xref: /linux/mm/swap.c (revision d8327c784b51b57dac2c26cfad87dce0d68dfd98)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the opereation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page() */
27 #include <linux/module.h>
28 #include <linux/percpu_counter.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/init.h>
33 
34 /* How many pages do we try to swap or page in/out together? */
35 int page_cluster;
36 
37 static void put_compound_page(struct page *page)
38 {
39 	page = (struct page *)page_private(page);
40 	if (put_page_testzero(page)) {
41 		void (*dtor)(struct page *page);
42 
43 		dtor = (void (*)(struct page *))page[1].lru.next;
44 		(*dtor)(page);
45 	}
46 }
47 
48 void put_page(struct page *page)
49 {
50 	if (unlikely(PageCompound(page)))
51 		put_compound_page(page);
52 	else if (put_page_testzero(page))
53 		__page_cache_release(page);
54 }
55 EXPORT_SYMBOL(put_page);
56 
57 /*
58  * Writeback is about to end against a page which has been marked for immediate
59  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
60  * inactive list.  The page still has PageWriteback set, which will pin it.
61  *
62  * We don't expect many pages to come through here, so don't bother batching
63  * things up.
64  *
65  * To avoid placing the page at the tail of the LRU while PG_writeback is still
66  * set, this function will clear PG_writeback before performing the page
67  * motion.  Do that inside the lru lock because once PG_writeback is cleared
68  * we may not touch the page.
69  *
70  * Returns zero if it cleared PG_writeback.
71  */
72 int rotate_reclaimable_page(struct page *page)
73 {
74 	struct zone *zone;
75 	unsigned long flags;
76 
77 	if (PageLocked(page))
78 		return 1;
79 	if (PageDirty(page))
80 		return 1;
81 	if (PageActive(page))
82 		return 1;
83 	if (!PageLRU(page))
84 		return 1;
85 
86 	zone = page_zone(page);
87 	spin_lock_irqsave(&zone->lru_lock, flags);
88 	if (PageLRU(page) && !PageActive(page)) {
89 		list_del(&page->lru);
90 		list_add_tail(&page->lru, &zone->inactive_list);
91 		inc_page_state(pgrotated);
92 	}
93 	if (!test_clear_page_writeback(page))
94 		BUG();
95 	spin_unlock_irqrestore(&zone->lru_lock, flags);
96 	return 0;
97 }
98 
99 /*
100  * FIXME: speed this up?
101  */
102 void fastcall activate_page(struct page *page)
103 {
104 	struct zone *zone = page_zone(page);
105 
106 	spin_lock_irq(&zone->lru_lock);
107 	if (PageLRU(page) && !PageActive(page)) {
108 		del_page_from_inactive_list(zone, page);
109 		SetPageActive(page);
110 		add_page_to_active_list(zone, page);
111 		inc_page_state(pgactivate);
112 	}
113 	spin_unlock_irq(&zone->lru_lock);
114 }
115 
116 /*
117  * Mark a page as having seen activity.
118  *
119  * inactive,unreferenced	->	inactive,referenced
120  * inactive,referenced		->	active,unreferenced
121  * active,unreferenced		->	active,referenced
122  */
123 void fastcall mark_page_accessed(struct page *page)
124 {
125 	if (!PageActive(page) && PageReferenced(page) && PageLRU(page)) {
126 		activate_page(page);
127 		ClearPageReferenced(page);
128 	} else if (!PageReferenced(page)) {
129 		SetPageReferenced(page);
130 	}
131 }
132 
133 EXPORT_SYMBOL(mark_page_accessed);
134 
135 /**
136  * lru_cache_add: add a page to the page lists
137  * @page: the page to add
138  */
139 static DEFINE_PER_CPU(struct pagevec, lru_add_pvecs) = { 0, };
140 static DEFINE_PER_CPU(struct pagevec, lru_add_active_pvecs) = { 0, };
141 
142 void fastcall lru_cache_add(struct page *page)
143 {
144 	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs);
145 
146 	page_cache_get(page);
147 	if (!pagevec_add(pvec, page))
148 		__pagevec_lru_add(pvec);
149 	put_cpu_var(lru_add_pvecs);
150 }
151 
152 void fastcall lru_cache_add_active(struct page *page)
