xref: /linux/mm/swap.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page() */
27 #include <linux/percpu_counter.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 
34 #include "internal.h"
35 
36 /* How many pages do we try to swap or page in/out together? */
37 int page_cluster;
38 
39 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
40 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
41 
42 /*
43  * This path almost never happens for VM activity - pages are normally
44  * freed via pagevecs.  But it gets used by networking.
45  */
46 static void __page_cache_release(struct page *page)
47 {
48 	if (PageLRU(page)) {
49 		unsigned long flags;
50 		struct zone *zone = page_zone(page);
51 
52 		spin_lock_irqsave(&zone->lru_lock, flags);
53 		VM_BUG_ON(!PageLRU(page));
54 		__ClearPageLRU(page);
55 		del_page_from_lru(zone, page);
56 		spin_unlock_irqrestore(&zone->lru_lock, flags);
57 	}
58 	free_hot_page(page);
59 }
60 
61 static void put_compound_page(struct page *page)
62 {
63 	page = compound_head(page);
64 	if (put_page_testzero(page)) {
65 		compound_page_dtor *dtor;
66 
67 		dtor = get_compound_page_dtor(page);
68 		(*dtor)(page);
69 	}
70 }
71 
72 void put_page(struct page *page)
73 {
74 	if (unlikely(PageCompound(page)))
75 		put_compound_page(page);
76 	else if (put_page_testzero(page))
77 		__page_cache_release(page);
78 }
79 EXPORT_SYMBOL(put_page);
80 
81 /**
82  * put_pages_list() - release a list of pages
83  * @pages: list of pages threaded on page->lru
84  *
85  * Release a list of pages which are strung together on page.lru.  Currently
86  * used by read_cache_pages() and related error recovery code.
87  */
88 void put_pages_list(struct list_head *pages)
89 {
90 	while (!list_empty(pages)) {
91 		struct page *victim;
92 
93 		victim = list_entry(pages->prev, struct page, lru);
94 		list_del(&victim->lru);
95 		page_cache_release(victim);
96 	}
97 }
98 EXPORT_SYMBOL(put_pages_list);
99 
100 /*
101  * pagevec_move_tail() must be called with IRQ disabled.
102  * Otherwise this may cause nasty races.
103  */
104 static void pagevec_move_tail(struct pagevec *pvec)
105 {
106 	int i;
107 	int pgmoved = 0;
108 	struct zone *zone = NULL;
109 
110 	for (i = 0; i < pagevec_count(pvec); i++) {
111 		struct page *page = pvec->pages[i];
112 		struct zone *pagezone = page_zone(page);
113 
114 		if (pagezone != zone) {
115 			if (zone)
116 				spin_unlock(&zone->lru_lock);
117 			zone = pagezone;
118 			spin_lock(&zone->lru_lock);
119 		}
120 		if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
121 			int lru = page_is_file_cache(page);
122 			list_move_tail(&page->lru, &zone->lru[lru].list);
123 			pgmoved++;
124 		}
125 	}
126 	if (zone)
127 		spin_unlock(&zone->lru_lock);
128 	__count_vm_events(PGROTATED, pgmoved);
129 	release_pages(pvec->pages, pvec->nr, pvec->cold);
130 	pagevec_reinit(pvec);
131 }
132 
133 /*
134  * Writeback is about to end against a page which has been marked for immediate
135  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
136  * inactive list.
137  */
138 void  rotate_reclaimable_page(struct page *page)
139 {
140 	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
141 	    !PageUnevictable(page) && PageLRU(page)) {
142 		struct pagevec *pvec;
143 		unsigned long flags;
144 
145 		page_cache_get(page);
146 		local_irq_save(flags);
147 		pvec = &__get_cpu_var(lru_rotate_pvecs);
148 		if (!pagevec_add(pvec, page))
149 			pagevec_move_tail(pvec);
150 		local_irq_restore(flags);
151 	}
152 }
153 
154 static void update_page_reclaim_stat(struct zone *zone, struct page *page,
155 				     int file, int rotated)
156 {
157 	struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
158 	struct zone_reclaim_stat *memcg_reclaim_stat;
159 
160 	memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
161 
162 	reclaim_stat->recent_scanned[file]++;
163 	if (rotated)
164 		reclaim_stat->recent_rotated[file]++;
165 
166 	if (!memcg_reclaim_stat)
167 		return;
168 
169 	memcg_reclaim_stat->recent_scanned[file]++;
170 	if (rotated)
171 		memcg_reclaim_stat->recent_rotated[file]++;
172 }
173 
174 /*
175  * FIXME: speed this up?
