xref: /linux/mm/swap.c (revision c0e297dc61f8d4453e07afbea1fa8d0e67cd4a34)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 #include <linux/uio.h>
34 #include <linux/hugetlb.h>
35 
36 #include "internal.h"
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/pagemap.h>
40 
41 /* How many pages do we try to swap or page in/out together? */
42 int page_cluster;
43 
44 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
45 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
46 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
47 
48 /*
49  * This path almost never happens for VM activity - pages are normally
50  * freed via pagevecs.  But it gets used by networking.
51  */
52 static void __page_cache_release(struct page *page)
53 {
54 	if (PageLRU(page)) {
55 		struct zone *zone = page_zone(page);
56 		struct lruvec *lruvec;
57 		unsigned long flags;
58 
59 		spin_lock_irqsave(&zone->lru_lock, flags);
60 		lruvec = mem_cgroup_page_lruvec(page, zone);
61 		VM_BUG_ON_PAGE(!PageLRU(page), page);
62 		__ClearPageLRU(page);
63 		del_page_from_lru_list(page, lruvec, page_off_lru(page));
64 		spin_unlock_irqrestore(&zone->lru_lock, flags);
65 	}
66 	mem_cgroup_uncharge(page);
67 }
68 
69 static void __put_single_page(struct page *page)
70 {
71 	__page_cache_release(page);
72 	free_hot_cold_page(page, false);
73 }
74 
75 static void __put_compound_page(struct page *page)
76 {
77 	compound_page_dtor *dtor;
78 
79 	/*
80 	 * __page_cache_release() is supposed to be called for thp, not for
81 	 * hugetlb. This is because hugetlb page does never have PageLRU set
82 	 * (it's never listed to any LRU lists) and no memcg routines should
83 	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
84 	 */
85 	if (!PageHuge(page))
86 		__page_cache_release(page);
87 	dtor = get_compound_page_dtor(page);
88 	(*dtor)(page);
89 }
90 
91 /**
92  * Two special cases here: we could avoid taking compound_lock_irqsave
93  * and could skip the tail refcounting(in _mapcount).
94  *
95  * 1. Hugetlbfs page:
96  *
97  *    PageHeadHuge will remain true until the compound page
98  *    is released and enters the buddy allocator, and it could
99  *    not be split by __split_huge_page_refcount().
100  *
101  *    So if we see PageHeadHuge set, and we have the tail page pin,
102  *    then we could safely put head page.
103  *
104  * 2. Slab THP page:
105  *
106  *    PG_slab is cleared before the slab frees the head page, and
107  *    tail pin cannot be the last reference left on the head page,
108  *    because the slab code is free to reuse the compound page
109  *    after a kfree/kmem_cache_free without having to check if
110  *    there's any tail pin left.  In turn all tail pinsmust be always
111  *    released while the head is still pinned by the slab code
112  *    and so we know PG_slab will be still set too.
113  *
114  *    So if we see PageSlab set, and we have the tail page pin,
115  *    then we could safely put head page.
116  */
117 static __always_inline
118 void put_unrefcounted_compound_page(struct page *page_head, struct page *page)
119 {
120 	/*
121 	 * If @page is a THP tail, we must read the tail page
122 	 * flags after the head page flags. The
123 	 * __split_huge_page_refcount side enforces write memory barriers
124 	 * between clearing PageTail and before the head page
125 	 * can be freed and reallocated.
126 	 */
127 	smp_rmb();
128 	if (likely(PageTail(page))) {
129 		/*
130 		 * __split_huge_page_refcount cannot race
131 		 * here, see the comment above this function.
132 		 */
133 		VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
134 		if (put_page_testzero(page_head)) {
135 			/*
136 			 * If this is the tail of a slab THP page,
137 			 * the tail pin must not be the last reference
138 			 * held on the page, because the PG_slab cannot
139 			 * be cleared before all tail pins (which skips
140 			 * the _mapcount tail refcounting) have been
141 			 * released.
142 			 *
143 			 * If this is the tail of a hugetlbfs page,
144 			 * the tail pin may be the last reference on
145 			 * the page instead, because PageHeadHuge will
146 			 * not go away until the compound page enters
147 			 * the buddy allocator.
148 			 */
149 			VM_BUG_ON_PAGE(PageSlab(page_head), page_head);
150 			__put_compound_page(page_head);
151 		}
152 	} else
153 		/*
154 		 * __split_huge_page_refcount run before us,
155 		 * @page was a THP tail. The split @page_head
156 		 * has been freed and reallocated as slab or
157 		 * hugetlbfs page of smaller order (only
158 		 * possible if reallocated as slab on x86).
