1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swap.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * This file contains the default values for the operation of the 10 * Linux VM subsystem. Fine-tuning documentation can be found in 11 * Documentation/admin-guide/sysctl/vm.rst. 12 * Started 18.12.91 13 * Swap aging added 23.2.95, Stephen Tweedie. 14 * Buffermem limits added 12.3.98, Rik van Riel. 15 */ 16 17 #include <linux/mm.h> 18 #include <linux/sched.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/mman.h> 22 #include <linux/pagemap.h> 23 #include <linux/pagevec.h> 24 #include <linux/init.h> 25 #include <linux/export.h> 26 #include <linux/mm_inline.h> 27 #include <linux/percpu_counter.h> 28 #include <linux/memremap.h> 29 #include <linux/percpu.h> 30 #include <linux/cpu.h> 31 #include <linux/notifier.h> 32 #include <linux/backing-dev.h> 33 #include <linux/memcontrol.h> 34 #include <linux/gfp.h> 35 #include <linux/uio.h> 36 #include <linux/hugetlb.h> 37 #include <linux/page_idle.h> 38 #include <linux/local_lock.h> 39 #include <linux/buffer_head.h> 40 41 #include "internal.h" 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/pagemap.h> 45 46 /* How many pages do we try to swap or page in/out together? */ 47 int page_cluster; 48 49 /* Protecting only lru_rotate.pvec which requires disabling interrupts */ 50 struct lru_rotate { 51 local_lock_t lock; 52 struct pagevec pvec; 53 }; 54 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = { 55 .lock = INIT_LOCAL_LOCK(lock), 56 }; 57 58 /* 59 * The following struct pagevec are grouped together because they are protected 60 * by disabling preemption (and interrupts remain enabled). 61 */ 62 struct lru_pvecs { 63 local_lock_t lock; 64 struct pagevec lru_add; 65 struct pagevec lru_deactivate_file; 66 struct pagevec lru_deactivate; 67 struct pagevec lru_lazyfree; 68 #ifdef CONFIG_SMP 69 struct pagevec activate_page; 70 #endif 71 }; 72 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = { 73 .lock = INIT_LOCAL_LOCK(lock), 74 }; 75 76 /* 77 * This path almost never happens for VM activity - pages are normally freed 78 * via pagevecs. But it gets used by networking - and for compound pages. 79 */ 80 static void __page_cache_release(struct page *page) 81 { 82 if (PageLRU(page)) { 83 struct folio *folio = page_folio(page); 84 struct lruvec *lruvec; 85 unsigned long flags; 86 87 lruvec = folio_lruvec_lock_irqsave(folio, &flags); 88 del_page_from_lru_list(page, lruvec); 89 __clear_page_lru_flags(page); 90 unlock_page_lruvec_irqrestore(lruvec, flags); 91 } 92 /* See comment on PageMlocked in release_pages() */ 93 if (unlikely(PageMlocked(page))) { 94 int nr_pages = thp_nr_pages(page); 95 96 __ClearPageMlocked(page); 97 mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); 98 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); 99 } 100 } 101 102 static void __put_single_page(struct page *page) 103 { 104 __page_cache_release(page); 105 mem_cgroup_uncharge(page_folio(page)); 106 free_unref_page(page, 0); 107 } 108 109 static void __put_compound_page(struct page *page) 110 { 111 /* 112 * __page_cache_release() is supposed to be called for thp, not for 113 * hugetlb. This is because hugetlb page does never have PageLRU set 114 * (it's never listed to any LRU lists) and no memcg routines should 115 * be called for hugetlb (it has a separate hugetlb_cgroup.) 116 */ 117 if (!PageHuge(page)) 118 __page_cache_release(page); 119 destroy_compound_page(page); 120 } 121 122 void __put_page(struct page *page) 123 { 124 if (unlikely(is_zone_device_page(page))) 125 free_zone_device_page(page); 126 else if (unlikely(PageCompound(page))) 127 __put_compound_page(page); 128 else 129 __put_single_page(page); 130 } 131 EXPORT_SYMBOL(__put_page); 132 133 /** 134 * put_pages_list() - release a list of pages 135 * @pages: list of pages threaded on page->lru 136 * 137 * Release a list of pages which are strung together on page.lru. 138 */ 139 void put_pages_list(struct list_head *pages) 140 { 141 struct page *page, *next; 142 143 list_for_each_entry_safe(page, next, pages, lru) { 144 if (!put_page_testzero(page)) { 145 list_del(&page->lru); 146 continue; 147 } 148 if (PageHead(page)) { 149 list_del(&page->lru); 150 __put_compound_page(page); 151 continue; 152 } 153 /* Cannot be PageLRU because it's passed to us using the lru */ 154 } 155 156 free_unref_page_list(pages); 157 INIT_LIST_HEAD(pages); 158 } 159 EXPORT_SYMBOL(put_pages_list); 160 161 /* 162 * get_kernel_pages() - pin kernel pages in memory 163 * @kiov: An array of struct kvec structures 164 * @nr_segs: number of segments to pin 165 * @write: pinning for read/write, currently ignored 166 * @pages: array that receives pointers to the pages pinned. 