1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swap.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * This file contains the default values for the operation of the 10 * Linux VM subsystem. Fine-tuning documentation can be found in 11 * Documentation/admin-guide/sysctl/vm.rst. 12 * Started 18.12.91 13 * Swap aging added 23.2.95, Stephen Tweedie. 14 * Buffermem limits added 12.3.98, Rik van Riel. 15 */ 16 17 #include <linux/mm.h> 18 #include <linux/sched.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/mman.h> 22 #include <linux/pagemap.h> 23 #include <linux/pagevec.h> 24 #include <linux/init.h> 25 #include <linux/export.h> 26 #include <linux/mm_inline.h> 27 #include <linux/percpu_counter.h> 28 #include <linux/memremap.h> 29 #include <linux/percpu.h> 30 #include <linux/cpu.h> 31 #include <linux/notifier.h> 32 #include <linux/backing-dev.h> 33 #include <linux/memcontrol.h> 34 #include <linux/gfp.h> 35 #include <linux/uio.h> 36 #include <linux/hugetlb.h> 37 #include <linux/page_idle.h> 38 #include <linux/local_lock.h> 39 #include <linux/buffer_head.h> 40 41 #include "internal.h" 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/pagemap.h> 45 46 /* How many pages do we try to swap or page in/out together? */ 47 int page_cluster; 48 49 /* Protecting only lru_rotate.pvec which requires disabling interrupts */ 50 struct lru_rotate { 51 local_lock_t lock; 52 struct pagevec pvec; 53 }; 54 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = { 55 .lock = INIT_LOCAL_LOCK(lock), 56 }; 57 58 /* 59 * The following struct pagevec are grouped together because they are protected 60 * by disabling preemption (and interrupts remain enabled). 61 */ 62 struct lru_pvecs { 63 local_lock_t lock; 64 struct pagevec lru_add; 65 struct pagevec lru_deactivate_file; 66 struct pagevec lru_deactivate; 67 struct pagevec lru_lazyfree; 68 #ifdef CONFIG_SMP 69 struct pagevec activate_page; 70 #endif 71 }; 72 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = { 73 .lock = INIT_LOCAL_LOCK(lock), 74 }; 75 76 /* 77 * This path almost never happens for VM activity - pages are normally freed 78 * via pagevecs. But it gets used by networking - and for compound pages. 79 */ 80 static void __page_cache_release(struct page *page) 81 { 82 if (PageLRU(page)) { 83 struct folio *folio = page_folio(page); 84 struct lruvec *lruvec; 85 unsigned long flags; 86 87 lruvec = folio_lruvec_lock_irqsave(folio, &flags); 88 del_page_from_lru_list(page, lruvec); 89 __clear_page_lru_flags(page); 90 unlock_page_lruvec_irqrestore(lruvec, flags); 91 } 92 /* See comment on PageMlocked in release_pages() */ 93 if (unlikely(PageMlocked(page))) { 94 int nr_pages = thp_nr_pages(page); 95 96 __ClearPageMlocked(page); 97 mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); 98 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); 99 } 100 __ClearPageWaiters(page); 101 } 102 103 static void __put_single_page(struct page *page) 104 { 105 __page_cache_release(page); 106 mem_cgroup_uncharge(page_folio(page)); 107 free_unref_page(page, 0); 108 } 109 110 static void __put_compound_page(struct page *page) 111 { 112 /* 113 * __page_cache_release() is supposed to be called for thp, not for 114 * hugetlb. This is because hugetlb page does never have PageLRU set 115 * (it's never listed to any LRU lists) and no memcg routines should 116 * be called for hugetlb (it has a separate hugetlb_cgroup.) 117 */ 118 if (!PageHuge(page)) 119 __page_cache_release(page); 120 destroy_compound_page(page); 121 } 122 123 void __put_page(struct page *page) 124 { 125 if (unlikely(is_zone_device_page(page))) 126 free_zone_device_page(page); 127 else if (unlikely(PageCompound(page))) 128 __put_compound_page(page); 129 else 130 __put_single_page(page); 131 } 132 EXPORT_SYMBOL(__put_page); 133 134 /** 135 * put_pages_list() - release a list of pages 136 * @pages: list of pages threaded on page->lru 137 * 138 * Release a list of pages which are strung together on page.lru. 139 */ 140 void put_pages_list(struct list_head *pages) 141 { 142 struct page *page, *next; 143 144 list_for_each_entry_safe(page, next, pages, lru) { 145 if (!put_page_testzero(page)) { 146 list_del(&page->lru); 147 continue; 148 } 149 if (PageHead(page)) { 150 list_del(&page->lru); 151 __put_compound_page(page); 152 continue; 153 } 154 /* Cannot be PageLRU because it's passed to us using the lru */ 155 __ClearPageWaiters(page); 156 } 157 158 free_unref_page_list(pages); 159 INIT_LIST_HEAD(pages); 160 } 161 EXPORT_SYMBOL(put_pages_list); 162 163 /* 164 * get_kernel_pages() - pin kernel pages in memory 165 * @kiov: An array of struct kvec structures 166 * @nr_segs: number of segments to pin 167 * @write: pinning for read/write, currently ignored 168 * @pages: array that receives pointers to the pages pinned. 