159 		 */
160 		if (put_page_testzero(page))
161 			__put_single_page(page);
162 }
163 
164 static __always_inline
165 void put_refcounted_compound_page(struct page *page_head, struct page *page)
166 {
167 	if (likely(page != page_head && get_page_unless_zero(page_head))) {
168 		unsigned long flags;
169 
170 		/*
171 		 * @page_head wasn't a dangling pointer but it may not
172 		 * be a head page anymore by the time we obtain the
173 		 * lock. That is ok as long as it can't be freed from
174 		 * under us.
175 		 */
176 		flags = compound_lock_irqsave(page_head);
177 		if (unlikely(!PageTail(page))) {
178 			/* __split_huge_page_refcount run before us */
179 			compound_unlock_irqrestore(page_head, flags);
180 			if (put_page_testzero(page_head)) {
181 				/*
182 				 * The @page_head may have been freed
183 				 * and reallocated as a compound page
184 				 * of smaller order and then freed
185 				 * again.  All we know is that it
186 				 * cannot have become: a THP page, a
187 				 * compound page of higher order, a
188 				 * tail page.  That is because we
189 				 * still hold the refcount of the
190 				 * split THP tail and page_head was
191 				 * the THP head before the split.
192 				 */
193 				if (PageHead(page_head))
194 					__put_compound_page(page_head);
195 				else
196 					__put_single_page(page_head);
197 			}
198 out_put_single:
199 			if (put_page_testzero(page))
200 				__put_single_page(page);
201 			return;
202 		}
203 		VM_BUG_ON_PAGE(page_head != page->first_page, page);
204 		/*
205 		 * We can release the refcount taken by
206 		 * get_page_unless_zero() now that
207 		 * __split_huge_page_refcount() is blocked on the
208 		 * compound_lock.
209 		 */
210 		if (put_page_testzero(page_head))
211 			VM_BUG_ON_PAGE(1, page_head);
212 		/* __split_huge_page_refcount will wait now */
213 		VM_BUG_ON_PAGE(page_mapcount(page) <= 0, page);
214 		atomic_dec(&page->_mapcount);
215 		VM_BUG_ON_PAGE(atomic_read(&page_head->_count) <= 0, page_head);
216 		VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
217 		compound_unlock_irqrestore(page_head, flags);
218 
219 		if (put_page_testzero(page_head)) {
220 			if (PageHead(page_head))
221 				__put_compound_page(page_head);
222 			else
223 				__put_single_page(page_head);
224 		}
225 	} else {
226 		/* @page_head is a dangling pointer */
227 		VM_BUG_ON_PAGE(PageTail(page), page);
228 		goto out_put_single;
229 	}
230 }
231 
232 static void put_compound_page(struct page *page)
233 {
234 	struct page *page_head;
235 
236 	/*
237 	 * We see the PageCompound set and PageTail not set, so @page maybe:
238 	 *  1. hugetlbfs head page, or
239 	 *  2. THP head page.
240 	 */
241 	if (likely(!PageTail(page))) {
242 		if (put_page_testzero(page)) {
243 			/*
244 			 * By the time all refcounts have been released
245 			 * split_huge_page cannot run anymore from under us.
246 			 */
247 			if (PageHead(page))
248 				__put_compound_page(page);
249 			else
250 				__put_single_page(page);
251 		}
252 		return;
253 	}
254 
255 	/*
256 	 * We see the PageCompound set and PageTail set, so @page maybe:
257 	 *  1. a tail hugetlbfs page, or
258 	 *  2. a tail THP page, or
259 	 *  3. a split THP page.
260 	 *
261 	 *  Case 3 is possible, as we may race with
262 	 *  __split_huge_page_refcount tearing down a THP page.
263 	 */
264 	page_head = compound_head_by_tail(page);
265 	if (!__compound_tail_refcounted(page_head))
266 		put_unrefcounted_compound_page(page_head, page);
267 	else
268 		put_refcounted_compound_page(page_head, page);
269 }
270 
271 void put_page(struct page *page)
272 {
273 	if (unlikely(PageCompound(page)))
274 		put_compound_page(page);
275 	else if (put_page_testzero(page))
276 		__put_single_page(page);
277 }
278 EXPORT_SYMBOL(put_page);
279 
280 /*
281  * This function is exported but must not be called by anything other
282  * than get_page(). It implements the slow path of get_page().
283  */
284 bool __get_page_tail(struct page *page)
285 {
286 	/*
287 	 * This takes care of get_page() if run on a tail page
288 	 * returned by one of the get_user_pages/follow_page variants.
289 	 * get_user_pages/follow_page itself doesn't need the compound
290 	 * lock because it runs __get_page_tail_foll() under the
291 	 * proper PT lock that already serializes against
292 	 * split_huge_page().