176  */
177 void activate_page(struct page *page)
178 {
179 	struct zone *zone = page_zone(page);
180 
181 	spin_lock_irq(&zone->lru_lock);
182 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
183 		int file = page_is_file_cache(page);
184 		int lru = LRU_BASE + file;
185 		del_page_from_lru_list(zone, page, lru);
186 
187 		SetPageActive(page);
188 		lru += LRU_ACTIVE;
189 		add_page_to_lru_list(zone, page, lru);
190 		__count_vm_event(PGACTIVATE);
191 
192 		update_page_reclaim_stat(zone, page, !!file, 1);
193 	}
194 	spin_unlock_irq(&zone->lru_lock);
195 }
196 
197 /*
198  * Mark a page as having seen activity.
199  *
200  * inactive,unreferenced	->	inactive,referenced
201  * inactive,referenced		->	active,unreferenced
202  * active,unreferenced		->	active,referenced
203  */
204 void mark_page_accessed(struct page *page)
205 {
206 	if (!PageActive(page) && !PageUnevictable(page) &&
207 			PageReferenced(page) && PageLRU(page)) {
208 		activate_page(page);
209 		ClearPageReferenced(page);
210 	} else if (!PageReferenced(page)) {
211 		SetPageReferenced(page);
212 	}
213 }
214 
215 EXPORT_SYMBOL(mark_page_accessed);
216 
217 void __lru_cache_add(struct page *page, enum lru_list lru)
218 {
219 	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
220 
221 	page_cache_get(page);
222 	if (!pagevec_add(pvec, page))
223 		____pagevec_lru_add(pvec, lru);
224 	put_cpu_var(lru_add_pvecs);
225 }
226 
227 /**
228  * lru_cache_add_lru - add a page to a page list
229  * @page: the page to be added to the LRU.
230  * @lru: the LRU list to which the page is added.
231  */
232 void lru_cache_add_lru(struct page *page, enum lru_list lru)
233 {
234 	if (PageActive(page)) {
235 		VM_BUG_ON(PageUnevictable(page));
236 		ClearPageActive(page);
237 	} else if (PageUnevictable(page)) {
238 		VM_BUG_ON(PageActive(page));
239 		ClearPageUnevictable(page);
240 	}
241 
242 	VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
243 	__lru_cache_add(page, lru);
244 }
245 
246 /**
247  * add_page_to_unevictable_list - add a page to the unevictable list
248  * @page:  the page to be added to the unevictable list
249  *
250  * Add page directly to its zone's unevictable list.  To avoid races with
251  * tasks that might be making the page evictable, through eg. munlock,
252  * munmap or exit, while it's not on the lru, we want to add the page
253  * while it's locked or otherwise "invisible" to other tasks.  This is
254  * difficult to do when using the pagevec cache, so bypass that.
255  */
256 void add_page_to_unevictable_list(struct page *page)
257 {
258 	struct zone *zone = page_zone(page);
259 
260 	spin_lock_irq(&zone->lru_lock);
261 	SetPageUnevictable(page);
262 	SetPageLRU(page);
263 	add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
264 	spin_unlock_irq(&zone->lru_lock);
265 }
266 
267 /*
268  * Drain pages out of the cpu's pagevecs.
269  * Either "cpu" is the current CPU, and preemption has already been
270  * disabled; or "cpu" is being hot-unplugged, and is already dead.
271  */
272 static void drain_cpu_pagevecs(int cpu)
273 {
274 	struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
275 	struct pagevec *pvec;
276 	int lru;
277 
278 	for_each_lru(lru) {
279 		pvec = &pvecs[lru - LRU_BASE];
280 		if (pagevec_count(pvec))
281 			____pagevec_lru_add(pvec, lru);
282 	}
283 
284 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
285 	if (pagevec_count(pvec)) {
286 		unsigned long flags;
287 
288 		/* No harm done if a racing interrupt already did this */
289 		local_irq_save(flags);
290 		pagevec_move_tail(pvec);
291 		local_irq_restore(flags);
292 	}
293 }
294 
295 void lru_add_drain(void)
296 {
297 	drain_cpu_pagevecs(get_cpu());
298 	put_cpu();
299 }
300 
301 static void lru_add_drain_per_cpu(struct work_struct *dummy)
302 {
303 	lru_add_drain();
304 }
305 
306 /*
307  * Returns 0 for success
308  */
309 int lru_add_drain_all(void)
310 {
311 	return schedule_on_each_cpu(lru_add_drain_per_cpu);
312 }
313 
314 /*
315  * Batched page_cache_release().  Decrement the reference count on all the
316  * passed pages.  If it fell to zero then remove the page from the LRU and
317  * free it.
318  *
319  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
320  * for the remainder of the operation.
321  *
322  * The locking in this function is against shrink_inactive_list(): we recheck
323  * the page count inside the lock to see whether shrink_inactive_list()
324  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
325  * will free it.
