1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swap.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * This file contains the default values for the operation of the 10 * Linux VM subsystem. Fine-tuning documentation can be found in 11 * Documentation/admin-guide/sysctl/vm.rst. 12 * Started 18.12.91 13 * Swap aging added 23.2.95, Stephen Tweedie. 14 * Buffermem limits added 12.3.98, Rik van Riel. 15 */ 16 17 #include <linux/mm.h> 18 #include <linux/sched.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/mman.h> 22 #include <linux/pagemap.h> 23 #include <linux/pagevec.h> 24 #include <linux/init.h> 25 #include <linux/export.h> 26 #include <linux/mm_inline.h> 27 #include <linux/percpu_counter.h> 28 #include <linux/memremap.h> 29 #include <linux/percpu.h> 30 #include <linux/cpu.h> 31 #include <linux/notifier.h> 32 #include <linux/backing-dev.h> 33 #include <linux/memcontrol.h> 34 #include <linux/gfp.h> 35 #include <linux/uio.h> 36 #include <linux/hugetlb.h> 37 #include <linux/page_idle.h> 38 #include <linux/local_lock.h> 39 40 #include "internal.h" 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/pagemap.h> 44 45 /* How many pages do we try to swap or page in/out together? */ 46 int page_cluster; 47 48 /* Protecting only lru_rotate.pvec which requires disabling interrupts */ 49 struct lru_rotate { 50 local_lock_t lock; 51 struct pagevec pvec; 52 }; 53 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = { 54 .lock = INIT_LOCAL_LOCK(lock), 55 }; 56 57 /* 58 * The following struct pagevec are grouped together because they are protected 59 * by disabling preemption (and interrupts remain enabled). 60 */ 61 struct lru_pvecs { 62 local_lock_t lock; 63 struct pagevec lru_add; 64 struct pagevec lru_deactivate_file; 65 struct pagevec lru_deactivate; 66 struct pagevec lru_lazyfree; 67 #ifdef CONFIG_SMP 68 struct pagevec activate_page; 69 #endif 70 }; 71 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = { 72 .lock = INIT_LOCAL_LOCK(lock), 73 }; 74 75 /* 76 * This path almost never happens for VM activity - pages are normally 77 * freed via pagevecs. But it gets used by networking. 78 */ 79 static void __page_cache_release(struct page *page) 80 { 81 if (PageLRU(page)) { 82 pg_data_t *pgdat = page_pgdat(page); 83 struct lruvec *lruvec; 84 unsigned long flags; 85 86 spin_lock_irqsave(&pgdat->lru_lock, flags); 87 lruvec = mem_cgroup_page_lruvec(page, pgdat); 88 VM_BUG_ON_PAGE(!PageLRU(page), page); 89 __ClearPageLRU(page); 90 del_page_from_lru_list(page, lruvec, page_off_lru(page)); 91 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 92 } 93 __ClearPageWaiters(page); 94 } 95 96 static void __put_single_page(struct page *page) 97 { 98 __page_cache_release(page); 99 mem_cgroup_uncharge(page); 100 free_unref_page(page); 101 } 102 103 static void __put_compound_page(struct page *page) 104 { 105 compound_page_dtor *dtor; 106 107 /* 108 * __page_cache_release() is supposed to be called for thp, not for 109 * hugetlb. This is because hugetlb page does never have PageLRU set 110 * (it's never listed to any LRU lists) and no memcg routines should 111 * be called for hugetlb (it has a separate hugetlb_cgroup.) 112 */ 113 if (!PageHuge(page)) 114 __page_cache_release(page); 115 dtor = get_compound_page_dtor(page); 116 (*dtor)(page); 117 } 118 119 void __put_page(struct page *page) 120 { 121 if (is_zone_device_page(page)) { 122 put_dev_pagemap(page->pgmap); 123 124 /* 125 * The page belongs to the device that created pgmap. Do 126 * not return it to page allocator. 127 */ 128 return; 129 } 130 131 if (unlikely(PageCompound(page))) 132 __put_compound_page(page); 133 else 134 __put_single_page(page); 135 } 136 EXPORT_SYMBOL(__put_page); 137 138 /** 139 * put_pages_list() - release a list of pages 140 * @pages: list of pages threaded on page->lru 141 * 142 * Release a list of pages which are strung together on page.lru. Currently 143 * used by read_cache_pages() and related error recovery code. 144 */ 145 void put_pages_list(struct list_head *pages) 146 { 147 while (!list_empty(pages)) { 148 struct page *victim; 149 150 victim = lru_to_page(pages); 151 list_del(&victim->lru); 152 put_page(victim); 153 } 154 } 155 EXPORT_SYMBOL(put_pages_list); 156 157 /* 158 * get_kernel_pages() - pin kernel pages in memory 159 * @kiov: An array of struct kvec structures 160 * @nr_segs: number of segments to pin 161 * @write: pinning for read/write, currently ignored 162 * @pages: array that receives pointers to the pages pinned. 