153 {
154 	struct pagevec *pvec = &get_cpu_var(lru_add_active_pvecs);
155 
156 	page_cache_get(page);
157 	if (!pagevec_add(pvec, page))
158 		__pagevec_lru_add_active(pvec);
159 	put_cpu_var(lru_add_active_pvecs);
160 }
161 
162 static void __lru_add_drain(int cpu)
163 {
164 	struct pagevec *pvec = &per_cpu(lru_add_pvecs, cpu);
165 
166 	/* CPU is dead, so no locking needed. */
167 	if (pagevec_count(pvec))
168 		__pagevec_lru_add(pvec);
169 	pvec = &per_cpu(lru_add_active_pvecs, cpu);
170 	if (pagevec_count(pvec))
171 		__pagevec_lru_add_active(pvec);
172 }
173 
174 void lru_add_drain(void)
175 {
176 	__lru_add_drain(get_cpu());
177 	put_cpu();
178 }
179 
180 #ifdef CONFIG_NUMA
181 static void lru_add_drain_per_cpu(void *dummy)
182 {
183 	lru_add_drain();
184 }
185 
186 /*
187  * Returns 0 for success
188  */
189 int lru_add_drain_all(void)
190 {
191 	return schedule_on_each_cpu(lru_add_drain_per_cpu, NULL);
192 }
193 
194 #else
195 
196 /*
197  * Returns 0 for success
198  */
199 int lru_add_drain_all(void)
200 {
201 	lru_add_drain();
202 	return 0;
203 }
204 #endif
205 
206 /*
207  * This path almost never happens for VM activity - pages are normally
208  * freed via pagevecs.  But it gets used by networking.
209  */
210 void fastcall __page_cache_release(struct page *page)
211 {
212 	unsigned long flags;
213 	struct zone *zone = page_zone(page);
214 
215 	spin_lock_irqsave(&zone->lru_lock, flags);
216 	if (TestClearPageLRU(page))
217 		del_page_from_lru(zone, page);
218 	if (page_count(page) != 0)
219 		page = NULL;
220 	spin_unlock_irqrestore(&zone->lru_lock, flags);
221 	if (page)
222 		free_hot_page(page);
223 }
224 
225 EXPORT_SYMBOL(__page_cache_release);
226 
227 /*
228  * Batched page_cache_release().  Decrement the reference count on all the
229  * passed pages.  If it fell to zero then remove the page from the LRU and
230  * free it.
231  *
232  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
233  * for the remainder of the operation.
234  *
235  * The locking in this function is against shrink_cache(): we recheck the
236  * page count inside the lock to see whether shrink_cache grabbed the page
237  * via the LRU.  If it did, give up: shrink_cache will free it.
238  */
239 void release_pages(struct page **pages, int nr, int cold)
240 {
241 	int i;
242 	struct pagevec pages_to_free;
243 	struct zone *zone = NULL;
244 
245 	pagevec_init(&pages_to_free, cold);
246 	for (i = 0; i < nr; i++) {
247 		struct page *page = pages[i];
248 		struct zone *pagezone;
249 
250 		if (unlikely(PageCompound(page))) {
251 			if (zone) {
252 				spin_unlock_irq(&zone->lru_lock);
253 				zone = NULL;
254 			}
255 			put_compound_page(page);
256 			continue;
257 		}
258 
259 		if (!put_page_testzero(page))
260 			continue;
261 
262 		pagezone = page_zone(page);
263 		if (pagezone != zone) {
264 			if (zone)
265 				spin_unlock_irq(&zone->lru_lock);
266 			zone = pagezone;
267 			spin_lock_irq(&zone->lru_lock);
268 		}
269 		if (TestClearPageLRU(page))
270 			del_page_from_lru(zone, page);
271 		if (page_count(page) == 0) {
272 			if (!pagevec_add(&pages_to_free, page)) {
273 				spin_unlock_irq(&zone->lru_lock);
274 				__pagevec_free(&pages_to_free);
275 				pagevec_reinit(&pages_to_free);
276 				zone = NULL;	/* No lock is held */
277 			}
278 		}
279 	}
280 	if (zone)
281 		spin_unlock_irq(&zone->lru_lock);
282 
283 	pagevec_free(&pages_to_free);
284 }
285 
286 /*
287  * The pages which we're about to release may be in the deferred lru-addition
288  * queues.  That would prevent them from really being freed right now.  That's
289  * OK from a correctness point of view but is inefficient - those pages may be
290  * cache-warm and we want to give them back to the page allocator ASAP.