169 * Should be at least nr_segs long. 170 * 171 * Returns number of pages pinned. This may be fewer than the number 172 * requested. If nr_pages is 0 or negative, returns 0. If no pages 173 * were pinned, returns -errno. Each page returned must be released 174 * with a put_page() call when it is finished with. 175 */ 176 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, 177 struct page **pages) 178 { 179 int seg; 180 181 for (seg = 0; seg < nr_segs; seg++) { 182 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) 183 return seg; 184 185 pages[seg] = kmap_to_page(kiov[seg].iov_base); 186 get_page(pages[seg]); 187 } 188 189 return seg; 190 } 191 EXPORT_SYMBOL_GPL(get_kernel_pages); 192 193 static void pagevec_lru_move_fn(struct pagevec *pvec, 194 void (*move_fn)(struct page *page, struct lruvec *lruvec)) 195 { 196 int i; 197 struct lruvec *lruvec = NULL; 198 unsigned long flags = 0; 199 200 for (i = 0; i < pagevec_count(pvec); i++) { 201 struct page *page = pvec->pages[i]; 202 struct folio *folio = page_folio(page); 203 204 /* block memcg migration during page moving between lru */ 205 if (!TestClearPageLRU(page)) 206 continue; 207 208 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags); 209 (*move_fn)(page, lruvec); 210 211 SetPageLRU(page); 212 } 213 if (lruvec) 214 unlock_page_lruvec_irqrestore(lruvec, flags); 215 release_pages(pvec->pages, pvec->nr); 216 pagevec_reinit(pvec); 217 } 218 219 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec) 220 { 221 struct folio *folio = page_folio(page); 222 223 if (!folio_test_unevictable(folio)) { 224 lruvec_del_folio(lruvec, folio); 225 folio_clear_active(folio); 226 lruvec_add_folio_tail(lruvec, folio); 227 __count_vm_events(PGROTATED, folio_nr_pages(folio)); 228 } 229 } 230 231 /* return true if pagevec needs to drain */ 232 static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page) 233 { 234 bool ret = false; 235 236 if (!pagevec_add(pvec, page) || PageCompound(page) || 237 lru_cache_disabled()) 238 ret = true; 239 240 return ret; 241 } 242 243 /* 244 * Writeback is about to end against a folio which has been marked for 245 * immediate reclaim. If it still appears to be reclaimable, move it 246 * to the tail of the inactive list. 247 * 248 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races. 249 */ 250 void folio_rotate_reclaimable(struct folio *folio) 251 { 252 if (!folio_test_locked(folio) && !folio_test_dirty(folio) && 253 !folio_test_unevictable(folio) && folio_test_lru(folio)) { 254 struct pagevec *pvec; 255 unsigned long flags; 256 257 folio_get(folio); 258 local_lock_irqsave(&lru_rotate.lock, flags); 259 pvec = this_cpu_ptr(&lru_rotate.pvec); 260 if (pagevec_add_and_need_flush(pvec, &folio->page)) 261 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn); 262 local_unlock_irqrestore(&lru_rotate.lock, flags); 263 } 264 } 265 266 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages) 267 { 268 do { 269 unsigned long lrusize; 270 271 /* 272 * Hold lruvec->lru_lock is safe here, since 273 * 1) The pinned lruvec in reclaim, or 274 * 2) From a pre-LRU page during refault (which also holds the 275 * rcu lock, so would be safe even if the page was on the LRU 276 * and could move simultaneously to a new lruvec). 277 */ 278 spin_lock_irq(&lruvec->lru_lock); 279 /* Record cost event */ 280 if (file) 281 lruvec->file_cost += nr_pages; 282 else 283 lruvec->anon_cost += nr_pages; 284 285 /* 286 * Decay previous events 287 * 288 * Because workloads change over time (and to avoid 289 * overflow) we keep these statistics as a floating 290 * average, which ends up weighing recent refaults 291 * more than old ones. 292 */ 293 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) + 294 lruvec_page_state(lruvec, NR_ACTIVE_ANON) + 295 lruvec_page_state(lruvec, NR_INACTIVE_FILE) + 296 lruvec_page_state(lruvec, NR_ACTIVE_FILE); 297 298 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) { 299 lruvec->file_cost /= 2; 300 lruvec->anon_cost /= 2; 301 } 302 spin_unlock_irq(&lruvec->lru_lock); 303 } while ((lruvec = parent_lruvec(lruvec))); 304 } 305 306 void lru_note_cost_folio(struct folio *folio) 307 { 308 lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio), 309 folio_nr_pages(folio)); 310 } 311 312 static void __folio_activate(struct folio *folio, struct lruvec *lruvec) 313 { 314 if (!folio_test_active(folio) && !folio_test_unevictable(folio)) { 315 long nr_pages = folio_nr_pages(folio); 316 317 lruvec_del_folio(lruvec, folio); 318 folio_set_active(folio); 319 lruvec_add_folio(lruvec, folio); 320 trace_mm_lru_activate(folio); 321 322 __count_vm_events(PGACTIVATE, nr_pages); 323 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, 324 nr_pages); 325 } 326 } 327 328 #ifdef CONFIG_SMP 329 static void __activate_page(struct page *page, struct lruvec *lruvec) 330 { 331 return __folio_activate(page_folio(page), lruvec); 332 } 333 334 static void activate_page_drain(int cpu) 335 { 336 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu); 337 338 if (pagevec_count(pvec)) 339 pagevec_lru_move_fn(pvec, __activate_page); 340 } 341 342 static bool need_activate_page_drain(int cpu) 343 { 344 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0; 345 } 346 347 static void folio_activate(struct folio *folio) 348 { 349 if (folio_test_lru(folio) && !folio_test_active(folio) && 350 !folio_test_unevictable(folio)) { 351 struct pagevec *pvec; 352 353 folio_get(folio); 354 local_lock(&lru_pvecs.lock); 355 pvec = this_cpu_ptr(&lru_pvecs.activate_page); 356 if (pagevec_add_and_need_flush(pvec, &folio->page)) 357 pagevec_lru_move_fn(pvec, __activate_page); 358 local_unlock(&lru_pvecs.lock); 359 } 360 } 361 362 #else 363 static inline void activate_page_drain(int cpu) 364 { 365 } 366 367 static void folio_activate(struct folio *folio) 368 { 369 struct lruvec *lruvec; 370 371 if (folio_test_clear_lru(folio)) { 372 lruvec = folio_lruvec_lock_irq(folio); 373 __folio_activate(folio, lruvec); 374 unlock_page_lruvec_irq(lruvec); 375 folio_set_lru(folio); 376 } 377 } 378 #endif 379 380 static void __lru_cache_activate_folio(struct folio *folio) 381 { 382 struct pagevec *pvec; 383 int i; 384 385 local_lock(&lru_pvecs.lock); 386 pvec = this_cpu_ptr(&lru_pvecs.lru_add); 387 388 /* 389 * Search backwards on the optimistic assumption that the page being 390 * activated has just been added to this pagevec. Note that only 391 * the local pagevec is examined as a !PageLRU page could be in the 392 * process of being released, reclaimed, migrated or on a remote 393 * pagevec that is currently being drained. Furthermore, marking 394 * a remote pagevec's page PageActive potentially hits a race where 395 * a page is marked PageActive just after it is added to the inactive 396 * list causing accounting errors and BUG_ON checks to trigger. 397 */ 398 for (i = pagevec_count(pvec) - 1; i >= 0; i--) { 399 struct page *pagevec_page = pvec->pages[i]; 400 401 if (pagevec_page == &folio->page) { 402 folio_set_active(folio); 403 break; 404 } 405 } 406 407 local_unlock(&lru_pvecs.lock); 408 } 409 410 /* 411 * Mark a page as having seen activity. 412 * 413 * inactive,unreferenced -> inactive,referenced 414 * inactive,referenced -> active,unreferenced 415 * active,unreferenced -> active,referenced 416 * 417 * When a newly allocated page is not yet visible, so safe for non-atomic ops, 418 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page). 419 */ 420 void folio_mark_accessed(struct folio *folio) 421 { 422 if (!folio_test_referenced(folio)) { 423 folio_set_referenced(folio); 424 } else if (folio_test_unevictable(folio)) { 425 /* 426 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But, 427 * this list is never rotated or maintained, so marking an 428 * unevictable page accessed has no effect. 429 */ 430 } else if (!folio_test_active(folio)) { 431 /* 432 * If the page is on the LRU, queue it for activation via 433 * lru_pvecs.activate_page. Otherwise, assume the page is on a 434 * pagevec, mark it active and it'll be moved to the active 435 * LRU on the next drain. 436 */ 437 if (folio_test_lru(folio)) 438 folio_activate(folio); 439 else 440 __lru_cache_activate_folio(folio); 441 folio_clear_referenced(folio); 442 workingset_activation(folio); 443 } 444 if (folio_test_idle(folio)) 445 folio_clear_idle(folio); 446 } 447 EXPORT_SYMBOL(folio_mark_accessed); 448 449 /** 450 * folio_add_lru - Add a folio to an LRU list. 451 * @folio: The folio to be added to the LRU. 452 * 453 * Queue the folio for addition to the LRU. The decision on whether 454 * to add the page to the [in]active [file|anon] list is deferred until the 455 * pagevec is drained. This gives a chance for the caller of folio_add_lru() 456 * have the folio added to the active list using folio_mark_accessed(). 