163 * Should be at least nr_segs long. 164 * 165 * Returns number of pages pinned. This may be fewer than the number 166 * requested. If nr_pages is 0 or negative, returns 0. If no pages 167 * were pinned, returns -errno. Each page returned must be released 168 * with a put_page() call when it is finished with. 169 */ 170 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, 171 struct page **pages) 172 { 173 int seg; 174 175 for (seg = 0; seg < nr_segs; seg++) { 176 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) 177 return seg; 178 179 pages[seg] = kmap_to_page(kiov[seg].iov_base); 180 get_page(pages[seg]); 181 } 182 183 return seg; 184 } 185 EXPORT_SYMBOL_GPL(get_kernel_pages); 186 187 /* 188 * get_kernel_page() - pin a kernel page in memory 189 * @start: starting kernel address 190 * @write: pinning for read/write, currently ignored 191 * @pages: array that receives pointer to the page pinned. 192 * Must be at least nr_segs long. 193 * 194 * Returns 1 if page is pinned. If the page was not pinned, returns 195 * -errno. The page returned must be released with a put_page() call 196 * when it is finished with. 197 */ 198 int get_kernel_page(unsigned long start, int write, struct page **pages) 199 { 200 const struct kvec kiov = { 201 .iov_base = (void *)start, 202 .iov_len = PAGE_SIZE 203 }; 204 205 return get_kernel_pages(&kiov, 1, write, pages); 206 } 207 EXPORT_SYMBOL_GPL(get_kernel_page); 208 209 static void pagevec_lru_move_fn(struct pagevec *pvec, 210 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg), 211 void *arg) 212 { 213 int i; 214 struct pglist_data *pgdat = NULL; 215 struct lruvec *lruvec; 216 unsigned long flags = 0; 217 218 for (i = 0; i < pagevec_count(pvec); i++) { 219 struct page *page = pvec->pages[i]; 220 struct pglist_data *pagepgdat = page_pgdat(page); 221 222 if (pagepgdat != pgdat) { 223 if (pgdat) 224 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 225 pgdat = pagepgdat; 226 spin_lock_irqsave(&pgdat->lru_lock, flags); 227 } 228 229 lruvec = mem_cgroup_page_lruvec(page, pgdat); 230 (*move_fn)(page, lruvec, arg); 231 } 232 if (pgdat) 233 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 234 release_pages(pvec->pages, pvec->nr); 235 pagevec_reinit(pvec); 236 } 237 238 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec, 239 void *arg) 240 { 241 int *pgmoved = arg; 242 243 if (PageLRU(page) && !PageUnevictable(page)) { 244 del_page_from_lru_list(page, lruvec, page_lru(page)); 245 ClearPageActive(page); 246 add_page_to_lru_list_tail(page, lruvec, page_lru(page)); 247 (*pgmoved)++; 248 } 249 } 250 251 /* 252 * pagevec_move_tail() must be called with IRQ disabled. 253 * Otherwise this may cause nasty races. 254 */ 255 static void pagevec_move_tail(struct pagevec *pvec) 256 { 257 int pgmoved = 0; 258 259 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved); 260 __count_vm_events(PGROTATED, pgmoved); 261 } 262 263 /* 264 * Writeback is about to end against a page which has been marked for immediate 265 * reclaim. If it still appears to be reclaimable, move it to the tail of the 266 * inactive list. 267 */ 268 void rotate_reclaimable_page(struct page *page) 269 { 270 if (!PageLocked(page) && !PageDirty(page) && 271 !PageUnevictable(page) && PageLRU(page)) { 272 struct pagevec *pvec; 273 unsigned long flags; 274 275 get_page(page); 276 local_lock_irqsave(&lru_rotate.lock, flags); 277 pvec = this_cpu_ptr(&lru_rotate.pvec); 278 if (!pagevec_add(pvec, page) || PageCompound(page)) 279 pagevec_move_tail(pvec); 280 local_unlock_irqrestore(&lru_rotate.lock, flags); 281 } 282 } 283 284 static void update_page_reclaim_stat(struct lruvec *lruvec, 285 int file, int rotated) 286 { 287 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 288 289 reclaim_stat->recent_scanned[file]++; 290 if (rotated) 291 reclaim_stat->recent_rotated[file]++; 292 } 293 294 static void __activate_page(struct page *page, struct lruvec *lruvec, 295 void *arg) 296 { 297 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 298 int file = page_is_file_lru(page); 299 int lru = page_lru_base_type(page); 300 301 del_page_from_lru_list(page, lruvec, lru); 302 SetPageActive(page); 303 lru += LRU_ACTIVE; 304 add_page_to_lru_list(page, lruvec, lru); 305 trace_mm_lru_activate(page); 306 307 __count_vm_event(PGACTIVATE); 308 update_page_reclaim_stat(lruvec, file, 1); 309 } 310 } 311 312 #ifdef CONFIG_SMP 313 static void activate_page_drain(int cpu) 314 { 315 