291  *
292  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
293  * and __pagevec_lru_add_active() call release_pages() directly to avoid
294  * mutual recursion.
295  */
296 void __pagevec_release(struct pagevec *pvec)
297 {
298 	lru_add_drain();
299 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
300 	pagevec_reinit(pvec);
301 }
302 
303 EXPORT_SYMBOL(__pagevec_release);
304 
305 /*
306  * pagevec_release() for pages which are known to not be on the LRU
307  *
308  * This function reinitialises the caller's pagevec.
309  */
310 void __pagevec_release_nonlru(struct pagevec *pvec)
311 {
312 	int i;
313 	struct pagevec pages_to_free;
314 
315 	pagevec_init(&pages_to_free, pvec->cold);
316 	for (i = 0; i < pagevec_count(pvec); i++) {
317 		struct page *page = pvec->pages[i];
318 
319 		BUG_ON(PageLRU(page));
320 		if (put_page_testzero(page))
321 			pagevec_add(&pages_to_free, page);
322 	}
323 	pagevec_free(&pages_to_free);
324 	pagevec_reinit(pvec);
325 }
326 
327 /*
328  * Add the passed pages to the LRU, then drop the caller's refcount
329  * on them.  Reinitialises the caller's pagevec.
330  */
331 void __pagevec_lru_add(struct pagevec *pvec)
332 {
333 	int i;
334 	struct zone *zone = NULL;
335 
336 	for (i = 0; i < pagevec_count(pvec); i++) {
337 		struct page *page = pvec->pages[i];
338 		struct zone *pagezone = page_zone(page);
339 
340 		if (pagezone != zone) {
341 			if (zone)
342 				spin_unlock_irq(&zone->lru_lock);
343 			zone = pagezone;
344 			spin_lock_irq(&zone->lru_lock);
345 		}
346 		if (TestSetPageLRU(page))
347 			BUG();
348 		add_page_to_inactive_list(zone, page);
349 	}
350 	if (zone)
351 		spin_unlock_irq(&zone->lru_lock);
352 	release_pages(pvec->pages, pvec->nr, pvec->cold);
353 	pagevec_reinit(pvec);
354 }
355 
356 EXPORT_SYMBOL(__pagevec_lru_add);
357 
358 void __pagevec_lru_add_active(struct pagevec *pvec)
359 {
360 	int i;
361 	struct zone *zone = NULL;
362 
363 	for (i = 0; i < pagevec_count(pvec); i++) {
364 		struct page *page = pvec->pages[i];
365 		struct zone *pagezone = page_zone(page);
366 
367 		if (pagezone != zone) {
368 			if (zone)
369 				spin_unlock_irq(&zone->lru_lock);
370 			zone = pagezone;
371 			spin_lock_irq(&zone->lru_lock);
372 		}
373 		if (TestSetPageLRU(page))
374 			BUG();
375 		if (TestSetPageActive(page))
376 			BUG();
377 		add_page_to_active_list(zone, page);
378 	}
379 	if (zone)
380 		spin_unlock_irq(&zone->lru_lock);
381 	release_pages(pvec->pages, pvec->nr, pvec->cold);
382 	pagevec_reinit(pvec);
383 }
384 
385 /*
386  * Try to drop buffers from the pages in a pagevec
387  */
388 void pagevec_strip(struct pagevec *pvec)
389 {
390 	int i;
391 
392 	for (i = 0; i < pagevec_count(pvec); i++) {
393 		struct page *page = pvec->pages[i];
394 
395 		if (PagePrivate(page) && !TestSetPageLocked(page)) {
396 			if (PagePrivate(page))
397 				try_to_release_page(page, 0);
398 			unlock_page(page);
399 		}
400 	}
401 }
402 
403 /**
404  * pagevec_lookup - gang pagecache lookup
405  * @pvec:	Where the resulting pages are placed
406  * @mapping:	The address_space to search
407  * @start:	The starting page index
408  * @nr_pages:	The maximum number of pages
409  *
410  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
411  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
412  * reference against the pages in @pvec.