457 */ 458 void folio_add_lru(struct folio *folio) 459 { 460 struct pagevec *pvec; 461 462 VM_BUG_ON_FOLIO(folio_test_active(folio) && folio_test_unevictable(folio), folio); 463 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 464 465 folio_get(folio); 466 local_lock(&lru_pvecs.lock); 467 pvec = this_cpu_ptr(&lru_pvecs.lru_add); 468 if (pagevec_add_and_need_flush(pvec, &folio->page)) 469 __pagevec_lru_add(pvec); 470 local_unlock(&lru_pvecs.lock); 471 } 472 EXPORT_SYMBOL(folio_add_lru); 473 474 /** 475 * lru_cache_add_inactive_or_unevictable 476 * @page: the page to be added to LRU 477 * @vma: vma in which page is mapped for determining reclaimability 478 * 479 * Place @page on the inactive or unevictable LRU list, depending on its 480 * evictability. 481 */ 482 void lru_cache_add_inactive_or_unevictable(struct page *page, 483 struct vm_area_struct *vma) 484 { 485 VM_BUG_ON_PAGE(PageLRU(page), page); 486 487 if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED)) 488 mlock_new_page(page); 489 else 490 lru_cache_add(page); 491 } 492 493 /* 494 * If the page can not be invalidated, it is moved to the 495 * inactive list to speed up its reclaim. It is moved to the 496 * head of the list, rather than the tail, to give the flusher 497 * threads some time to write it out, as this is much more 498 * effective than the single-page writeout from reclaim. 499 * 500 * If the page isn't page_mapped and dirty/writeback, the page 501 * could reclaim asap using PG_reclaim. 502 * 503 * 1. active, mapped page -> none 504 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim 505 * 3. inactive, mapped page -> none 506 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim 507 * 5. inactive, clean -> inactive, tail 508 * 6. Others -> none 509 * 510 * In 4, why it moves inactive's head, the VM expects the page would 511 * be write it out by flusher threads as this is much more effective 512 * than the single-page writeout from reclaim. 513 */ 514 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec) 515 { 516 bool active = PageActive(page); 517 int nr_pages = thp_nr_pages(page); 518 519 if (PageUnevictable(page)) 520 return; 521 522 /* Some processes are using the page */ 523 if (page_mapped(page)) 524 return; 525 526 del_page_from_lru_list(page, lruvec); 527 ClearPageActive(page); 528 ClearPageReferenced(page); 529 530 if (PageWriteback(page) || PageDirty(page)) { 531 /* 532 * PG_reclaim could be raced with end_page_writeback 533 * It can make readahead confusing. But race window 534 * is _really_ small and it's non-critical problem. 535 */ 536 add_page_to_lru_list(page, lruvec); 537 SetPageReclaim(page); 538 } else { 539 /* 540 * The page's writeback ends up during pagevec 541 * We move that page into tail of inactive. 542 */ 543 add_page_to_lru_list_tail(page, lruvec); 544 __count_vm_events(PGROTATED, nr_pages); 545 } 546 547 if (active) { 548 __count_vm_events(PGDEACTIVATE, nr_pages); 549 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 550 nr_pages); 551 } 552 } 553 554 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec) 555 { 556 if (PageActive(page) && !PageUnevictable(page)) { 557 int nr_pages = thp_nr_pages(page); 558 559 del_page_from_lru_list(page, lruvec); 560 ClearPageActive(page); 561 ClearPageReferenced(page); 562 add_page_to_lru_list(page, lruvec); 563 564 __count_vm_events(PGDEACTIVATE, nr_pages); 565 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 566 nr_pages); 567 } 568 } 569 570 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec) 571 { 572 if (PageAnon(page) && PageSwapBacked(page) && 573 !PageSwapCache(page) && !PageUnevictable(page)) { 574 int nr_pages = thp_nr_pages(page); 575 576 del_page_from_lru_list(page, lruvec); 577 ClearPageActive(page); 578 ClearPageReferenced(page); 579 /* 580 * Lazyfree pages are clean anonymous pages. They have 581 * PG_swapbacked flag cleared, to distinguish them from normal 582 * anonymous pages 583 */ 584 ClearPageSwapBacked(page); 585 add_page_to_lru_list(page, lruvec); 586 587 __count_vm_events(PGLAZYFREE, nr_pages); 588 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, 589 nr_pages); 590 } 591 } 592 593 /* 594 * Drain pages out of the cpu's pagevecs. 