293 	 */
294 	unsigned long flags;
295 	bool got;
296 	struct page *page_head = compound_head(page);
297 
298 	/* Ref to put_compound_page() comment. */
299 	if (!__compound_tail_refcounted(page_head)) {
300 		smp_rmb();
301 		if (likely(PageTail(page))) {
302 			/*
303 			 * This is a hugetlbfs page or a slab
304 			 * page. __split_huge_page_refcount
305 			 * cannot race here.
306 			 */
307 			VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
308 			__get_page_tail_foll(page, true);
309 			return true;
310 		} else {
311 			/*
312 			 * __split_huge_page_refcount run
313 			 * before us, "page" was a THP
314 			 * tail. The split page_head has been
315 			 * freed and reallocated as slab or
316 			 * hugetlbfs page of smaller order
317 			 * (only possible if reallocated as
318 			 * slab on x86).
319 			 */
320 			return false;
321 		}
322 	}
323 
324 	got = false;
325 	if (likely(page != page_head && get_page_unless_zero(page_head))) {
326 		/*
327 		 * page_head wasn't a dangling pointer but it
328 		 * may not be a head page anymore by the time
329 		 * we obtain the lock. That is ok as long as it
330 		 * can't be freed from under us.
331 		 */
332 		flags = compound_lock_irqsave(page_head);
333 		/* here __split_huge_page_refcount won't run anymore */
334 		if (likely(PageTail(page))) {
335 			__get_page_tail_foll(page, false);
336 			got = true;
337 		}
338 		compound_unlock_irqrestore(page_head, flags);
339 		if (unlikely(!got))
340 			put_page(page_head);
341 	}
342 	return got;
343 }
344 EXPORT_SYMBOL(__get_page_tail);
345 
346 /**
347  * put_pages_list() - release a list of pages
348  * @pages: list of pages threaded on page->lru
349  *
350  * Release a list of pages which are strung together on page.lru.  Currently
351  * used by read_cache_pages() and related error recovery code.
352  */
353 void put_pages_list(struct list_head *pages)
354 {
355 	while (!list_empty(pages)) {
356 		struct page *victim;
357 
358 		victim = list_entry(pages->prev, struct page, lru);
359 		list_del(&victim->lru);
360 		page_cache_release(victim);
361 	}
362 }
363 EXPORT_SYMBOL(put_pages_list);
364 
365 /*
366  * get_kernel_pages() - pin kernel pages in memory
367  * @kiov:	An array of struct kvec structures
368  * @nr_segs:	number of segments to pin
369  * @write:	pinning for read/write, currently ignored
370  * @pages:	array that receives pointers to the pages pinned.
371  *		Should be at least nr_segs long.
372  *
373  * Returns number of pages pinned. This may be fewer than the number
374  * requested. If nr_pages is 0 or negative, returns 0. If no pages
375  * were pinned, returns -errno. Each page returned must be released
376  * with a put_page() call when it is finished with.
377  */
378 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
379 		struct page **pages)
380 {
381 	int seg;
382 
383 	for (seg = 0; seg < nr_segs; seg++) {
384 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
385 			return seg;
386 
387 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
388 		page_cache_get(pages[seg]);
389 	}
390 
391 	return seg;
392 }
393 EXPORT_SYMBOL_GPL(get_kernel_pages);
394 
395 /*
396  * get_kernel_page() - pin a kernel page in memory
397  * @start:	starting kernel address
398  * @write:	pinning for read/write, currently ignored
399  * @pages:	array that receives pointer to the page pinned.
400  *		Must be at least nr_segs long.
401  *
402  * Returns 1 if page is pinned. If the page was not pinned, returns
403  * -errno. The page returned must be released with a put_page() call
404  * when it is finished with.
405  */
406 int get_kernel_page(unsigned long start, int write, struct page **pages)
407 {
408 	const struct kvec kiov = {
409 		.iov_base = (void *)start,
410 		.iov_len = PAGE_SIZE
411 	};
412 
413 	return get_kernel_pages(&kiov, 1, write, pages);
414 }
415 EXPORT_SYMBOL_GPL(get_kernel_page);
416 
417 static void pagevec_lru_move_fn(struct pagevec *pvec,
418 	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
419 	void *arg)
420 {
421 	int i;
422 	struct zone *zone = NULL;
423 	struct lruvec *lruvec;
424 	unsigned long flags = 0;
425 
426 	for (i = 0; i < pagevec_count(pvec); i++) {
427 		struct page *page = pvec->pages[i];
428 		struct zone *pagezone = page_zone(page);
429 
430 		if (pagezone != zone) {
431 			if (zone)
432 				spin_unlock_irqrestore(&zone->lru_lock, flags);
433 			zone = pagezone;
434 			spin_lock_irqsave(&zone->lru_lock, flags);
435 		}
436 
437 		lruvec = mem_cgroup_page_lruvec(page, zone);
438 		(*move_fn)(page, lruvec, arg);
439 	}
440 	if (zone)
441 		spin_unlock_irqrestore(&zone->lru_lock, flags);
442 	release_pages(pvec->pages, pvec->nr, pvec->cold);
443 	pagevec_reinit(pvec);
444 }
445 
446 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
447 				 void *arg)
448 {
449 	int *pgmoved = arg;
450 
451 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
452 		enum lru_list lru = page_lru_base_type(page);
453 		list_move_tail(&page->lru, &lruvec->lists[lru]);
454 		(*pgmoved)++;
455 	}
456 }
457 
458 /*
459  * pagevec_move_tail() must be called with IRQ disabled.