167 * Should be at least nr_segs long. 168 * 169 * Returns number of pages pinned. This may be fewer than the number requested. 170 * If nr_segs is 0 or negative, returns 0. If no pages were pinned, returns 0. 171 * Each page returned must be released with a put_page() call when it is 172 * finished with. 173 */ 174 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, 175 struct page **pages) 176 { 177 int seg; 178 179 for (seg = 0; seg < nr_segs; seg++) { 180 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) 181 return seg; 182 183 pages[seg] = kmap_to_page(kiov[seg].iov_base); 184 get_page(pages[seg]); 185 } 186 187 return seg; 188 } 189 EXPORT_SYMBOL_GPL(get_kernel_pages); 190 191 static void pagevec_lru_move_fn(struct pagevec *pvec, 192 void (*move_fn)(struct page *page, struct lruvec *lruvec)) 193 { 194 int i; 195 struct lruvec *lruvec = NULL; 196 unsigned long flags = 0; 197 198 for (i = 0; i < pagevec_count(pvec); i++) { 199 struct page *page = pvec->pages[i]; 200 struct folio *folio = page_folio(page); 201 202 /* block memcg migration during page moving between lru */ 203 if (!TestClearPageLRU(page)) 204 continue; 205 206 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags); 207 (*move_fn)(page, lruvec); 208 209 SetPageLRU(page); 210 } 211 if (lruvec) 212 unlock_page_lruvec_irqrestore(lruvec, flags); 213 release_pages(pvec->pages, pvec->nr); 214 pagevec_reinit(pvec); 215 } 216 217 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec) 218 { 219 struct folio *folio = page_folio(page); 220 221 if (!folio_test_unevictable(folio)) { 222 lruvec_del_folio(lruvec, folio); 223 folio_clear_active(folio); 224 lruvec_add_folio_tail(lruvec, folio); 225 __count_vm_events(PGROTATED, folio_nr_pages(folio)); 226 } 227 } 228 229 /* return true if pagevec needs to drain */ 230 static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page) 231 { 232 bool ret = false; 233 234 if (!pagevec_add(pvec, page) || PageCompound(page) || 235 lru_cache_disabled()) 236 ret = true; 237 238 return ret; 239 } 240 241 /* 242 * Writeback is about to end against a folio which has been marked for 243 * immediate reclaim. If it still appears to be reclaimable, move it 244 * to the tail of the inactive list. 245 * 246 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races. 247 */ 248 void folio_rotate_reclaimable(struct folio *folio) 249 { 250 if (!folio_test_locked(folio) && !folio_test_dirty(folio) && 251 !folio_test_unevictable(folio) && folio_test_lru(folio)) { 252 struct pagevec *pvec; 253 unsigned long flags; 254 255 folio_get(folio); 256 local_lock_irqsave(&lru_rotate.lock, flags); 257 pvec = this_cpu_ptr(&lru_rotate.pvec); 258 if (pagevec_add_and_need_flush(pvec, &folio->page)) 259 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn); 260 local_unlock_irqrestore(&lru_rotate.lock, flags); 261 } 262 } 263 264 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages) 265 { 266 do { 267 unsigned long lrusize; 268 269 /* 270 * Hold lruvec->lru_lock is safe here, since 271 * 1) The pinned lruvec in reclaim, or 272 * 2) From a pre-LRU page during refault (which also holds the 273 * rcu lock, so would be safe even if the page was on the LRU 274 * and could move simultaneously to a new lruvec). 275 */ 276 spin_lock_irq(&lruvec->lru_lock); 277 /* Record cost event */ 278 if (file) 279 lruvec->file_cost += nr_pages; 280 else 281 lruvec->anon_cost += nr_pages; 282 283 /* 284 * Decay previous events 285 * 286 * Because workloads change over time (and to avoid 287 * overflow) we keep these statistics as a floating 288 * average, which ends up weighing recent refaults 289 * more than old ones. 290 */ 291 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) + 292 lruvec_page_state(lruvec, NR_ACTIVE_ANON) + 293 lruvec_page_state(lruvec, NR_INACTIVE_FILE) + 294 lruvec_page_state(lruvec, NR_ACTIVE_FILE); 295 296 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) { 297 lruvec->file_cost /= 2; 298 lruvec->anon_cost /= 2; 299 } 300 spin_unlock_irq(&lruvec->lru_lock); 301 } while ((lruvec = parent_lruvec(lruvec))); 302 } 303 304 void lru_note_cost_folio(struct