595 * Either "cpu" is the current CPU, and preemption has already been 596 * disabled; or "cpu" is being hot-unplugged, and is already dead. 597 */ 598 void lru_add_drain_cpu(int cpu) 599 { 600 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu); 601 602 if (pagevec_count(pvec)) 603 __pagevec_lru_add(pvec); 604 605 pvec = &per_cpu(lru_rotate.pvec, cpu); 606 /* Disabling interrupts below acts as a compiler barrier. */ 607 if (data_race(pagevec_count(pvec))) { 608 unsigned long flags; 609 610 /* No harm done if a racing interrupt already did this */ 611 local_lock_irqsave(&lru_rotate.lock, flags); 612 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn); 613 local_unlock_irqrestore(&lru_rotate.lock, flags); 614 } 615 616 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu); 617 if (pagevec_count(pvec)) 618 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn); 619 620 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu); 621 if (pagevec_count(pvec)) 622 pagevec_lru_move_fn(pvec, lru_deactivate_fn); 623 624 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu); 625 if (pagevec_count(pvec)) 626 pagevec_lru_move_fn(pvec, lru_lazyfree_fn); 627 628 activate_page_drain(cpu); 629 mlock_page_drain(cpu); 630 } 631 632 /** 633 * deactivate_file_folio() - Forcefully deactivate a file folio. 634 * @folio: Folio to deactivate. 635 * 636 * This function hints to the VM that @folio is a good reclaim candidate, 637 * for example if its invalidation fails due to the folio being dirty 638 * or under writeback. 639 * 640 * Context: Caller holds a reference on the page. 641 */ 642 void deactivate_file_folio(struct folio *folio) 643 { 644 struct pagevec *pvec; 645 646 /* 647 * In a workload with many unevictable pages such as mprotect, 648 * unevictable folio deactivation for accelerating reclaim is pointless. 649 */ 650 if (folio_test_unevictable(folio)) 651 return; 652 653 folio_get(folio); 654 local_lock(&lru_pvecs.lock); 655 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file); 656 657 if (pagevec_add_and_need_flush(pvec, &folio->page)) 658 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn); 659 local_unlock(&lru_pvecs.lock); 660 } 661 662 /* 663 * deactivate_page - deactivate a page 664 * @page: page to deactivate 665 * 666 * deactivate_page() moves @page to the inactive list if @page was on the active 667 * list and was not an unevictable page. This is done to accelerate the reclaim 668 * of @page. 669 */ 670 void deactivate_page(struct page *page) 671 { 672 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) { 673 struct pagevec *pvec; 674 675 local_lock(&lru_pvecs.lock); 676 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate); 677 get_page(page); 678 if (pagevec_add_and_need_flush(pvec, page)) 679 pagevec_lru_move_fn(pvec, lru_deactivate_fn); 680 local_unlock(&lru_pvecs.lock); 681 } 682 } 683 684 /** 685 * mark_page_lazyfree - make an anon page lazyfree 686 * @page: page to deactivate 687 * 688 * mark_page_lazyfree() moves @page to the inactive file list. 689 * This is done to accelerate the reclaim of @page. 690 */ 691 void mark_page_lazyfree(struct page *page) 692 { 693 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) && 694 !PageSwapCache(page) && !PageUnevictable(page)) { 695 struct pagevec *pvec; 696 697 local_lock(&lru_pvecs.lock); 698 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree); 699 get_page(page); 700 if (pagevec_add_and_need_flush(pvec, page)) 701 pagevec_lru_move_fn(pvec, lru_lazyfree_fn); 702 local_unlock(&lru_pvecs.lock); 703 } 704 } 705 706 void lru_add_drain(void) 707 { 708 local_lock(&lru_pvecs.lock); 709 lru_add_drain_cpu(smp_processor_id()); 710 local_unlock(&lru_pvecs.lock); 711 } 712 713 /* 714 * It's called from per-cpu workqueue context in SMP case so 715 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on 716 * the same cpu. It shouldn't be a problem in !SMP case since 717 * the core is only one and the locks will disable preemption. 