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu); 316 317 if (pagevec_count(pvec)) 318 pagevec_lru_move_fn(pvec, __activate_page, NULL); 319 } 320 321 static bool need_activate_page_drain(int cpu) 322 { 323 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0; 324 } 325 326 void activate_page(struct page *page) 327 { 328 page = compound_head(page); 329 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 330 struct pagevec *pvec; 331 332 local_lock(&lru_pvecs.lock); 333 pvec = this_cpu_ptr(&lru_pvecs.activate_page); 334 get_page(page); 335 if (!pagevec_add(pvec, page) || PageCompound(page)) 336 pagevec_lru_move_fn(pvec, __activate_page, NULL); 337 local_unlock(&lru_pvecs.lock); 338 } 339 } 340 341 #else 342 static inline void activate_page_drain(int cpu) 343 { 344 } 345 346 void activate_page(struct page *page) 347 { 348 pg_data_t *pgdat = page_pgdat(page); 349 350 page = compound_head(page); 351 spin_lock_irq(&pgdat->lru_lock); 352 __activate_page(page, mem_cgroup_page_lruvec(page, pgdat), NULL); 353 spin_unlock_irq(&pgdat->lru_lock); 354 } 355 #endif 356 357 static void __lru_cache_activate_page(struct page *page) 358 { 359 struct pagevec *pvec; 360 int i; 361 362 local_lock(&lru_pvecs.lock); 363 pvec = this_cpu_ptr(&lru_pvecs.lru_add); 364 365 /* 366 * Search backwards on the optimistic assumption that the page being 367 * activated has just been added to this pagevec. Note that only 368 * the local pagevec is examined as a !PageLRU page could be in the 369 * process of being released, reclaimed, migrated or on a remote 370 * pagevec that is currently being drained. Furthermore, marking 371 * a remote pagevec's page PageActive potentially hits a race where 372 * a page is marked PageActive just after it is added to the inactive 373 * list causing accounting errors and BUG_ON checks to trigger. 374 */ 375 for (i = pagevec_count(pvec) - 1; i >= 0; i--) { 376 struct page *pagevec_page = pvec->pages[i]; 377 378 if (pagevec_page == page) { 379 SetPageActive(page); 380 break; 381 } 382 } 383 384 local_unlock(&lru_pvecs.lock); 385 } 386 387 /* 388 * Mark a page as having seen activity. 389 * 390 * inactive,unreferenced -> inactive,referenced 391 * inactive,referenced -> active,unreferenced 392 * active,unreferenced -> active,referenced 393 * 394 * When a newly allocated page is not yet visible, so safe for non-atomic ops, 395 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page). 396 */ 397 void mark_page_accessed(struct page *page) 398 { 399 page = compound_head(page); 400 401 if (!PageReferenced(page)) { 402 SetPageReferenced(page); 403 } else if (PageUnevictable(page)) { 404 /* 405 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But, 406 * this list is never rotated or maintained, so marking an 407 * evictable page accessed has no effect. 408 */ 409 } else if (!PageActive(page)) { 410 /* 411 * If the page is on the LRU, queue it for activation via 412 * lru_pvecs.activate_page. Otherwise, assume the page is on a 413 * pagevec, mark it active and it'll be moved to the active 414 * LRU on the next drain. 415 */ 416 if (PageLRU(page)) 417 activate_page(page); 418 else 419 __lru_cache_activate_page(page); 420 ClearPageReferenced(page); 421 if (page_is_file_lru(page)) 422 workingset_activation(page); 423 } 424 if (page_is_idle(page)) 425 clear_page_idle(page); 426 } 427 EXPORT_SYMBOL(mark_page_accessed); 428 429 static void __lru_cache_add(struct page *page) 430 { 431 struct pagevec *pvec; 432 433 local_lock(&lru_pvecs.lock); 434 pvec = this_cpu_ptr(&lru_pvecs.lru_add); 435 get_page(page); 436 if (!pagevec_add(pvec, page) || PageCompound(page)) 437 __pagevec_lru_add(pvec); 438 local_unlock(&lru_pvecs.lock); 439 } 440 441 /** 442 * lru_cache_add_anon - add a page to the page lists 443 * @page: the page to add 444 */ 445 void lru_cache_add_anon(struct page *page) 446 { 447 if (PageActive(page)) 448 ClearPageActive(page); 449 __lru_cache_add(page); 450 } 451 452 void lru_cache_add_file(struct page *page) 453 { 454 if (PageActive(page)) 455 ClearPageActive(page); 456 __lru_cache_add(page); 457 } 458 EXPORT_SYMBOL(lru_cache_add_file); 459 460 /** 461 * lru_cache_add - add a page to a page list 462 * @page: the page to be added to the LRU. 463 * 464 * Queue the page for addition to the LRU via pagevec. The decision on whether 465 * to add the page to the [in]active [file|anon] list is deferred until the 466 * pagevec is drained. This gives a chance for the caller of lru_cache_add() 467 * have the page added to the active list using mark_page_accessed(). 