folio *folio) 305 { 306 lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio), 307 folio_nr_pages(folio)); 308 } 309 310 static void __folio_activate(struct folio *folio, struct lruvec *lruvec) 311 { 312 if (!folio_test_active(folio) && !folio_test_unevictable(folio)) { 313 long nr_pages = folio_nr_pages(folio); 314 315 lruvec_del_folio(lruvec, folio); 316 folio_set_active(folio); 317 lruvec_add_folio(lruvec, folio); 318 trace_mm_lru_activate(folio); 319 320 __count_vm_events(PGACTIVATE, nr_pages); 321 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, 322 nr_pages); 323 } 324 } 325 326 #ifdef CONFIG_SMP 327 static void __activate_page(struct page *page, struct lruvec *lruvec) 328 { 329 return __folio_activate(page_folio(page), lruvec); 330 } 331 332 static void activate_page_drain(int cpu) 333 { 334 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu); 335 336 if (pagevec_count(pvec)) 337 pagevec_lru_move_fn(pvec, __activate_page); 338 } 339 340 static bool need_activate_page_drain(int cpu) 341 { 342 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0; 343 } 344 345 static void folio_activate(struct folio *folio) 346 { 347 if (folio_test_lru(folio) && !folio_test_active(folio) && 348 !folio_test_unevictable(folio)) { 349 struct pagevec *pvec; 350 351 folio_get(folio); 352 local_lock(&lru_pvecs.lock); 353 pvec = this_cpu_ptr(&lru_pvecs.activate_page); 354 if (pagevec_add_and_need_flush(pvec, &folio->page)) 355 pagevec_lru_move_fn(pvec, __activate_page); 356 local_unlock(&lru_pvecs.lock); 357 } 358 } 359 360 #else 361 static inline void activate_page_drain(int cpu) 362 { 363 } 364 365 static void folio_activate(struct folio *folio) 366 { 367 struct lruvec *lruvec; 368 369 if (folio_test_clear_lru(folio)) { 370 lruvec = folio_lruvec_lock_irq(folio); 371 __folio_activate(folio, lruvec); 372 unlock_page_lruvec_irq(lruvec); 373 folio_set_lru(folio); 374 } 375 } 376 #endif 377 378 static void __lru_cache_activate_folio(struct folio *folio) 379 { 380 struct pagevec *pvec; 381 int i; 382 383 local_lock(&lru_pvecs.lock); 384 pvec = this_cpu_ptr(&lru_pvecs.lru_add); 385 386 /* 387 * Search backwards on the optimistic assumption that the page being 388 * activated has just been added to this pagevec. Note that only 389 * the local pagevec is examined as a !PageLRU page could be in the 390 * process of being released, reclaimed, migrated or on a remote 391 * pagevec that is currently being drained. Furthermore, marking 392 * a remote pagevec's page PageActive potentially hits a race where 393 * a page is marked PageActive just after it is added to the inactive 394 * list causing accounting errors and BUG_ON checks to trigger. 395 */ 396 for (i = pagevec_count(pvec) - 1; i >= 0; i--) { 397 struct page *pagevec_page = pvec->pages[i]; 398 399 if (pagevec_page == &folio->page) { 400 folio_set_active(folio); 401 break; 402 } 403 } 404 405 local_unlock(&lru_pvecs.lock); 406 } 407 408 /* 409 * Mark a page as having seen activity. 410 * 411 * inactive,unreferenced -> inactive,referenced 412 * inactive,referenced -> active,unreferenced 413 * active,unreferenced -> active,referenced 414 * 415 * When a newly allocated page is not yet visible, so safe for non-atomic ops, 416 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page). 417 */ 418 void folio_mark_accessed(struct folio *folio) 419 { 420 if (!folio_test_referenced(folio)) { 421 folio_set_referenced(folio); 422 } else if (folio_test_unevictable(folio)) { 423 /* 424 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But, 425 * this list is never rotated or maintained, so marking an 426 * unevictable page accessed has no effect. 427 */ 428 } else if (!folio_test_active(folio)) { 429 /* 430 * If the page is on the LRU, queue it for activation via 431 * lru_pvecs.activate_page. Otherwise, assume the page is on a 432 * pagevec, mark it active and it'll be moved to the active 433 * LRU on the next drain. 434 */ 435 if (folio_test_lru(folio)) 436 folio_activate(folio); 437 else 438 __lru_cache_activate_folio(folio); 439 folio_clear_referenced(folio); 440 workingset_activation(folio); 441 } 442 if (folio_test_idle(folio)) 443 folio_clear_idle(folio); 444 } 445 EXPORT_SYMBOL(folio_mark_accessed); 446 447 /** 448 * folio_add_lru - Add a folio to an LRU list. 449 * @folio: The folio to be added to the LRU. 450 * 451 * Queue the folio for addition to the LRU. The decision on whether 452 * to add the page to the [in]active [file|anon] list is deferred until the 453 * pagevec is drained. This gives a chance for the caller of folio_add_lru() 454 * have the folio added to the active list using folio_mark_accessed(). 