718 */ 719 static void lru_add_and_bh_lrus_drain(void) 720 { 721 local_lock(&lru_pvecs.lock); 722 lru_add_drain_cpu(smp_processor_id()); 723 local_unlock(&lru_pvecs.lock); 724 invalidate_bh_lrus_cpu(); 725 } 726 727 void lru_add_drain_cpu_zone(struct zone *zone) 728 { 729 local_lock(&lru_pvecs.lock); 730 lru_add_drain_cpu(smp_processor_id()); 731 drain_local_pages(zone); 732 local_unlock(&lru_pvecs.lock); 733 } 734 735 #ifdef CONFIG_SMP 736 737 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); 738 739 static void lru_add_drain_per_cpu(struct work_struct *dummy) 740 { 741 lru_add_and_bh_lrus_drain(); 742 } 743 744 /* 745 * Doesn't need any cpu hotplug locking because we do rely on per-cpu 746 * kworkers being shut down before our page_alloc_cpu_dead callback is 747 * executed on the offlined cpu. 748 * Calling this function with cpu hotplug locks held can actually lead 749 * to obscure indirect dependencies via WQ context. 750 */ 751 inline void __lru_add_drain_all(bool force_all_cpus) 752 { 753 /* 754 * lru_drain_gen - Global pages generation number 755 * 756 * (A) Definition: global lru_drain_gen = x implies that all generations 757 * 0 < n <= x are already *scheduled* for draining. 758 * 759 * This is an optimization for the highly-contended use case where a 760 * user space workload keeps constantly generating a flow of pages for 761 * each CPU. 762 */ 763 static unsigned int lru_drain_gen; 764 static struct cpumask has_work; 765 static DEFINE_MUTEX(lock); 766 unsigned cpu, this_gen; 767 768 /* 769 * Make sure nobody triggers this path before mm_percpu_wq is fully 770 * initialized. 771 */ 772 if (WARN_ON(!mm_percpu_wq)) 773 return; 774 775 /* 776 * Guarantee pagevec counter stores visible by this CPU are visible to 777 * other CPUs before loading the current drain generation. 778 */ 779 smp_mb(); 780 781 /* 782 * (B) Locally cache global LRU draining generation number 783 * 784 * The read barrier ensures that the counter is loaded before the mutex 785 * is taken. It pairs with smp_mb() inside the mutex critical section 786 * at (D). 787 */ 788 this_gen = smp_load_acquire(&lru_drain_gen); 789 790 mutex_lock(&lock); 791 792 /* 793 * (C) Exit the draining operation if a newer generation, from another 794 * lru_add_drain_all(), was already scheduled for draining. Check (A). 795 */ 796 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus)) 797 goto done; 798 799 /* 800 * (D) Increment global generation number 801 * 802 * Pairs with smp_load_acquire() at (B), outside of the critical 803 * section. Use a full memory barrier to guarantee that the new global 804 * drain generation number is stored before loading pagevec counters. 805 * 806 * This pairing must be done here, before the for_each_online_cpu loop 807 * below which drains the page vectors. 808 * 809 * Let x, y, and z represent some system CPU numbers, where x < y < z. 810 * Assume CPU #z is in the middle of the for_each_online_cpu loop 811 * below and has already reached CPU #y's per-cpu data. CPU #x comes 812 * along, adds some pages to its per-cpu vectors, then calls 813 * lru_add_drain_all(). 814 * 815 * If the paired barrier is done at any later step, e.g. after the 816 * loop, CPU #x will just exit at (C) and miss flushing out all of its 817 * added pages. 818 */ 819 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1); 820 smp_mb(); 821 822 cpumask_clear(&has_work); 823 for_each_online_cpu(cpu) { 824 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); 825 826 if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) || 827 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) || 828 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) || 829 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) || 830 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) || 831 need_activate_page_drain(cpu) || 832 need_mlock_page_drain(cpu) || 833 has_bh_in_lru(cpu, NULL)) { 834 INIT_WORK(work, lru_add_drain_per_cpu); 835 queue_work_on(cpu, mm_percpu_wq, work); 836 __cpumask_set_cpu(cpu, &has_work); 837 } 838 } 839 840 for_each_cpu(cpu, &has_work) 841 flush_work(&per_cpu(lru_add_drain_work, cpu)); 842 843 done: 844 mutex_unlock(&lock); 845 } 846 847 void lru_add_drain_all(void) 848 { 849 __lru_add_drain_all(false); 850 } 851 #else 852 void lru_add_drain_all(void) 853 { 854 lru_add_drain(); 855 } 856 #endif /* CONFIG_SMP */ 857 858 atomic_t lru_disable_count = ATOMIC_INIT(0); 859 860 /* 861 * lru_cache_disable() needs to be called before we start compiling 862 * a list of pages to be migrated using isolate_lru_page(). 863 * It drains pages on LRU cache and then disable on all cpus until 864 * lru_cache_enable is called. 865 * 866 * Must be paired with a call to lru_cache_enable(). 