460  * Otherwise this may cause nasty races.
461  */
462 static void pagevec_move_tail(struct pagevec *pvec)
463 {
464 	int pgmoved = 0;
465 
466 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
467 	__count_vm_events(PGROTATED, pgmoved);
468 }
469 
470 /*
471  * Writeback is about to end against a page which has been marked for immediate
472  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
473  * inactive list.
474  */
475 void rotate_reclaimable_page(struct page *page)
476 {
477 	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
478 	    !PageUnevictable(page) && PageLRU(page)) {
479 		struct pagevec *pvec;
480 		unsigned long flags;
481 
482 		page_cache_get(page);
483 		local_irq_save(flags);
484 		pvec = this_cpu_ptr(&lru_rotate_pvecs);
485 		if (!pagevec_add(pvec, page))
486 			pagevec_move_tail(pvec);
487 		local_irq_restore(flags);
488 	}
489 }
490 
491 static void update_page_reclaim_stat(struct lruvec *lruvec,
492 				     int file, int rotated)
493 {
494 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
495 
496 	reclaim_stat->recent_scanned[file]++;
497 	if (rotated)
498 		reclaim_stat->recent_rotated[file]++;
499 }
500 
501 static void __activate_page(struct page *page, struct lruvec *lruvec,
502 			    void *arg)
503 {
504 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
505 		int file = page_is_file_cache(page);
506 		int lru = page_lru_base_type(page);
507 
508 		del_page_from_lru_list(page, lruvec, lru);
509 		SetPageActive(page);
510 		lru += LRU_ACTIVE;
511 		add_page_to_lru_list(page, lruvec, lru);
512 		trace_mm_lru_activate(page);
513 
514 		__count_vm_event(PGACTIVATE);
515 		update_page_reclaim_stat(lruvec, file, 1);
516 	}
517 }
518 
519 #ifdef CONFIG_SMP
520 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
521 
522 static void activate_page_drain(int cpu)
523 {
524 	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
525 
526 	if (pagevec_count(pvec))
527 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
528 }
529 
530 static bool need_activate_page_drain(int cpu)
531 {
532 	return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
533 }
534 
535 void activate_page(struct page *page)
536 {
537 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
538 		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
539 
540 		page_cache_get(page);
541 		if (!pagevec_add(pvec, page))
542 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
543 		put_cpu_var(activate_page_pvecs);
544 	}
545 }
546 
547 #else
548 static inline void activate_page_drain(int cpu)
549 {
550 }
551 
552 static bool need_activate_page_drain(int cpu)
553 {
554 	return false;
555 }
556 
557 void activate_page(struct page *page)
558 {
559 	struct zone *zone = page_zone(page);
560 
561 	spin_lock_irq(&zone->lru_lock);
562 	__activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
563 	spin_unlock_irq(&zone->lru_lock);
564 }
565 #endif
566 
567 static void __lru_cache_activate_page(struct page *page)
568 {
569 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
570 	int i;
571 
572 	/*
573 	 * Search backwards on the optimistic assumption that the page being
574 	 * activated has just been added to this pagevec. Note that only
575 	 * the local pagevec is examined as a !PageLRU page could be in the
576 	 * process of being released, reclaimed, migrated or on a remote
577 	 * pagevec that is currently being drained. Furthermore, marking
578 	 * a remote pagevec's page PageActive potentially hits a race where
579 	 * a page is marked PageActive just after it is added to the inactive
580 	 * list causing accounting errors and BUG_ON checks to trigger.
581 	 */
582 	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
583 		struct page *pagevec_page = pvec->pages[i];
584 
585 		if (pagevec_page == page) {
586 			SetPageActive(page);
587 			break;
588 		}
589 	}
590 
591 	put_cpu_var(lru_add_pvec);
592 }
593 
594 /*
595  * Mark a page as having seen activity.
596  *
597  * inactive,unreferenced	->	inactive,referenced
598  * inactive,referenced		->	active,unreferenced
599  * active,unreferenced		->	active,referenced
600  *
601  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
602  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
603  */
604 void mark_page_accessed(struct page *page)
605 {
606 	if (!PageActive(page) && !PageUnevictable(page) &&
607 			PageReferenced(page)) {
608 
609 		/*
610 		 * If the page is on the LRU, queue it for activation via
611 		 * activate_page_pvecs. Otherwise, assume the page is on a
612 		 * pagevec, mark it active and it'll be moved to the active
613 		 * LRU on the next drain.
