVICE pages that return 'false' from
854 			 * put_devmap_managed_page() do not require special
855 			 * processing, and instead, expect a call to
856 			 * put_page_testzero().
857 			 */
858 			if (page_is_devmap_managed(page)) {
859 				put_devmap_managed_page(page);
860 				continue;
861 			}
862 		}
863 
864 		page = compound_head(page);
865 		if (!put_page_testzero(page))
866 			continue;
867 
868 		if (PageCompound(page)) {
869 			if (locked_pgdat) {
870 				spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
871 				locked_pgdat = NULL;
872 			}
873 			__put_compound_page(page);
874 			continue;
875 		}
876 
877 		if (PageLRU(page)) {
878 			struct pglist_data *pgdat = page_pgdat(page);
879 
880 			if (pgdat != locked_pgdat) {
881 				if (locked_pgdat)
882 					spin_unlock_irqrestore(&locked_pgdat->lru_lock,
883 									flags);
884 				lock_batch = 0;
885 				locked_pgdat = pgdat;
886 				spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
887 			}
888 
889 			lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
890 			VM_BUG_ON_PAGE(!PageLRU(page), page);
891 			__ClearPageLRU(page);
892 			del_page_from_lru_list(page, lruvec, page_off_lru(page));
893 		}
894 
895 		/* Clear Active bit in case of parallel mark_page_accessed */
896 		__ClearPageActive(page);
897 		__ClearPageWaiters(page);
898 
899 		list_add(&page->lru, &pages_to_free);
900 	}
901 	if (locked_pgdat)
902 		spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
903 
904 	mem_cgroup_uncharge_list(&pages_to_free);
905 	free_unref_page_list(&pages_to_free);
906 }
907 EXPORT_SYMBOL(release_pages);
908 
909 /*
910  * The pages which we're about to release may be in the deferred lru-addition
911  * queues.  That would prevent them from really being freed right now.  That's
912  * OK from a correctness point of view but is inefficient - those pages may be
913  * cache-warm and we want to give them back to the page allocator ASAP.
914  *
915  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
916  * and __pagevec_lru_add_active() call release_pages() directly to avoid
917  * mutual recursion.
918  */
919 void __pagevec_release(struct pagevec *pvec)
920 {
921 	if (!pvec->percpu_pvec_drained) {
922 		lru_add_drain();
923 		pvec->percpu_pvec_drained = true;
924 	}
925 	release_pages(pvec->pages, pagevec_count(pvec));
926 	pagevec_reinit(pvec);
927 }
928 EXPORT_SYMBOL(__pagevec_release);
929 
930 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
931 /* used by __split_huge_page_refcount() */
932 void lru_add_page_tail(struct page *page, struct page *page_tail,
933 		       struct lruvec *lruvec, struct list_head *list)
934 {
935 	const int file = 0;
936 
937 	VM_BUG_ON_PAGE(!PageHead(page), page);
938 	VM_BUG_ON_PAGE(PageCompound(page_tail), page);
939 	VM_BUG_ON_PAGE(PageLRU(page_tail), page);
940 	lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock);
941 
942 	if (!list)
943 		SetPageLRU(page_tail);
944 
945 	if (likely(PageLRU(page)))
946 		list_add_tail(&page_tail->lru, &page->lru);
947 	else if (list) {
948 		/* page reclaim is reclaiming a huge page */
949 		get_page(page_tail);
950 		list_add_tail(&page_tail->lru, list);
951 	} else {
952 		/*
953 		 * Head page has not yet been counted, as an hpage,
954 		 * so we must account for each subpage individually.
955 		 *
956 		 * Put page_tail on the list at the correct position
957 		 * so they all end up in order.
958 		 */
959 		add_page_to_lru_list_tail(page_tail, lruvec,
960 					  page_lru(page_tail));
961 	}
962 
963 	if (!PageUnevictable(page))
964 		update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
965 }
966 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
967 
968 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
969 				 void *arg)
970 {
971 	enum lru_list lru;
972 	int was_unevictable = TestClearPageUnevictable(page);
973 
974 	VM_BUG_ON_PAGE(PageLRU(page), page);
975 
976 	/*
977 	 * Page becomes evictable in two ways:
978 	 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
979 	 * 2) Before acquiring LRU lock to put the page to correct LRU and then
980 	 *   a) do PageLRU check with lock [check_move_unevictable_pages]
981 	 *   b) do PageLRU check before lock [clear_page_mlock]
982 	 *
983 	 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
984 	 * following strict ordering:
985 	 *
986 	 * #0: __pagevec_lru_add_fn		#1: clear_page_mlock
987 	 *
988 	 * SetPageLRU()				TestClearPageMlocked()
989 	 * smp_mb() // explicit ordering	// above provides strict
990 	 *					// ordering
991 	 * PageMlocked()			PageLRU()
992 	 *
993 	 *
994 	 * if '#1' does not observe setting of PG_lru by '#0' and fails
995 	 * isolation, the explicit barrier will make sure that page_evictable
996 	 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
997 	 * can be reordered after PageMlocked check and can make '#1' to fail
998 	 * the isolation of the page whose Mlocked bit is cleared (#0 is also
999 	 * looking at the same page) and the evictable page will be stranded
1000 	 * in an unevictable LRU.