455 */ 456 void folio_add_lru(struct folio *folio) 457 { 458 struct pagevec *pvec; 459 460 VM_BUG_ON_FOLIO(folio_test_active(folio) && folio_test_unevictable(folio), folio); 461 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 462 463 folio_get(folio); 464 local_lock(&lru_pvecs.lock); 465 pvec = this_cpu_ptr(&lru_pvecs.lru_add); 466 if (pagevec_add_and_need_flush(pvec, &folio->page)) 467 __pagevec_lru_add(pvec); 468 local_unlock(&lru_pvecs.lock); 469 } 470 EXPORT_SYMBOL(folio_add_lru); 471 472 /** 473 * lru_cache_add_inactive_or_unevictable 474 * @page: the page to be added to LRU 475 * @vma: vma in which page is mapped for determining reclaimability 476 * 477 * Place @page on the inactive or unevictable LRU list, depending on its 478 * evictability. 479 */ 480 void lru_cache_add_inactive_or_unevictable(struct page *page, 481 struct vm_area_struct *vma) 482 { 483 VM_BUG_ON_PAGE(PageLRU(page), page); 484 485 if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED)) 486 mlock_new_page(page); 487 else 488 lru_cache_add(page); 489 } 490 491 /* 492 * If the page can not be invalidated, it is moved to the 493 * inactive list to speed up its reclaim. It is moved to the 494 * head of the list, rather than the tail, to give the flusher 495 * threads some time to write it out, as this is much more 496 * effective than the single-page writeout from reclaim. 497 * 498 * If the page isn't page_mapped and dirty/writeback, the page 499 * could reclaim asap using PG_reclaim. 500 * 501 * 1. active, mapped page -> none 502 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim 503 * 3. inactive, mapped page -> none 504 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim 505 * 5. inactive, clean -> inactive, tail 506 * 6. Others -> none 507 * 508 * In 4, why it moves inactive's head, the VM expects the page would 509 * be write it out by flusher threads as this is much more effective 510 * than the single-page writeout from reclaim. 511 */ 512 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec) 513 { 514 bool active = PageActive(page); 515 int nr_pages = thp_nr_pages(page); 516 517 if (PageUnevictable(page)) 518 return; 519 520 /* Some processes are using the page */ 521 if (page_mapped(page)) 522 return; 523 524 del_page_from_lru_list(page, lruvec); 525 ClearPageActive(page); 526 ClearPageReferenced(page); 527 528 if (PageWriteback(page) || PageDirty(page)) { 529 /* 530 * PG_reclaim could be raced with end_page_writeback 531 * It can make readahead confusing. But race window 532 * is _really_ small and it's non-critical problem. 533 */ 534 add_page_to_lru_list(page, lruvec); 535 SetPageReclaim(page); 536 } else { 537 /* 538 * The page's writeback ends up during pagevec 539 * We move that page into tail of inactive. 540 */ 541 add_page_to_lru_list_tail(page, lruvec); 542 __count_vm_events(PGROTATED, nr_pages); 543 } 544 545 if (active) { 546 __count_vm_events(PGDEACTIVATE, nr_pages); 547 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 548 nr_pages); 549 } 550 } 551 552 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec) 553 { 554 if (PageActive(page) && !PageUnevictable(page)) { 555 int nr_pages = thp_nr_pages(page); 556 557 del_page_from_lru_list(page, lruvec); 558 ClearPageActive(page); 559 ClearPageReferenced(page); 560 add_page_to_lru_list(page, lruvec); 561 562 __count_vm_events(PGDEACTIVATE, nr_pages); 563 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 564 nr_pages); 565 } 566 } 567 568 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec) 569 { 570 if (PageAnon(page) && PageSwapBacked(page) && 571 !PageSwapCache(page) && !PageUnevictable(page)) { 572 int nr_pages = thp_nr_pages(page); 573 574 del_page_from_lru_list(page, lruvec); 575 ClearPageActive(page); 576 ClearPageReferenced(page); 577 /* 578 * Lazyfree pages are clean anonymous pages. They have 579 * PG_swapbacked flag cleared, to distinguish them from normal 580 * anonymous pages 581 */ 582 ClearPageSwapBacked(page); 583 add_page_to_lru_list(page, lruvec); 584 585 __count_vm_events(PGLAZYFREE, nr_pages); 586 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, 587 nr_pages); 588 } 589 } 590 591 /* 592 * Drain pages out of the cpu's pagevecs. 