867 */ 868 void lru_cache_disable(void) 869 { 870 atomic_inc(&lru_disable_count); 871 /* 872 * Readers of lru_disable_count are protected by either disabling 873 * preemption or rcu_read_lock: 874 * 875 * preempt_disable, local_irq_disable [bh_lru_lock()] 876 * rcu_read_lock [rt_spin_lock CONFIG_PREEMPT_RT] 877 * preempt_disable [local_lock !CONFIG_PREEMPT_RT] 878 * 879 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on 880 * preempt_disable() regions of code. So any CPU which sees 881 * lru_disable_count = 0 will have exited the critical 882 * section when synchronize_rcu() returns. 883 */ 884 synchronize_rcu(); 885 #ifdef CONFIG_SMP 886 __lru_add_drain_all(true); 887 #else 888 lru_add_and_bh_lrus_drain(); 889 #endif 890 } 891 892 /** 893 * release_pages - batched put_page() 894 * @pages: array of pages to release 895 * @nr: number of pages 896 * 897 * Decrement the reference count on all the pages in @pages. If it 898 * fell to zero, remove the page from the LRU and free it. 899 */ 900 void release_pages(struct page **pages, int nr) 901 { 902 int i; 903 LIST_HEAD(pages_to_free); 904 struct lruvec *lruvec = NULL; 905 unsigned long flags = 0; 906 unsigned int lock_batch; 907 908 for (i = 0; i < nr; i++) { 909 struct page *page = pages[i]; 910 struct folio *folio = page_folio(page); 911 912 /* 913 * Make sure the IRQ-safe lock-holding time does not get 914 * excessive with a continuous string of pages from the 915 * same lruvec. The lock is held only if lruvec != NULL. 916 */ 917 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) { 918 unlock_page_lruvec_irqrestore(lruvec, flags); 919 lruvec = NULL; 920 } 921 922 page = &folio->page; 923 if (is_huge_zero_page(page)) 924 continue; 925 926 if (is_zone_device_page(page)) { 927 if (lruvec) { 928 unlock_page_lruvec_irqrestore(lruvec, flags); 929 lruvec = NULL; 930 } 931 if (put_devmap_managed_page(page)) 932 continue; 933 if (put_page_testzero(page)) 934 free_zone_device_page(page); 935 continue; 936 } 937 938 if (!put_page_testzero(page)) 939 continue; 940 941 if (PageCompound(page)) { 942 if (lruvec) { 943 unlock_page_lruvec_irqrestore(lruvec, flags); 944 lruvec = NULL; 945 } 946 __put_compound_page(page); 947 continue; 948 } 949 950 if (PageLRU(page)) { 951 struct lruvec *prev_lruvec = lruvec; 952 953 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, 954 &flags); 955 if (prev_lruvec != lruvec) 956 lock_batch = 0; 957 958 del_page_from_lru_list(page, lruvec); 959 __clear_page_lru_flags(page); 960 } 961 962 /* 963 * In rare cases, when truncation or holepunching raced with 964 * munlock after VM_LOCKED was cleared, Mlocked may still be 965 * found set here. This does not indicate a problem, unless 966 * "unevictable_pgs_cleared" appears worryingly large. 967 */ 968 if (unlikely(PageMlocked(page))) { 969 __ClearPageMlocked(page); 970 dec_zone_page_state(page, NR_MLOCK); 971 count_vm_event(UNEVICTABLE_PGCLEARED); 972 } 973 974 __ClearPageWaiters(page); 975 976 list_add(&page->lru, &pages_to_free); 977 } 978 if (lruvec) 979 unlock_page_lruvec_irqrestore(lruvec, flags); 980 981 mem_cgroup_uncharge_list(&pages_to_free); 982 free_unref_page_list(&pages_to_free); 983 } 984 EXPORT_SYMBOL(release_pages); 985 986 /* 987 * The pages which we're about to release may be in the deferred lru-addition 988 * queues. That would prevent them from really being freed right now. That's 989 * OK from a correctness point of view but is inefficient - those pages may be 990 * cache-warm and we want to give them back to the page allocator ASAP. 991 * 992 * So __pagevec_release() will drain those queues here. __pagevec_lru_add() 993 * and __pagevec_lru_add_active() call release_pages() directly to avoid 994 * mutual recursion. 995 */ 996 void __pagevec_release(struct pagevec *pvec) 997 { 998 if (!pvec->percpu_pvec_drained) { 999 lru_add_drain(); 1000 pvec->percpu_pvec_drained = true; 1001 } 1002 release_pages(pvec->pages, pagevec_count(pvec)); 1003 pagevec_reinit(pvec); 1004 } 1005 EXPORT_SYMBOL(__pagevec_release); 1006 1007 static void __pagevec_lru_add_fn(struct folio *folio, struct lruvec *lruvec) 1008 { 1009 int was_unevictable = folio_test_clear_unevictable(folio); 1010 long nr_pages = folio_nr_pages(folio); 1011 1012 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 1013 1014 folio_set_lru(folio); 1015 /* 1016 * Is an smp_mb__after_atomic() still required here, before 1017 * folio_evictable() tests PageMlocked, to rule out the possibility 1018 * of stranding an evictable folio on an unevictable LRU? I think 1019 * not, because __munlock_page() only clears PageMlocked while the LRU 1020 * lock is held. 1021 * 1022 * (That is not true of __page_cache_release(), and not necessarily 1023 * true of release_pages(): but those only clear PageMlocked after 1024 * put_page_testzero() has excluded any other users of the page.) 1025 */ 1026 if (folio_evictable(folio)) { 1027 if (was_unevictable) 1028 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages); 1029 } else { 1030 folio_clear_active(folio); 1031 folio_set_unevictable(folio); 1032 /* 1033 * folio->mlock_count = !!folio_test_mlocked(folio)? 