614 		 */
615 		if (PageLRU(page))
616 			activate_page(page);
617 		else
618 			__lru_cache_activate_page(page);
619 		ClearPageReferenced(page);
620 		if (page_is_file_cache(page))
621 			workingset_activation(page);
622 	} else if (!PageReferenced(page)) {
623 		SetPageReferenced(page);
624 	}
625 }
626 EXPORT_SYMBOL(mark_page_accessed);
627 
628 static void __lru_cache_add(struct page *page)
629 {
630 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
631 
632 	page_cache_get(page);
633 	if (!pagevec_space(pvec))
634 		__pagevec_lru_add(pvec);
635 	pagevec_add(pvec, page);
636 	put_cpu_var(lru_add_pvec);
637 }
638 
639 /**
640  * lru_cache_add: add a page to the page lists
641  * @page: the page to add
642  */
643 void lru_cache_add_anon(struct page *page)
644 {
645 	if (PageActive(page))
646 		ClearPageActive(page);
647 	__lru_cache_add(page);
648 }
649 
650 void lru_cache_add_file(struct page *page)
651 {
652 	if (PageActive(page))
653 		ClearPageActive(page);
654 	__lru_cache_add(page);
655 }
656 EXPORT_SYMBOL(lru_cache_add_file);
657 
658 /**
659  * lru_cache_add - add a page to a page list
660  * @page: the page to be added to the LRU.
661  *
662  * Queue the page for addition to the LRU via pagevec. The decision on whether
663  * to add the page to the [in]active [file|anon] list is deferred until the
664  * pagevec is drained. This gives a chance for the caller of lru_cache_add()
665  * have the page added to the active list using mark_page_accessed().
666  */
667 void lru_cache_add(struct page *page)
668 {
669 	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
670 	VM_BUG_ON_PAGE(PageLRU(page), page);
671 	__lru_cache_add(page);
672 }
673 
674 /**
675  * add_page_to_unevictable_list - add a page to the unevictable list
676  * @page:  the page to be added to the unevictable list
677  *
678  * Add page directly to its zone's unevictable list.  To avoid races with
679  * tasks that might be making the page evictable, through eg. munlock,
680  * munmap or exit, while it's not on the lru, we want to add the page
681  * while it's locked or otherwise "invisible" to other tasks.  This is
682  * difficult to do when using the pagevec cache, so bypass that.
683  */
684 void add_page_to_unevictable_list(struct page *page)
685 {
686 	struct zone *zone = page_zone(page);
687 	struct lruvec *lruvec;
688 
689 	spin_lock_irq(&zone->lru_lock);
690 	lruvec = mem_cgroup_page_lruvec(page, zone);
691 	ClearPageActive(page);
692 	SetPageUnevictable(page);
693 	SetPageLRU(page);
694 	add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
695 	spin_unlock_irq(&zone->lru_lock);
696 }
697 
698 /**
699  * lru_cache_add_active_or_unevictable
700  * @page:  the page to be added to LRU
701  * @vma:   vma in which page is mapped for determining reclaimability
702  *
703  * Place @page on the active or unevictable LRU list, depending on its
704  * evictability.  Note that if the page is not evictable, it goes
705  * directly back onto it's zone's unevictable list, it does NOT use a
706  * per cpu pagevec.
707  */
708 void lru_cache_add_active_or_unevictable(struct page *page,
709 					 struct vm_area_struct *vma)
710 {
711 	VM_BUG_ON_PAGE(PageLRU(page), page);
712 
713 	if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
714 		SetPageActive(page);
715 		lru_cache_add(page);
716 		return;
717 	}
718 
719 	if (!TestSetPageMlocked(page)) {
720 		/*
721 		 * We use the irq-unsafe __mod_zone_page_stat because this
722 		 * counter is not modified from interrupt context, and the pte
723 		 * lock is held(spinlock), which implies preemption disabled.
724 		 */
725 		__mod_zone_page_state(page_zone(page), NR_MLOCK,
726 				    hpage_nr_pages(page));
727 		count_vm_event(UNEVICTABLE_PGMLOCKED);
728 	}
729 	add_page_to_unevictable_list(page);
730 }
731 
732 /*
733  * If the page can not be invalidated, it is moved to the
734  * inactive list to speed up its reclaim.  It is moved to the
735  * head of the list, rather than the tail, to give the flusher
736  * threads some time to write it out, as this is much more
737  * effective than the single-page writeout from reclaim.