593 * Either "cpu" is the current CPU, and preemption has already been 594 * disabled; or "cpu" is being hot-unplugged, and is already dead. 595 */ 596 void lru_add_drain_cpu(int cpu) 597 { 598 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu); 599 600 if (pagevec_count(pvec)) 601 __pagevec_lru_add(pvec); 602 603 pvec = &per_cpu(lru_rotate.pvec, cpu); 604 /* Disabling interrupts below acts as a compiler barrier. */ 605 if (data_race(pagevec_count(pvec))) { 606 unsigned long flags; 607 608 /* No harm done if a racing interrupt already did this */ 609 local_lock_irqsave(&lru_rotate.lock, flags); 610 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn); 611 local_unlock_irqrestore(&lru_rotate.lock, flags); 612 } 613 614 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu); 615 if (pagevec_count(pvec)) 616 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn); 617 618 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu); 619 if (pagevec_count(pvec)) 620 pagevec_lru_move_fn(pvec, lru_deactivate_fn); 621 622 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu); 623 if (pagevec_count(pvec)) 624 pagevec_lru_move_fn(pvec, lru_lazyfree_fn); 625 626 activate_page_drain(cpu); 627 } 628 629 /** 630 * deactivate_file_folio() - Forcefully deactivate a file folio. 631 * @folio: Folio to deactivate. 632 * 633 * This function hints to the VM that @folio is a good reclaim candidate, 634 * for example if its invalidation fails due to the folio being dirty 635 * or under writeback. 636 * 637 * Context: Caller holds a reference on the page. 638 */ 639 void deactivate_file_folio(struct folio *folio) 640 { 641 struct pagevec *pvec; 642 643 /* 644 * In a workload with many unevictable pages such as mprotect, 645 * unevictable folio deactivation for accelerating reclaim is pointless. 646 */ 647 if (folio_test_unevictable(folio)) 648 return; 649 650 folio_get(folio); 651 local_lock(&lru_pvecs.lock); 652 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file); 653 654 if (pagevec_add_and_need_flush(pvec, &folio->page)) 655 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn); 656 local_unlock(&lru_pvecs.lock); 657 } 658 659 /* 660 * deactivate_page - deactivate a page 661 * @page: page to deactivate 662 * 663 * deactivate_page() moves @page to the inactive list if @page was on the active 664 * list and was not an unevictable page. This is done to accelerate the reclaim 665 * of @page. 666 */ 667 void deactivate_page(struct page *page) 668 { 669 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) { 670 struct pagevec *pvec; 671 672 local_lock(&lru_pvecs.lock); 673 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate); 674 get_page(page); 675 if (pagevec_add_and_need_flush(pvec, page)) 676 pagevec_lru_move_fn(pvec, lru_deactivate_fn); 677 local_unlock(&lru_pvecs.lock); 678 } 679 } 680 681 /** 682 * mark_page_lazyfree - make an anon page lazyfree 683 * @page: page to deactivate 684 * 685 * mark_page_lazyfree() moves @page to the inactive file list. 686 * This is done to accelerate the reclaim of @page. 687 */ 688 void mark_page_lazyfree(struct page *page) 689 { 690 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) && 691 !PageSwapCache(page) && !PageUnevictable(page)) { 692 struct pagevec *pvec; 693 694 local_lock(&lru_pvecs.lock); 695 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree); 696 get_page(page); 697 if (pagevec_add_and_need_flush(pvec, page)) 698 pagevec_lru_move_fn(pvec, lru_lazyfree_fn); 699 local_unlock(&lru_pvecs.lock); 700 } 701 } 702 703 void lru_add_drain(void) 704 { 705 local_lock(&lru_pvecs.lock); 706 lru_add_drain_cpu(smp_processor_id()); 707 local_unlock(&lru_pvecs.lock); 708 mlock_page_drain_local(); 709 } 710 711 /* 712 * It's called from per-cpu workqueue context in SMP case so 713 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on 714 * the same cpu. It shouldn't be a problem in !SMP case since 715 * the core is only one and the locks will disable preemption. 