468 */ 469 void lru_cache_add(struct page *page) 470 { 471 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page); 472 VM_BUG_ON_PAGE(PageLRU(page), page); 473 __lru_cache_add(page); 474 } 475 476 /** 477 * lru_cache_add_active_or_unevictable 478 * @page: the page to be added to LRU 479 * @vma: vma in which page is mapped for determining reclaimability 480 * 481 * Place @page on the active or unevictable LRU list, depending on its 482 * evictability. Note that if the page is not evictable, it goes 483 * directly back onto it's zone's unevictable list, it does NOT use a 484 * per cpu pagevec. 485 */ 486 void lru_cache_add_active_or_unevictable(struct page *page, 487 struct vm_area_struct *vma) 488 { 489 VM_BUG_ON_PAGE(PageLRU(page), page); 490 491 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) 492 SetPageActive(page); 493 else if (!TestSetPageMlocked(page)) { 494 /* 495 * We use the irq-unsafe __mod_zone_page_stat because this 496 * counter is not modified from interrupt context, and the pte 497 * lock is held(spinlock), which implies preemption disabled. 498 */ 499 __mod_zone_page_state(page_zone(page), NR_MLOCK, 500 hpage_nr_pages(page)); 501 count_vm_event(UNEVICTABLE_PGMLOCKED); 502 } 503 lru_cache_add(page); 504 } 505 506 /* 507 * If the page can not be invalidated, it is moved to the 508 * inactive list to speed up its reclaim. It is moved to the 509 * head of the list, rather than the tail, to give the flusher 510 * threads some time to write it out, as this is much more 511 * effective than the single-page writeout from reclaim. 512 * 513 * If the page isn't page_mapped and dirty/writeback, the page 514 * could reclaim asap using PG_reclaim. 515 * 516 * 1. active, mapped page -> none 517 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim 518 * 3. inactive, mapped page -> none 519 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim 520 * 5. inactive, clean -> inactive, tail 521 * 6. Others -> none 522 * 523 * In 4, why it moves inactive's head, the VM expects the page would 524 * be write it out by flusher threads as this is much more effective 525 * than the single-page writeout from reclaim. 526 */ 527 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec, 528 void *arg) 529 { 530 int lru, file; 531 bool active; 532 533 if (!PageLRU(page)) 534 return; 535 536 if (PageUnevictable(page)) 537 return; 538 539 /* Some processes are using the page */ 540 if (page_mapped(page)) 541 return; 542 543 active = PageActive(page); 544 file = page_is_file_lru(page); 545 lru = page_lru_base_type(page); 546 547 del_page_from_lru_list(page, lruvec, lru + active); 548 ClearPageActive(page); 549 ClearPageReferenced(page); 550 551 if (PageWriteback(page) || PageDirty(page)) { 552 /* 553 * PG_reclaim could be raced with end_page_writeback 554 * It can make readahead confusing. But race window 555 * is _really_ small and it's non-critical problem. 556 */ 557 add_page_to_lru_list(page, lruvec, lru); 558 SetPageReclaim(page); 559 } else { 560 /* 561 * The page's writeback ends up during pagevec 562 * We moves tha page into tail of inactive. 563 */ 564 add_page_to_lru_list_tail(page, lruvec, lru); 565 __count_vm_event(PGROTATED); 566 } 567 568 if (active) 569 __count_vm_event(PGDEACTIVATE); 570 update_page_reclaim_stat(lruvec, file, 0); 571 } 572 573 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec, 574 void *arg) 575 { 576 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) { 577 int file = page_is_file_lru(page); 578 int lru = page_lru_base_type(page); 579 580 del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE); 581 ClearPageActive(page); 582 ClearPageReferenced(page); 583 add_page_to_lru_list(page, lruvec, lru); 584 585 __count_vm_events(PGDEACTIVATE, hpage_nr_pages(page)); 586 update_page_reclaim_stat(lruvec, file, 0); 587 } 588 } 589 590 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec, 591 void *arg) 592 { 593 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) && 594 !PageSwapCache(page) && !PageUnevictable(page)) { 595 bool active = PageActive(page); 596 597 del_page_from_lru_list(page, lruvec, 598 LRU_INACTIVE_ANON + active); 599 ClearPageActive(page); 600 ClearPageReferenced(page); 601 /* 602 * Lazyfree pages are clean anonymous pages. They have 603 * PG_swapbacked flag cleared, to distinguish them from normal 604 * anonymous pages 605 */ 606 ClearPageSwapBacked(page); 607 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE); 608 609 __count_vm_events(PGLAZYFREE, hpage_nr_pages(page)); 610 count_memcg_page_event(page, PGLAZYFREE); 611 update_page_reclaim_stat(lruvec, 1, 0); 612 } 613 } 614 615 /* 616 * Drain pages out of the cpu's pagevecs. 