1001 	 */
1002 	SetPageLRU(page);
1003 	smp_mb__after_atomic();
1004 
1005 	if (page_evictable(page)) {
1006 		lru = page_lru(page);
1007 		update_page_reclaim_stat(lruvec, page_is_file_lru(page),
1008 					 PageActive(page));
1009 		if (was_unevictable)
1010 			count_vm_event(UNEVICTABLE_PGRESCUED);
1011 	} else {
1012 		lru = LRU_UNEVICTABLE;
1013 		ClearPageActive(page);
1014 		SetPageUnevictable(page);
1015 		if (!was_unevictable)
1016 			count_vm_event(UNEVICTABLE_PGCULLED);
1017 	}
1018 
1019 	add_page_to_lru_list(page, lruvec, lru);
1020 	trace_mm_lru_insertion(page, lru);
1021 }
1022 
1023 /*
1024  * Add the passed pages to the LRU, then drop the caller's refcount
1025  * on them.  Reinitialises the caller's pagevec.
1026  */
1027 void __pagevec_lru_add(struct pagevec *pvec)
1028 {
1029 	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1030 }
1031 
1032 /**
1033  * pagevec_lookup_entries - gang pagecache lookup
1034  * @pvec:	Where the resulting entries are placed
1035  * @mapping:	The address_space to search
1036  * @start:	The starting entry index
1037  * @nr_entries:	The maximum number of pages
1038  * @indices:	The cache indices corresponding to the entries in @pvec
1039  *
1040  * pagevec_lookup_entries() will search for and return a group of up
1041  * to @nr_pages pages and shadow entries in the mapping.  All
1042  * entries are placed in @pvec.  pagevec_lookup_entries() takes a
1043  * reference against actual pages in @pvec.
1044  *
1045  * The search returns a group of mapping-contiguous entries with
1046  * ascending indexes.  There may be holes in the indices due to
1047  * not-present entries.
1048  *
1049  * Only one subpage of a Transparent Huge Page is returned in one call:
1050  * allowing truncate_inode_pages_range() to evict the whole THP without
1051  * cycling through a pagevec of extra references.
1052  *
1053  * pagevec_lookup_entries() returns the number of entries which were
1054  * found.
1055  */
1056 unsigned pagevec_lookup_entries(struct pagevec *pvec,
1057 				struct address_space *mapping,
1058 				pgoff_t start, unsigned nr_entries,
1059 				pgoff_t *indices)
1060 {
1061 	pvec->nr = find_get_entries(mapping, start, nr_entries,
1062 				    pvec->pages, indices);
1063 	return pagevec_count(pvec);
1064 }
1065 
1066 /**
1067  * pagevec_remove_exceptionals - pagevec exceptionals pruning
1068  * @pvec:	The pagevec to prune
1069  *
1070  * pagevec_lookup_entries() fills both pages and exceptional radix
1071  * tree entries into the pagevec.  This function prunes all
1072  * exceptionals from @pvec without leaving holes, so that it can be
1073  * passed on to page-only pagevec operations.
1074  */
1075 void pagevec_remove_exceptionals(struct pagevec *pvec)
1076 {
1077 	int i, j;
1078 
1079 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1080 		struct page *page = pvec->pages[i];
1081 		if (!xa_is_value(page))
1082 			pvec->pages[j++] = page;
1083 	}
1084 	pvec->nr = j;
1085 }
1086 
1087 /**
1088  * pagevec_lookup_range - gang pagecache lookup
1089  * @pvec:	Where the resulting pages are placed
1090  * @mapping:	The address_space to search
1091  * @start:	The starting page index
1092  * @end:	The final page index
1093  *
1094  * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1095  * pages in the mapping starting from index @start and upto index @end
1096  * (inclusive).  The pages are placed in @pvec.  pagevec_lookup() takes a
1097  * reference against the pages in @pvec.
1098  *
1099  * The search returns a group of mapping-contiguous pages with ascending
1100  * indexes.  There may be holes in the indices due to not-present pages. We
1101  * also update @start to index the next page for the traversal.
1102  *
1103  * pagevec_lookup_range() returns the number of pages which were found. If this
1104  * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1105  * reached.
1106  */
1107 unsigned pagevec_lookup_range(struct pagevec *pvec,
1108 		struct address_space *mapping, pgoff_t *start, pgoff_t end)
1109 {
1110 	pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1111 					pvec->pages);
1112 	return pagevec_count(pvec);
1113 }
1114 EXPORT_SYMBOL(pagevec_lookup_range);
1115 
1116 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1117 		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1118 		xa_mark_t tag)
1119 {
1120 	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1121 					PAGEVEC_SIZE, pvec->pages);
1122 	return pagevec_count(pvec);
1123 }
1124 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1125 
1126 unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1127 		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1128 		xa_mark_t tag, unsigned max_pages)
1129 {
1130 	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1131 		min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1132 	return pagevec_count(pvec);
1133 }
1134 EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1135 /*
1136  * Perform any setup for the swap system
1137  */
1138 void __init swap_setup(void)
1139 {
1140 	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1141 
1142 	/* Use a smaller cluster for small-memory machines */
1143 	if (megs < 16)
1144 		page_cluster = 2;
1145 	else
1146 		page_cluster = 3;
1147 	/*
1148 	 * Right now other parts of the system means that we
1149 	 * _really_ don't want to cluster much more
1150 	 */
1151 }
1152 
1153 #ifdef CONFIG_DEV_PAGEMAP_OPS
1154 void put_devmap_managed_page(struct page *page)
1155 {
1156 	int count;
1157 
1158 	if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1159 		return;
1160 
1161 	count = page_ref_dec_return(page);
1162 
1163 	/*
1164 	 * devmap page refcounts are 1-based, rather than 0-based: if
1165 	 * refcount is 1, then the page is free and the refcount is
1166 	 * stable because nobody holds a reference on the page.
1167 	 */
1168 	if (count == 1)
1169 		free_devmap_managed_page(page);
1170 	else if (!count)
1171 		__put_page(page);
1172 }
1173 EXPORT_SYMBOL(put_devmap_managed_page);
1174 #endif
1175