716 */ 717 static void lru_add_and_bh_lrus_drain(void) 718 { 719 local_lock(&lru_pvecs.lock); 720 lru_add_drain_cpu(smp_processor_id()); 721 local_unlock(&lru_pvecs.lock); 722 invalidate_bh_lrus_cpu(); 723 mlock_page_drain_local(); 724 } 725 726 void lru_add_drain_cpu_zone(struct zone *zone) 727 { 728 local_lock(&lru_pvecs.lock); 729 lru_add_drain_cpu(smp_processor_id()); 730 drain_local_pages(zone); 731 local_unlock(&lru_pvecs.lock); 732 mlock_page_drain_local(); 733 } 734 735 #ifdef CONFIG_SMP 736 737 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); 738 739 static void lru_add_drain_per_cpu(struct work_struct *dummy) 740 { 741 lru_add_and_bh_lrus_drain(); 742 } 743 744 /* 745 * Doesn't need any cpu hotplug locking because we do rely on per-cpu 746 * kworkers being shut down before our page_alloc_cpu_dead callback is 747 * executed on the offlined cpu. 748 * Calling this function with cpu hotplug locks held can actually lead 749 * to obscure indirect dependencies via WQ context. 750 */ 751 static inline void __lru_add_drain_all(bool force_all_cpus) 752 { 753 /* 754 * lru_drain_gen - Global pages generation number 755 * 756 * (A) Definition: global lru_drain_gen = x implies that all generations 757 * 0 < n <= x are already *scheduled* for draining. 758 * 759 * This is an optimization for the highly-contended use case where a 760 * user space workload keeps constantly generating a flow of pages for 761 * each CPU. 762 */ 763 static unsigned int lru_drain_gen; 764 static struct cpumask has_work; 765 static DEFINE_MUTEX(lock); 766 unsigned cpu, this_gen; 767 768 /* 769 * Make sure nobody triggers this path before mm_percpu_wq is fully 770 * initialized. 771 */ 772 if (WARN_ON(!mm_percpu_wq)) 773 return; 774 775 /* 776 * Guarantee pagevec counter stores visible by this CPU are visible to 777 * other CPUs before loading the current drain generation. 778 */ 779 smp_mb(); 780 781 /* 782 * (B) Locally cache global LRU draining generation number 783 * 784 * The read barrier ensures that the counter is loaded before the mutex 785 * is taken. It pairs with smp_mb() inside the mutex critical section 786 * at (D). 787 */ 788 this_gen = smp_load_acquire(&lru_drain_gen); 789 790 mutex_lock(&lock); 791 792 /* 793 * (C) Exit the draining operation if a newer generation, from another 794 * lru_add_drain_all(), was already scheduled for draining. Check (A). 795 */ 796 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus)) 797 goto done; 798 799 /* 800 * (D) Increment global generation number 801 * 802 * Pairs with smp_load_acquire() at (B), outside of the critical 803 * section. Use a full memory barrier to guarantee that the new global 804 * drain generation number is stored before loading pagevec counters. 805 * 806 * This pairing must be done here, before the for_each_online_cpu loop 807 * below which drains the page vectors. 808 * 809 * Let x, y, and z represent some system CPU numbers, where x < y < z. 810 * Assume CPU #z is in the middle of the for_each_online_cpu loop 811 * below and has already reached CPU #y's per-cpu data. CPU #x comes 812 * along, adds some pages to its per-cpu vectors, then calls 813 * lru_add_drain_all(). 814 * 815 * If the paired barrier is done at any later step, e.g. after the 816 * loop, CPU #x will just exit at (C) and miss flushing out all of its 817 * added pages. 818 */ 819 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1); 820 smp_mb(); 821 822 cpumask_clear(&has_work); 823 for_each_online_cpu(cpu) { 824 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); 825 826 if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) || 827 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) || 828 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) || 829 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) || 830 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) || 831 need_activate_page_drain(cpu) || 832 need_mlock_page_drain(cpu) || 833 has_bh_in_lru(cpu, NULL)) { 834 INIT_WORK(work, lru_add_drain_per_cpu); 835 queue_work_on(cpu, mm_percpu_wq, work); 836 __cpumask_set_cpu(cpu, &has_work); 837 } 838 } 839 840 for_each_cpu(cpu, &has_work) 841 flush_work(&per_cpu(lru_add_drain_work, cpu)); 842 843 done: 844 mutex_unlock(&lock); 845 } 846 847 void lru_add_drain_all(void) 848 { 849 __lru_add_drain_all(false); 850 } 851 #else 852 void lru_add_drain_all(void) 853 { 854 lru_add_drain(); 855 } 856 #endif /* CONFIG_SMP */ 857 858 atomic_t lru_disable_count = ATOMIC_INIT(0); 859 860 /* 861 * lru_cache_disable() needs to be called before we start compiling 862 * a list of pages to be migrated using isolate_lru_page(). 863 * It drains pages on LRU cache and then disable on all cpus until 864 * lru_cache_enable is called. 865 * 866 * Must be paired with a call to lru_cache_enable(). 