738  *
739  * If the page isn't page_mapped and dirty/writeback, the page
740  * could reclaim asap using PG_reclaim.
741  *
742  * 1. active, mapped page -> none
743  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
744  * 3. inactive, mapped page -> none
745  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
746  * 5. inactive, clean -> inactive, tail
747  * 6. Others -> none
748  *
749  * In 4, why it moves inactive's head, the VM expects the page would
750  * be write it out by flusher threads as this is much more effective
751  * than the single-page writeout from reclaim.
752  */
753 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
754 			      void *arg)
755 {
756 	int lru, file;
757 	bool active;
758 
759 	if (!PageLRU(page))
760 		return;
761 
762 	if (PageUnevictable(page))
763 		return;
764 
765 	/* Some processes are using the page */
766 	if (page_mapped(page))
767 		return;
768 
769 	active = PageActive(page);
770 	file = page_is_file_cache(page);
771 	lru = page_lru_base_type(page);
772 
773 	del_page_from_lru_list(page, lruvec, lru + active);
774 	ClearPageActive(page);
775 	ClearPageReferenced(page);
776 	add_page_to_lru_list(page, lruvec, lru);
777 
778 	if (PageWriteback(page) || PageDirty(page)) {
779 		/*
780 		 * PG_reclaim could be raced with end_page_writeback
781 		 * It can make readahead confusing.  But race window
782 		 * is _really_ small and  it's non-critical problem.
783 		 */
784 		SetPageReclaim(page);
785 	} else {
786 		/*
787 		 * The page's writeback ends up during pagevec
788 		 * We moves tha page into tail of inactive.
789 		 */
790 		list_move_tail(&page->lru, &lruvec->lists[lru]);
791 		__count_vm_event(PGROTATED);
792 	}
793 
794 	if (active)
795 		__count_vm_event(PGDEACTIVATE);
796 	update_page_reclaim_stat(lruvec, file, 0);
797 }
798 
799 /*
800  * Drain pages out of the cpu's pagevecs.
801  * Either "cpu" is the current CPU, and preemption has already been
802  * disabled; or "cpu" is being hot-unplugged, and is already dead.
803  */
804 void lru_add_drain_cpu(int cpu)
805 {
806 	struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
807 
808 	if (pagevec_count(pvec))
809 		__pagevec_lru_add(pvec);
810 
811 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
812 	if (pagevec_count(pvec)) {
813 		unsigned long flags;
814 
815 		/* No harm done if a racing interrupt already did this */
816 		local_irq_save(flags);
817 		pagevec_move_tail(pvec);
818 		local_irq_restore(flags);
819 	}
820 
821 	pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
822 	if (pagevec_count(pvec))
823 		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
824 
825 	activate_page_drain(cpu);
826 }
827 
828 /**
829  * deactivate_file_page - forcefully deactivate a file page
830  * @page: page to deactivate
831  *
832  * This function hints the VM that @page is a good reclaim candidate,
833  * for example if its invalidation fails due to the page being dirty
834  * or under writeback.
835  */
836 void deactivate_file_page(struct page *page)
837 {
838 	/*
839 	 * In a workload with many unevictable page such as mprotect,
840 	 * unevictable page deactivation for accelerating reclaim is pointless.
841 	 */
842 	if (PageUnevictable(page))
843 		return;
844 
845 	if (likely(get_page_unless_zero(page))) {
846 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
847 
848 		if (!pagevec_add(pvec, page))
849 			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
850 		put_cpu_var(lru_deactivate_file_pvecs);
851 	}
852 }
853 
854 void lru_add_drain(void)
855 {
856 	lru_add_drain_cpu(get_cpu());
857 	put_cpu();
858 }
859 
860 static void lru_add_drain_per_cpu(struct work_struct *dummy)
861 {
862 	lru_add_drain();
863 }
864 
865 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
866 
867 void lru_add_drain_all(void)
868 {
869 	static DEFINE_MUTEX(lock);
870 	static struct cpumask has_work;
871 	int cpu;
872 
873 	mutex_lock(&lock);
874 	get_online_cpus();
875 	cpumask_clear(&has_work);
876 
877 	for_each_online_cpu(cpu) {
878 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
879 
880 		if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
881 		    pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
882 		    pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
883 		    need_activate_page_drain(cpu)) {
884 			INIT_WORK(work, lru_add_drain_per_cpu);
885 			schedule_work_on(cpu, work);
886 			cpumask_set_cpu(cpu, &has_work);
887 		}
888 	}
889 
890 	for_each_cpu(cpu, &has_work)
891 		flush_work(&per_cpu(lru_add_drain_work, cpu));
892 
893 	put_online_cpus();
894 	mutex_unlock(&lock);
895 }
896 
897 /**
898  * release_pages - batched page_cache_release()
899  * @pages: array of pages to release
900  * @nr: number of pages
901  * @cold: whether the pages are cache cold
902  *
903  * Decrement the reference count on all the pages in @pages.  If it
904  * fell to zero, remove the page from the LRU and free it.