617 * Either "cpu" is the current CPU, and preemption has already been 618 * disabled; or "cpu" is being hot-unplugged, and is already dead. 619 */ 620 void lru_add_drain_cpu(int cpu) 621 { 622 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu); 623 624 if (pagevec_count(pvec)) 625 __pagevec_lru_add(pvec); 626 627 pvec = &per_cpu(lru_rotate.pvec, cpu); 628 if (pagevec_count(pvec)) { 629 unsigned long flags; 630 631 /* No harm done if a racing interrupt already did this */ 632 local_lock_irqsave(&lru_rotate.lock, flags); 633 pagevec_move_tail(pvec); 634 local_unlock_irqrestore(&lru_rotate.lock, flags); 635 } 636 637 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu); 638 if (pagevec_count(pvec)) 639 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL); 640 641 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu); 642 if (pagevec_count(pvec)) 643 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); 644 645 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu); 646 if (pagevec_count(pvec)) 647 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL); 648 649 activate_page_drain(cpu); 650 } 651 652 /** 653 * deactivate_file_page - forcefully deactivate a file page 654 * @page: page to deactivate 655 * 656 * This function hints the VM that @page is a good reclaim candidate, 657 * for example if its invalidation fails due to the page being dirty 658 * or under writeback. 659 */ 660 void deactivate_file_page(struct page *page) 661 { 662 /* 663 * In a workload with many unevictable page such as mprotect, 664 * unevictable page deactivation for accelerating reclaim is pointless. 665 */ 666 if (PageUnevictable(page)) 667 return; 668 669 if (likely(get_page_unless_zero(page))) { 670 struct pagevec *pvec; 671 672 local_lock(&lru_pvecs.lock); 673 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file); 674 675 if (!pagevec_add(pvec, page) || PageCompound(page)) 676 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL); 677 local_unlock(&lru_pvecs.lock); 678 } 679 } 680 681 /* 682 * deactivate_page - deactivate a page 683 * @page: page to deactivate 684 * 685 * deactivate_page() moves @page to the inactive list if @page was on the active 686 * list and was not an unevictable page. This is done to accelerate the reclaim 687 * of @page. 688 */ 689 void deactivate_page(struct page *page) 690 { 691 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) { 692 struct pagevec *pvec; 693 694 local_lock(&lru_pvecs.lock); 695 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate); 696 get_page(page); 697 if (!pagevec_add(pvec, page) || PageCompound(page)) 698 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); 699 local_unlock(&lru_pvecs.lock); 700 } 701 } 702 703 /** 704 * mark_page_lazyfree - make an anon page lazyfree 705 * @page: page to deactivate 706 * 707 * mark_page_lazyfree() moves @page to the inactive file list. 708 * This is done to accelerate the reclaim of @page. 709 */ 710 void mark_page_lazyfree(struct page *page) 711 { 712 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) && 713 !PageSwapCache(page) && !PageUnevictable(page)) { 714 struct pagevec *pvec; 715 716 local_lock(&lru_pvecs.lock); 717 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree); 718 get_page(page); 719 if (!pagevec_add(pvec, page) || PageCompound(page)) 720 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL); 721 local_unlock(&lru_pvecs.lock); 722 } 723 } 724 725 void lru_add_drain(void) 726 { 727 local_lock(&lru_pvecs.lock); 728 lru_add_drain_cpu(smp_processor_id()); 729 local_unlock(&lru_pvecs.lock); 730 } 731 732 void lru_add_drain_cpu_zone(struct zone *zone) 733 { 734 local_lock(&lru_pvecs.lock); 735 lru_add_drain_cpu(smp_processor_id()); 736 drain_local_pages(zone); 737 local_unlock(&lru_pvecs.lock); 738 } 739 740 #ifdef CONFIG_SMP 741 742 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); 743 744 static void lru_add_drain_per_cpu(struct work_struct *dummy) 745 { 746 lru_add_drain(); 747 } 748 749 /* 750 * Doesn't need any cpu hotplug locking because we do rely on per-cpu 751 * kworkers being shut down before our page_alloc_cpu_dead callback is 752 * executed on the offlined cpu. 753 * Calling this function with cpu hotplug locks held can actually lead 754 * to obscure indirect dependencies via WQ context. 