867 */ 868 void lru_cache_disable(void) 869 { 870 atomic_inc(&lru_disable_count); 871 /* 872 * Readers of lru_disable_count are protected by either disabling 873 * preemption or rcu_read_lock: 874 * 875 * preempt_disable, local_irq_disable [bh_lru_lock()] 876 * rcu_read_lock [rt_spin_lock CONFIG_PREEMPT_RT] 877 * preempt_disable [local_lock !CONFIG_PREEMPT_RT] 878 * 879 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on 880 * preempt_disable() regions of code. So any CPU which sees 881 * lru_disable_count = 0 will have exited the critical 882 * section when synchronize_rcu() returns. 883 */ 884 synchronize_rcu(); 885 #ifdef CONFIG_SMP 886 __lru_add_drain_all(true); 887 #else 888 lru_add_and_bh_lrus_drain(); 889 #endif 890 } 891 892 /** 893 * release_pages - batched put_page() 894 * @pages: array of pages to release 895 * @nr: number of pages 896 * 897 * Decrement the reference count on all the pages in @pages. If it 898 * fell to zero, remove the page from the LRU and free it. 899 */ 900 void release_pages(struct page **pages, int nr) 901 { 902 int i; 903 LIST_HEAD(pages_to_free); 904 struct lruvec *lruvec = NULL; 905 unsigned long flags = 0; 906 unsigned int lock_batch; 907 908 for (i = 0; i < nr; i++) { 909 struct page *page = pages[i]; 910 struct folio *folio = page_folio(page); 911 912 /* 913 * Make sure the IRQ-safe lock-holding time does not get 914 * excessive with a continuous string of pages from the 915 * same lruvec. The lock is held only if lruvec != NULL. 916 */ 917 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) { 918 unlock_page_lruvec_irqrestore(lruvec, flags); 919 lruvec = NULL; 920 } 921 922 page = &folio->page; 923 if (is_huge_zero_page(page)) 924 continue; 925 926 if (is_zone_device_page(page)) { 927 if (lruvec) { 928 unlock_page_lruvec_irqrestore(lruvec, flags); 929 lruvec = NULL; 930 } 931 if (put_devmap_managed_page(page)) 932 continue; 933 if (put_page_testzero(page)) 934 free_zone_device_page(page); 935 continue; 936 } 937 938 if (!put_page_testzero(page)) 939 continue; 940 941 if (PageCompound(page)) { 942 if (lruvec) { 943 unlock_page_lruvec_irqrestore(lruvec, flags); 944 lruvec = NULL; 945 } 946 __put_compound_page(page); 947 continue; 948 } 949 950 if (PageLRU(page)) { 951 struct lruvec *prev_lruvec = lruvec; 952 953 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, 954 &flags); 955 if (prev_lruvec != lruvec) 956 lock_batch = 0; 957 958 del_page_from_lru_list(page, lruvec); 959 __clear_page_lru_flags(page); 960 } 961 962 /* 963 * In rare cases, when truncation or holepunching raced with 964 * munlock after VM_LOCKED was cleared, Mlocked may still be 965 * found set here. This does not indicate a problem, unless 966 * "unevictable_pgs_cleared" appears worryingly large. 967 */ 968 if (unlikely(PageMlocked(page))) { 969 __ClearPageMlocked(page); 970 dec_zone_page_state(page, NR_MLOCK); 971 count_vm_event(UNEVICTABLE_PGCLEARED); 972 } 973 974 list_add(&page->lru, &pages_to_free); 975 } 976 if (lruvec) 977 unlock_page_lruvec_irqrestore(lruvec, flags); 978 979 mem_cgroup_uncharge_list(&pages_to_free); 980 free_unref_page_list(&pages_to_free); 981 } 982 EXPORT_SYMBOL(release_pages); 983 984 /* 985 * The pages which we're about to release may be in the deferred lru-addition 986 * queues. That would prevent them from really being freed right now. That's 987 * OK from a correctness point of view but is inefficient - those pages may be 988 * cache-warm and we want to give them back to the page allocator ASAP. 989 * 990 * So __pagevec_release() will drain those queues here. __pagevec_lru_add() 991 * and __pagevec_lru_add_active() call release_pages() directly to avoid 992 * mutual recursion. 993 */ 994 void __pagevec_release(struct pagevec *pvec) 995 { 996 if (!pvec->percpu_pvec_drained) { 997 lru_add_drain(); 998 pvec->percpu_pvec_drained = true; 999 } 1000 release_pages(pvec->pages, pagevec_count(pvec)); 1001 pagevec_reinit(pvec); 1002 } 1003 EXPORT_SYMBOL(__pagevec_release); 1004 1005 static void __pagevec_lru_add_fn(struct folio *folio, struct lruvec *lruvec) 1006 { 1007 int was_unevictable = folio_test_clear_unevictable(folio); 1008 long nr_pages = folio_nr_pages(folio); 1009 1010 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 1011 1012 folio_set_lru(folio); 1013 /* 1014 * Is an smp_mb__after_atomic() still required here, before 1015 * folio_evictable() tests PageMlocked, to rule out the possibility 1016 * of stranding an evictable folio on an unevictable LRU? I think 1017 * not, because __munlock_page() only clears PageMlocked while the LRU 1018 * lock is held. 1019 * 1020 * (That is not true of __page_cache_release(), and not necessarily 1021 * true of release_pages(): but those only clear PageMlocked after 1022 * put_page_testzero() has excluded any other users of the page.) 1023 */ 1024 if (folio_evictable(folio)) { 1025 if (was_unevictable) 1026 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages); 1027 } else { 1028 folio_clear_active(folio); 1029 folio_set_unevictable(folio); 1030 /* 1031 * folio->mlock_count = !!folio_test_mlocked(folio)? 