413  *
414  * The search returns a group of mapping-contiguous pages with ascending
415  * indexes.  There may be holes in the indices due to not-present pages.
416  *
417  * pagevec_lookup() returns the number of pages which were found.
418  */
419 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
420 		pgoff_t start, unsigned nr_pages)
421 {
422 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
423 	return pagevec_count(pvec);
424 }
425 
426 EXPORT_SYMBOL(pagevec_lookup);
427 
428 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
429 		pgoff_t *index, int tag, unsigned nr_pages)
430 {
431 	pvec->nr = find_get_pages_tag(mapping, index, tag,
432 					nr_pages, pvec->pages);
433 	return pagevec_count(pvec);
434 }
435 
436 EXPORT_SYMBOL(pagevec_lookup_tag);
437 
438 #ifdef CONFIG_SMP
439 /*
440  * We tolerate a little inaccuracy to avoid ping-ponging the counter between
441  * CPUs
442  */
443 #define ACCT_THRESHOLD	max(16, NR_CPUS * 2)
444 
445 static DEFINE_PER_CPU(long, committed_space) = 0;
446 
447 void vm_acct_memory(long pages)
448 {
449 	long *local;
450 
451 	preempt_disable();
452 	local = &__get_cpu_var(committed_space);
453 	*local += pages;
454 	if (*local > ACCT_THRESHOLD || *local < -ACCT_THRESHOLD) {
455 		atomic_add(*local, &vm_committed_space);
456 		*local = 0;
457 	}
458 	preempt_enable();
459 }
460 
461 #ifdef CONFIG_HOTPLUG_CPU
462 
463 /* Drop the CPU's cached committed space back into the central pool. */
464 static int cpu_swap_callback(struct notifier_block *nfb,
465 			     unsigned long action,
466 			     void *hcpu)
467 {
468 	long *committed;
469 
470 	committed = &per_cpu(committed_space, (long)hcpu);
471 	if (action == CPU_DEAD) {
472 		atomic_add(*committed, &vm_committed_space);
473 		*committed = 0;
474 		__lru_add_drain((long)hcpu);
475 	}
476 	return NOTIFY_OK;
477 }
478 #endif /* CONFIG_HOTPLUG_CPU */
479 #endif /* CONFIG_SMP */
480 
481 #ifdef CONFIG_SMP
482 void percpu_counter_mod(struct percpu_counter *fbc, long amount)
483 {
484 	long count;
485 	long *pcount;
486 	int cpu = get_cpu();
487 
488 	pcount = per_cpu_ptr(fbc->counters, cpu);
489 	count = *pcount + amount;
490 	if (count >= FBC_BATCH || count <= -FBC_BATCH) {
491 		spin_lock(&fbc->lock);
492 		fbc->count += count;
493 		*pcount = 0;
494 		spin_unlock(&fbc->lock);
495 	} else {
496 		*pcount = count;
497 	}
498 	put_cpu();
499 }
500 EXPORT_SYMBOL(percpu_counter_mod);
501 
502 /*
503  * Add up all the per-cpu counts, return the result.  This is a more accurate
504  * but much slower version of percpu_counter_read_positive()
505  */
506 long percpu_counter_sum(struct percpu_counter *fbc)
507 {
508 	long ret;
509 	int cpu;
510 
511 	spin_lock(&fbc->lock);
512 	ret = fbc->count;
513 	for_each_cpu(cpu) {
514 		long *pcount = per_cpu_ptr(fbc->counters, cpu);
515 		ret += *pcount;
516 	}
517 	spin_unlock(&fbc->lock);
518 	return ret < 0 ? 0 : ret;
519 }
520 EXPORT_SYMBOL(percpu_counter_sum);
521 #endif
522 
523 /*
524  * Perform any setup for the swap system
525  */
526 void __init swap_setup(void)
527 {
528 	unsigned long megs = num_physpages >> (20 - PAGE_SHIFT);
529 
530 	/* Use a smaller cluster for small-memory machines */
531 	if (megs < 16)
532 		page_cluster = 2;
533 	else
534 		page_cluster = 3;
535 	/*
536 	 * Right now other parts of the system means that we
537 	 * _really_ don't want to cluster much more
538 	 */
539 	hotcpu_notifier(cpu_swap_callback, 0);
540 }
541