755 */ 756 void lru_add_drain_all(void) 757 { 758 static seqcount_t seqcount = SEQCNT_ZERO(seqcount); 759 static DEFINE_MUTEX(lock); 760 static struct cpumask has_work; 761 int cpu, seq; 762 763 /* 764 * Make sure nobody triggers this path before mm_percpu_wq is fully 765 * initialized. 766 */ 767 if (WARN_ON(!mm_percpu_wq)) 768 return; 769 770 seq = raw_read_seqcount_latch(&seqcount); 771 772 mutex_lock(&lock); 773 774 /* 775 * Piggyback on drain started and finished while we waited for lock: 776 * all pages pended at the time of our enter were drained from vectors. 777 */ 778 if (__read_seqcount_retry(&seqcount, seq)) 779 goto done; 780 781 raw_write_seqcount_latch(&seqcount); 782 783 cpumask_clear(&has_work); 784 785 for_each_online_cpu(cpu) { 786 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); 787 788 if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) || 789 pagevec_count(&per_cpu(lru_rotate.pvec, cpu)) || 790 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) || 791 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) || 792 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) || 793 need_activate_page_drain(cpu)) { 794 INIT_WORK(work, lru_add_drain_per_cpu); 795 queue_work_on(cpu, mm_percpu_wq, work); 796 cpumask_set_cpu(cpu, &has_work); 797 } 798 } 799 800 for_each_cpu(cpu, &has_work) 801 flush_work(&per_cpu(lru_add_drain_work, cpu)); 802 803 done: 804 mutex_unlock(&lock); 805 } 806 #else 807 void lru_add_drain_all(void) 808 { 809 lru_add_drain(); 810 } 811 #endif 812 813 /** 814 * release_pages - batched put_page() 815 * @pages: array of pages to release 816 * @nr: number of pages 817 * 818 * Decrement the reference count on all the pages in @pages. If it 819 * fell to zero, remove the page from the LRU and free it. 820 */ 821 void release_pages(struct page **pages, int nr) 822 { 823 int i; 824 LIST_HEAD(pages_to_free); 825 struct pglist_data *locked_pgdat = NULL; 826 struct lruvec *lruvec; 827 unsigned long uninitialized_var(flags); 828 unsigned int uninitialized_var(lock_batch); 829 830 for (i = 0; i < nr; i++) { 831 struct page *page = pages[i]; 832 833 /* 834 * Make sure the IRQ-safe lock-holding time does not get 835 * excessive with a continuous string of pages from the 836 * same pgdat. The lock is held only if pgdat != NULL. 837 */ 838 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) { 839 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags); 840 locked_pgdat = NULL; 841 } 842 843 if (is_huge_zero_page(page)) 844 continue; 845 846 if (is_zone_device_page(page)) { 847 if (locked_pgdat) { 848 spin_unlock_irqrestore(&locked_pgdat->lru_lock, 849 flags); 850 locked_pgdat = NULL; 851 } 852 /* 853 * ZONE_DEVICE pages that return 'false' from 854 * put_devmap_managed_page() do not require special 855 * processing, and instead, expect a call to 856 * put_page_testzero(). 857 */ 858 if (page_is_devmap_managed(page)) { 859 put_devmap_managed_page(page); 860 continue; 861 } 862 } 863 864 page = compound_head(page); 865 if (!put_page_testzero(page)) 866 continue; 867 868 if (PageCompound(page)) { 869 if (locked_pgdat) { 870 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags); 871 locked_pgdat = NULL; 872 } 873 __put_compound_page(page); 874 continue; 875 } 876 877 if (PageLRU(page)) { 878 struct pglist_data *pgdat = page_pgdat(page); 879 880 if (pgdat != locked_pgdat) { 881 if (locked_pgdat) 882 spin_unlock_irqrestore(&locked_pgdat->lru_lock, 883 flags); 884 lock_batch = 0; 885 locked_pgdat = pgdat; 886 spin_lock_irqsave(&locked_pgdat->lru_lock, flags); 887 } 888 889 lruvec = mem_cgroup_page_lruvec(page, locked_pgdat); 890 VM_BUG_ON_PAGE(!PageLRU(page), page); 891 __ClearPageLRU(page); 892 del_page_from_lru_list(page, lruvec, page_off_lru(page)); 893 } 894 895 /* Clear Active bit in case of parallel mark_page_accessed */ 896 __ClearPageActive(page); 897 __ClearPageWaiters(page); 898 899 list_add(&page->lru, &pages_to_free); 900 } 901 if (locked_pgdat) 902 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags); 903 904 mem_cgroup_uncharge_list(&pages_to_free); 905 free_unref_page_list(&pages_to_free); 906 } 907 EXPORT_SYMBOL(release_pages); 908 909 /* 910 * The pages which we're about to release may be in the deferred lru-addition 911 * queues. That would prevent them from really being freed right now. That's 912 * OK from a correctness point of view but is inefficient - those pages may be 913 * cache-warm and we want to give them back to the page allocator ASAP. 914 * 915 * So __pagevec_release() will drain those queues here. __pagevec_lru_add() 916 * and __pagevec_lru_add_active() call release_pages() directly to avoid 917 * mutual recursion. 