1032 * But that leaves __mlock_page() in doubt whether another 1033 * actor has already counted the mlock or not. Err on the 1034 * safe side, underestimate, let page reclaim fix it, rather 1035 * than leaving a page on the unevictable LRU indefinitely. 1036 */ 1037 folio->mlock_count = 0; 1038 if (!was_unevictable) 1039 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages); 1040 } 1041 1042 lruvec_add_folio(lruvec, folio); 1043 trace_mm_lru_insertion(folio); 1044 } 1045 1046 /* 1047 * Add the passed pages to the LRU, then drop the caller's refcount 1048 * on them. Reinitialises the caller's pagevec. 1049 */ 1050 void __pagevec_lru_add(struct pagevec *pvec) 1051 { 1052 int i; 1053 struct lruvec *lruvec = NULL; 1054 unsigned long flags = 0; 1055 1056 for (i = 0; i < pagevec_count(pvec); i++) { 1057 struct folio *folio = page_folio(pvec->pages[i]); 1058 1059 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags); 1060 __pagevec_lru_add_fn(folio, lruvec); 1061 } 1062 if (lruvec) 1063 unlock_page_lruvec_irqrestore(lruvec, flags); 1064 release_pages(pvec->pages, pvec->nr); 1065 pagevec_reinit(pvec); 1066 } 1067 1068 /** 1069 * folio_batch_remove_exceptionals() - Prune non-folios from a batch. 1070 * @fbatch: The batch to prune 1071 * 1072 * find_get_entries() fills a batch with both folios and shadow/swap/DAX 1073 * entries. This function prunes all the non-folio entries from @fbatch 1074 * without leaving holes, so that it can be passed on to folio-only batch 1075 * operations. 1076 */ 1077 void folio_batch_remove_exceptionals(struct folio_batch *fbatch) 1078 { 1079 unsigned int i, j; 1080 1081 for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) { 1082 struct folio *folio = fbatch->folios[i]; 1083 if (!xa_is_value(folio)) 1084 fbatch->folios[j++] = folio; 1085 } 1086 fbatch->nr = j; 1087 } 1088 1089 /** 1090 * pagevec_lookup_range - gang pagecache lookup 1091 * @pvec: Where the resulting pages are placed 1092 * @mapping: The address_space to search 1093 * @start: The starting page index 1094 * @end: The final page index 1095 * 1096 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE 1097 * pages in the mapping starting from index @start and upto index @end 1098 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a 1099 * reference against the pages in @pvec. 1100 * 1101 * The search returns a group of mapping-contiguous pages with ascending 1102 * indexes. There may be holes in the indices due to not-present pages. We 1103 * also update @start to index the next page for the traversal. 1104 * 1105 * pagevec_lookup_range() returns the number of pages which were found. If this 1106 * number is smaller than PAGEVEC_SIZE, the end of specified range has been 1107 * reached. 1108 */ 1109 unsigned pagevec_lookup_range(struct pagevec *pvec, 1110 struct address_space *mapping, pgoff_t *start, pgoff_t end) 1111 { 1112 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE, 1113 pvec->pages); 1114 return pagevec_count(pvec); 1115 } 1116 EXPORT_SYMBOL(pagevec_lookup_range); 1117 1118 unsigned pagevec_lookup_range_tag(struct pagevec *pvec, 1119 struct address_space *mapping, pgoff_t *index, pgoff_t end, 1120 xa_mark_t tag) 1121 { 1122 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag, 1123 PAGEVEC_SIZE, pvec->pages); 1124 return pagevec_count(pvec); 1125 } 1126 EXPORT_SYMBOL(pagevec_lookup_range_tag); 1127 1128 /* 1129 * Perform any setup for the swap system 1130 */ 1131 void __init swap_setup(void) 1132 { 1133 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT); 1134 1135 /* Use a smaller cluster for small-memory machines */ 1136 if (megs < 16) 1137 page_cluster = 2; 1138 else 1139 page_cluster = 3; 1140 /* 1141 * Right now other parts of the system means that we 1142 * _really_ don't want to cluster much more 1143 */ 1144 } 1145