1034 * But that leaves __mlock_page() in doubt whether another 1035 * actor has already counted the mlock or not. Err on the 1036 * safe side, underestimate, let page reclaim fix it, rather 1037 * than leaving a page on the unevictable LRU indefinitely. 1038 */ 1039 folio->mlock_count = 0; 1040 if (!was_unevictable) 1041 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages); 1042 } 1043 1044 lruvec_add_folio(lruvec, folio); 1045 trace_mm_lru_insertion(folio); 1046 } 1047 1048 /* 1049 * Add the passed pages to the LRU, then drop the caller's refcount 1050 * on them. Reinitialises the caller's pagevec. 1051 */ 1052 void __pagevec_lru_add(struct pagevec *pvec) 1053 { 1054 int i; 1055 struct lruvec *lruvec = NULL; 1056 unsigned long flags = 0; 1057 1058 for (i = 0; i < pagevec_count(pvec); i++) { 1059 struct folio *folio = page_folio(pvec->pages[i]); 1060 1061 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags); 1062 __pagevec_lru_add_fn(folio, lruvec); 1063 } 1064 if (lruvec) 1065 unlock_page_lruvec_irqrestore(lruvec, flags); 1066 release_pages(pvec->pages, pvec->nr); 1067 pagevec_reinit(pvec); 1068 } 1069 1070 /** 1071 * folio_batch_remove_exceptionals() - Prune non-folios from a batch. 1072 * @fbatch: The batch to prune 1073 * 1074 * find_get_entries() fills a batch with both folios and shadow/swap/DAX 1075 * entries. This function prunes all the non-folio entries from @fbatch 1076 * without leaving holes, so that it can be passed on to folio-only batch 1077 * operations. 1078 */ 1079 void folio_batch_remove_exceptionals(struct folio_batch *fbatch) 1080 { 1081 unsigned int i, j; 1082 1083 for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) { 1084 struct folio *folio = fbatch->folios[i]; 1085 if (!xa_is_value(folio)) 1086 fbatch->folios[j++] = folio; 1087 } 1088 fbatch->nr = j; 1089 } 1090 1091 /** 1092 * pagevec_lookup_range - gang pagecache lookup 1093 * @pvec: Where the resulting pages are placed 1094 * @mapping: The address_space to search 1095 * @start: The starting page index 1096 * @end: The final page index 1097 * 1098 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE 1099 * pages in the mapping starting from index @start and upto index @end 1100 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a 1101 * reference against the pages in @pvec. 1102 * 1103 * The search returns a group of mapping-contiguous pages with ascending 1104 * indexes. There may be holes in the indices due to not-present pages. We 1105 * also update @start to index the next page for the traversal. 1106 * 1107 * pagevec_lookup_range() returns the number of pages which were found. If this 1108 * number is smaller than PAGEVEC_SIZE, the end of specified range has been 1109 * reached. 1110 */ 1111 unsigned pagevec_lookup_range(struct pagevec *pvec, 1112 struct address_space *mapping, pgoff_t *start, pgoff_t end) 1113 { 1114 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE, 1115 pvec->pages); 1116 return pagevec_count(pvec); 1117 } 1118 EXPORT_SYMBOL(pagevec_lookup_range); 1119 1120 unsigned pagevec_lookup_range_tag(struct pagevec *pvec, 1121 struct address_space *mapping, pgoff_t *index, pgoff_t end, 1122 xa_mark_t tag) 1123 { 1124 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag, 1125 PAGEVEC_SIZE, pvec->pages); 1126 return pagevec_count(pvec); 1127 } 1128 EXPORT_SYMBOL(pagevec_lookup_range_tag); 1129 1130 /* 1131 * Perform any setup for the swap system 1132 */ 1133 void __init swap_setup(void) 1134 { 1135 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT); 1136 1137 /* Use a smaller cluster for small-memory machines */ 1138 if (megs < 16) 1139 page_cluster = 2; 1140 else 1141 page_cluster = 3; 1142 /* 1143 * Right now other parts of the system means that we 1144 * _really_ don't want to cluster much more 1145 */ 1146 } 1147