905  */
906 void release_pages(struct page **pages, int nr, bool cold)
907 {
908 	int i;
909 	LIST_HEAD(pages_to_free);
910 	struct zone *zone = NULL;
911 	struct lruvec *lruvec;
912 	unsigned long uninitialized_var(flags);
913 	unsigned int uninitialized_var(lock_batch);
914 
915 	for (i = 0; i < nr; i++) {
916 		struct page *page = pages[i];
917 
918 		if (unlikely(PageCompound(page))) {
919 			if (zone) {
920 				spin_unlock_irqrestore(&zone->lru_lock, flags);
921 				zone = NULL;
922 			}
923 			put_compound_page(page);
924 			continue;
925 		}
926 
927 		/*
928 		 * Make sure the IRQ-safe lock-holding time does not get
929 		 * excessive with a continuous string of pages from the
930 		 * same zone. The lock is held only if zone != NULL.
931 		 */
932 		if (zone && ++lock_batch == SWAP_CLUSTER_MAX) {
933 			spin_unlock_irqrestore(&zone->lru_lock, flags);
934 			zone = NULL;
935 		}
936 
937 		if (!put_page_testzero(page))
938 			continue;
939 
940 		if (PageLRU(page)) {
941 			struct zone *pagezone = page_zone(page);
942 
943 			if (pagezone != zone) {
944 				if (zone)
945 					spin_unlock_irqrestore(&zone->lru_lock,
946 									flags);
947 				lock_batch = 0;
948 				zone = pagezone;
949 				spin_lock_irqsave(&zone->lru_lock, flags);
950 			}
951 
952 			lruvec = mem_cgroup_page_lruvec(page, zone);
953 			VM_BUG_ON_PAGE(!PageLRU(page), page);
954 			__ClearPageLRU(page);
955 			del_page_from_lru_list(page, lruvec, page_off_lru(page));
956 		}
957 
958 		/* Clear Active bit in case of parallel mark_page_accessed */
959 		__ClearPageActive(page);
960 
961 		list_add(&page->lru, &pages_to_free);
962 	}
963 	if (zone)
964 		spin_unlock_irqrestore(&zone->lru_lock, flags);
965 
966 	mem_cgroup_uncharge_list(&pages_to_free);
967 	free_hot_cold_page_list(&pages_to_free, cold);
968 }
969 EXPORT_SYMBOL(release_pages);
970 
971 /*
972  * The pages which we're about to release may be in the deferred lru-addition
973  * queues.  That would prevent them from really being freed right now.  That's
974  * OK from a correctness point of view but is inefficient - those pages may be
975  * cache-warm and we want to give them back to the page allocator ASAP.
976  *
977  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
978  * and __pagevec_lru_add_active() call release_pages() directly to avoid
979  * mutual recursion.
980  */
981 void __pagevec_release(struct pagevec *pvec)
982 {
983 	lru_add_drain();
984 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
985 	pagevec_reinit(pvec);
986 }
987 EXPORT_SYMBOL(__pagevec_release);
988 
989 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
990 /* used by __split_huge_page_refcount() */
991 void lru_add_page_tail(struct page *page, struct page *page_tail,
992 		       struct lruvec *lruvec, struct list_head *list)
993 {
994 	const int file = 0;
995 
996 	VM_BUG_ON_PAGE(!PageHead(page), page);
997 	VM_BUG_ON_PAGE(PageCompound(page_tail), page);
998 	VM_BUG_ON_PAGE(PageLRU(page_tail), page);
999 	VM_BUG_ON(NR_CPUS != 1 &&
1000 		  !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
1001 
1002 	if (!list)
1003 		SetPageLRU(page_tail);
1004 
1005 	if (likely(PageLRU(page)))
1006 		list_add_tail(&page_tail->lru, &page->lru);
1007 	else if (list) {
1008 		/* page reclaim is reclaiming a huge page */
1009 		get_page(page_tail);
1010 		list_add_tail(&page_tail->lru, list);
1011 	} else {
1012 		struct list_head *list_head;
1013 		/*
1014 		 * Head page has not yet been counted, as an hpage,
1015 		 * so we must account for each subpage individually.
1016 		 *
1017 		 * Use the standard add function to put page_tail on the list,
1018 		 * but then correct its position so they all end up in order.