918 */ 919 void __pagevec_release(struct pagevec *pvec) 920 { 921 if (!pvec->percpu_pvec_drained) { 922 lru_add_drain(); 923 pvec->percpu_pvec_drained = true; 924 } 925 release_pages(pvec->pages, pagevec_count(pvec)); 926 pagevec_reinit(pvec); 927 } 928 EXPORT_SYMBOL(__pagevec_release); 929 930 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 931 /* used by __split_huge_page_refcount() */ 932 void lru_add_page_tail(struct page *page, struct page *page_tail, 933 struct lruvec *lruvec, struct list_head *list) 934 { 935 const int file = 0; 936 937 VM_BUG_ON_PAGE(!PageHead(page), page); 938 VM_BUG_ON_PAGE(PageCompound(page_tail), page); 939 VM_BUG_ON_PAGE(PageLRU(page_tail), page); 940 lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock); 941 942 if (!list) 943 SetPageLRU(page_tail); 944 945 if (likely(PageLRU(page))) 946 list_add_tail(&page_tail->lru, &page->lru); 947 else if (list) { 948 /* page reclaim is reclaiming a huge page */ 949 get_page(page_tail); 950 list_add_tail(&page_tail->lru, list); 951 } else { 952 /* 953 * Head page has not yet been counted, as an hpage, 954 * so we must account for each subpage individually. 955 * 956 * Put page_tail on the list at the correct position 957 * so they all end up in order. 958 */ 959 add_page_to_lru_list_tail(page_tail, lruvec, 960 page_lru(page_tail)); 961 } 962 963 if (!PageUnevictable(page)) 964 update_page_reclaim_stat(lruvec, file, PageActive(page_tail)); 965 } 966 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 967 968 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec, 969 void *arg) 970 { 971 enum lru_list lru; 972 int was_unevictable = TestClearPageUnevictable(page); 973 974 VM_BUG_ON_PAGE(PageLRU(page), page); 975 976 /* 977 * Page becomes evictable in two ways: 978 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()]. 979 * 2) Before acquiring LRU lock to put the page to correct LRU and then 980 * a) do PageLRU check with lock [check_move_unevictable_pages] 981 * b) do PageLRU check before lock [clear_page_mlock] 982 * 983 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need 984 * following strict ordering: 985 * 986 * #0: __pagevec_lru_add_fn #1: clear_page_mlock 987 * 988 * SetPageLRU() TestClearPageMlocked() 989 * smp_mb() // explicit ordering // above provides strict 990 * // ordering 991 * PageMlocked() PageLRU() 992 * 993 * 994 * if '#1' does not observe setting of PG_lru by '#0' and fails 995 * isolation, the explicit barrier will make sure that page_evictable 996 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU 997 * can be reordered after PageMlocked check and can make '#1' to fail 998 * the isolation of the page whose Mlocked bit is cleared (#0 is also 999 * looking at the same page) and the evictable page will be stranded 1000 * in an unevictable LRU. 1001 */ 1002 SetPageLRU(page); 1003 smp_mb__after_atomic(); 1004 1005 if (page_evictable(page)) { 1006 lru = page_lru(page); 1007 update_page_reclaim_stat(lruvec, page_is_file_lru(page), 1008 PageActive(page)); 1009 if (was_unevictable) 1010 count_vm_event(UNEVICTABLE_PGRESCUED); 1011 } else { 1012 lru = LRU_UNEVICTABLE; 1013 ClearPageActive(page); 1014 SetPageUnevictable(page); 1015 if (!was_unevictable) 1016 count_vm_event(UNEVICTABLE_PGCULLED); 1017 } 1018 1019 add_page_to_lru_list(page, lruvec, lru); 1020 trace_mm_lru_insertion(page, lru); 1021 } 1022 1023 /* 1024 * Add the passed pages to the LRU, then drop the caller's refcount 1025 * on them. Reinitialises the caller's pagevec. 1026 */ 1027 void __pagevec_lru_add(struct pagevec *pvec) 1028 { 1029 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL); 1030 } 1031 1032 /** 1033 * pagevec_lookup_entries - gang pagecache lookup 1034 * @pvec: Where the resulting entries are placed 1035 * @mapping: The address_space to search 1036 * @start: The starting entry index 1037 * @nr_entries: The maximum number of pages 1038 * @indices: The cache indices corresponding to the entries in @pvec 1039 * 1040 * pagevec_lookup_entries() will search for and return a group of up 1041 * to @nr_pages pages and shadow entries in the mapping. All 1042 * entries are placed in @pvec. pagevec_lookup_entries() takes a 1043 * reference against actual pages in @pvec. 1044 * 1045 * The search returns a group of mapping-contiguous entries with 1046 * ascending indexes. There may be holes in the indices due to 1047 * not-present entries. 1048 * 1049 * Only one subpage of a Transparent Huge Page is returned in one call: 1050 * allowing truncate_inode_pages_range() to evict the whole THP without 1051 * cycling through a pagevec of extra references. 1052 * 1053 * pagevec_lookup_entries() returns the number of entries which were 1054 * found. 1055 */ 1056 unsigned pagevec_lookup_entries(struct pagevec *pvec, 1057 struct address_space *mapping, 1058 pgoff_t start, unsigned nr_entries, 1059 pgoff_t *indices) 1060 { 1061 pvec->nr = find_get_entries(mapping, start, nr_entries, 1062 pvec->pages, indices); 1063 return pagevec_count(pvec); 1064 } 1065 1066 /** 1067 * pagevec_remove_exceptionals - pagevec exceptionals pruning 1068 * @pvec: The pagevec to prune 1069 * 1070 * pagevec_lookup_entries() fills both pages and exceptional radix 1071 * tree entries into the pagevec. This function prunes all 1072 * exceptionals from @pvec without leaving holes, so that it can be 1073 * passed on to page-only pagevec operations. 1074 */ 1075 void pagevec_remove_exceptionals(struct pagevec *pvec) 1076 { 1077 int i, j; 1078 1079 for (i = 0, j = 0; i < pagevec_count(pvec); i++) { 1080 struct page *page = pvec->pages[i]; 1081 if (!xa_is_value(page)) 1082 pvec->pages[j++] = page; 1083 } 1084 pvec->nr = j; 1085 } 1086 1087 /** 1088 * pagevec_lookup_range - gang pagecache lookup 1089 * @pvec: Where the resulting pages are placed 1090 * @mapping: The address_space to search 1091 * @start: The starting page index 1092 * @end: The final page index 1093 * 1094 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE 1095 * pages in the mapping starting from index @start and upto index @end 1096 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a 1097 * reference against the pages in @pvec. 1098 * 1099 * The search returns a group of mapping-contiguous pages with ascending 1100 * indexes. There may be holes in the indices due to not-present pages. We 1101 * also update @start to index the next page for the traversal. 1102 * 1103 * pagevec_lookup_range() returns the number of pages which were found. If this 1104 * number is smaller than PAGEVEC_SIZE, the end of specified range has been 1105 * reached. 1106 */ 1107 unsigned pagevec_lookup_range(struct pagevec *pvec, 1108 struct address_space *mapping, pgoff_t *start, pgoff_t end) 1109 { 1110 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE, 1111 pvec->pages); 1112 return pagevec_count(pvec); 1113 } 1114 EXPORT_SYMBOL(pagevec_lookup_range); 1115 1116 unsigned pagevec_lookup_range_tag(struct pagevec *pvec, 1117 struct address_space *mapping, pgoff_t *index, pgoff_t end, 1118 xa_mark_t tag) 1119 { 1120 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag, 1121 PAGEVEC_SIZE, pvec->pages); 1122 return pagevec_count(pvec); 1123 } 1124 EXPORT_SYMBOL(pagevec_lookup_range_tag); 1125 1126 unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec, 1127 struct address_space *mapping, pgoff_t *index, pgoff_t end, 1128 xa_mark_t tag, unsigned max_pages) 1129 { 1130 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag, 1131 min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages); 1132 return pagevec_count(pvec); 1133 } 1134 EXPORT_SYMBOL(pagevec_lookup_range_nr_tag); 1135 /* 1136 * Perform any setup for the swap system 1137 */ 1138 void __init swap_setup(void) 1139 { 1140 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT); 1141 1142 /* Use a smaller cluster for small-memory machines */ 1143 if (megs < 16) 1144 page_cluster = 2; 1145 else 1146 page_cluster = 3; 1147 /* 1148 * Right now other parts of the system means that we 1149 * _really_ don't want to cluster much more 1150 */ 1151 } 1152 1153 #ifdef CONFIG_DEV_PAGEMAP_OPS 1154 void put_devmap_managed_page(struct page *page) 1155 { 1156 int count; 1157 1158 if (WARN_ON_ONCE(!page_is_devmap_managed(page))) 1159 return; 1160 1161 count = page_ref_dec_return(page); 1162 1163 /* 1164 * devmap page refcounts are 1-based, rather than 0-based: if 1165 * refcount is 1, then the page is free and the refcount is 1166 * stable because nobody holds a reference on the page. 1167 */ 1168 if (count == 1) 1169 free_devmap_managed_page(page); 1170 else if (!count) 1171 __put_page(page); 1172 } 1173 EXPORT_SYMBOL(put_devmap_managed_page); 1174 #endif 1175