1019 		 */
1020 		add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
1021 		list_head = page_tail->lru.prev;
1022 		list_move_tail(&page_tail->lru, list_head);
1023 	}
1024 
1025 	if (!PageUnevictable(page))
1026 		update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
1027 }
1028 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1029 
1030 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
1031 				 void *arg)
1032 {
1033 	int file = page_is_file_cache(page);
1034 	int active = PageActive(page);
1035 	enum lru_list lru = page_lru(page);
1036 
1037 	VM_BUG_ON_PAGE(PageLRU(page), page);
1038 
1039 	SetPageLRU(page);
1040 	add_page_to_lru_list(page, lruvec, lru);
1041 	update_page_reclaim_stat(lruvec, file, active);
1042 	trace_mm_lru_insertion(page, lru);
1043 }
1044 
1045 /*
1046  * Add the passed pages to the LRU, then drop the caller's refcount
1047  * on them.  Reinitialises the caller's pagevec.
1048  */
1049 void __pagevec_lru_add(struct pagevec *pvec)
1050 {
1051 	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1052 }
1053 EXPORT_SYMBOL(__pagevec_lru_add);
1054 
1055 /**
1056  * pagevec_lookup_entries - gang pagecache lookup
1057  * @pvec:	Where the resulting entries are placed
1058  * @mapping:	The address_space to search
1059  * @start:	The starting entry index
1060  * @nr_entries:	The maximum number of entries
1061  * @indices:	The cache indices corresponding to the entries in @pvec
1062  *
1063  * pagevec_lookup_entries() will search for and return a group of up
1064  * to @nr_entries pages and shadow entries in the mapping.  All
1065  * entries are placed in @pvec.  pagevec_lookup_entries() takes a
1066  * reference against actual pages in @pvec.
1067  *
1068  * The search returns a group of mapping-contiguous entries with
1069  * ascending indexes.  There may be holes in the indices due to
1070  * not-present entries.
1071  *
1072  * pagevec_lookup_entries() returns the number of entries which were
1073  * found.
1074  */
1075 unsigned pagevec_lookup_entries(struct pagevec *pvec,
1076 				struct address_space *mapping,
1077 				pgoff_t start, unsigned nr_pages,
1078 				pgoff_t *indices)
1079 {
1080 	pvec->nr = find_get_entries(mapping, start, nr_pages,
1081 				    pvec->pages, indices);
1082 	return pagevec_count(pvec);
1083 }
1084 
1085 /**
1086  * pagevec_remove_exceptionals - pagevec exceptionals pruning
1087  * @pvec:	The pagevec to prune
1088  *
1089  * pagevec_lookup_entries() fills both pages and exceptional radix
1090  * tree entries into the pagevec.  This function prunes all
1091  * exceptionals from @pvec without leaving holes, so that it can be
1092  * passed on to page-only pagevec operations.
1093  */
1094 void pagevec_remove_exceptionals(struct pagevec *pvec)
1095 {
1096 	int i, j;
1097 
1098 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1099 		struct page *page = pvec->pages[i];
1100 		if (!radix_tree_exceptional_entry(page))
1101 			pvec->pages[j++] = page;
1102 	}
1103 	pvec->nr = j;
1104 }
1105 
1106 /**
1107  * pagevec_lookup - gang pagecache lookup
1108  * @pvec:	Where the resulting pages are placed
1109  * @mapping:	The address_space to search
1110  * @start:	The starting page index
1111  * @nr_pages:	The maximum number of pages
1112  *
1113  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
1114  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
1115  * reference against the pages in @pvec.
1116  *
1117  * The search returns a group of mapping-contiguous pages with ascending
1118  * indexes.  There may be holes in the indices due to not-present pages.
1119  *
1120  * pagevec_lookup() returns the number of pages which were found.
1121  */
1122 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
1123 		pgoff_t start, unsigned nr_pages)
1124 {
1125 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
1126 	return pagevec_count(pvec);
1127 }
1128 EXPORT_SYMBOL(pagevec_lookup);
1129 
1130 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
1131 		pgoff_t *index, int tag, unsigned nr_pages)
1132 {
1133 	pvec->nr = find_get_pages_tag(mapping, index, tag,
1134 					nr_pages, pvec->pages);
1135 	return pagevec_count(pvec);
1136 }
1137 EXPORT_SYMBOL(pagevec_lookup_tag);
1138 
1139 /*
1140  * Perform any setup for the swap system
1141  */
1142 void __init swap_setup(void)
1143 {
1144 	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
1145 #ifdef CONFIG_SWAP
1146 	int i;
1147 
1148 	for (i = 0; i < MAX_SWAPFILES; i++)
1149 		spin_lock_init(&swapper_spaces[i].tree_lock);
1150 #endif
1151 
1152 	/* Use a smaller cluster for small-memory machines */
1153 	if (megs < 16)
1154 		page_cluster = 2;
1155 	else
1156 		page_cluster = 3;
1157 	/*
1158 	 * Right now other parts of the system means that we
1159 	 * _really_ don't want to cluster much more
1160 	 */
1161 }
1162