326  */
327 void release_pages(struct page **pages, int nr, int cold)
328 {
329 	int i;
330 	struct pagevec pages_to_free;
331 	struct zone *zone = NULL;
332 	unsigned long uninitialized_var(flags);
333 
334 	pagevec_init(&pages_to_free, cold);
335 	for (i = 0; i < nr; i++) {
336 		struct page *page = pages[i];
337 
338 		if (unlikely(PageCompound(page))) {
339 			if (zone) {
340 				spin_unlock_irqrestore(&zone->lru_lock, flags);
341 				zone = NULL;
342 			}
343 			put_compound_page(page);
344 			continue;
345 		}
346 
347 		if (!put_page_testzero(page))
348 			continue;
349 
350 		if (PageLRU(page)) {
351 			struct zone *pagezone = page_zone(page);
352 
353 			if (pagezone != zone) {
354 				if (zone)
355 					spin_unlock_irqrestore(&zone->lru_lock,
356 									flags);
357 				zone = pagezone;
358 				spin_lock_irqsave(&zone->lru_lock, flags);
359 			}
360 			VM_BUG_ON(!PageLRU(page));
361 			__ClearPageLRU(page);
362 			del_page_from_lru(zone, page);
363 		}
364 
365 		if (!pagevec_add(&pages_to_free, page)) {
366 			if (zone) {
367 				spin_unlock_irqrestore(&zone->lru_lock, flags);
368 				zone = NULL;
369 			}
370 			__pagevec_free(&pages_to_free);
371 			pagevec_reinit(&pages_to_free);
372   		}
373 	}
374 	if (zone)
375 		spin_unlock_irqrestore(&zone->lru_lock, flags);
376 
377 	pagevec_free(&pages_to_free);
378 }
379 
380 /*
381  * The pages which we're about to release may be in the deferred lru-addition
382  * queues.  That would prevent them from really being freed right now.  That's
383  * OK from a correctness point of view but is inefficient - those pages may be
384  * cache-warm and we want to give them back to the page allocator ASAP.
385  *
386  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
387  * and __pagevec_lru_add_active() call release_pages() directly to avoid
388  * mutual recursion.
389  */
390 void __pagevec_release(struct pagevec *pvec)
391 {
392 	lru_add_drain();
393 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
394 	pagevec_reinit(pvec);
395 }
396 
397 EXPORT_SYMBOL(__pagevec_release);
398 
399 /*
400  * Add the passed pages to the LRU, then drop the caller's refcount
401  * on them.  Reinitialises the caller's pagevec.
402  */
403 void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
404 {
405 	int i;
406 	struct zone *zone = NULL;
407 
408 	VM_BUG_ON(is_unevictable_lru(lru));
409 
410 	for (i = 0; i < pagevec_count(pvec); i++) {
411 		struct page *page = pvec->pages[i];
412 		struct zone *pagezone = page_zone(page);
413 		int file;
414 		int active;
415 
416 		if (pagezone != zone) {
417 			if (zone)
418 				spin_unlock_irq(&zone->lru_lock);
419 			zone = pagezone;
420 			spin_lock_irq(&zone->lru_lock);
421 		}
422 		VM_BUG_ON(PageActive(page));
423 		VM_BUG_ON(PageUnevictable(page));
424 		VM_BUG_ON(PageLRU(page));
425 		SetPageLRU(page);
426 		active = is_active_lru(lru);
427 		file = is_file_lru(lru);
428 		if (active)
429 			SetPageActive(page);
430 		update_page_reclaim_stat(zone, page, file, active);
431 		add_page_to_lru_list(zone, page, lru);
432 	}
433 	if (zone)
434 		spin_unlock_irq(&zone->lru_lock);
435 	release_pages(pvec->pages, pvec->nr, pvec->cold);
436 	pagevec_reinit(pvec);
437 }
438 
439 EXPORT_SYMBOL(____pagevec_lru_add);
440 
441 /*
442  * Try to drop buffers from the pages in a pagevec
443  */
444 void pagevec_strip(struct pagevec *pvec)
445 {
446 	int i;
447 
448 	for (i = 0; i < pagevec_count(pvec); i++) {
449 		struct page *page = pvec->pages[i];
450 
451 		if (PagePrivate(page) && trylock_page(page)) {
452 			if (PagePrivate(page))
453 				try_to_release_page(page, 0);
454 			unlock_page(page);
455 		}
456 	}
457 }
458 
459 /**
460  * pagevec_lookup - gang pagecache lookup
461  * @pvec:	Where the resulting pages are placed
462  * @mapping:	The address_space to search
463  * @start:	The starting page index
464  * @nr_pages:	The maximum number of pages
465  *
466  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
467  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
468  * reference against the pages in @pvec.
469  *
470  * The search returns a group of mapping-contiguous pages with ascending
471  * indexes.  There may be holes in the indices due to not-present pages.
472  *
473  * pagevec_lookup() returns the number of pages which were found.
474  */
475 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
476 		pgoff_t start, unsigned nr_pages)
477 {
478 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
479 	return pagevec_count(pvec);
480 }
481 
482 EXPORT_SYMBOL(pagevec_lookup);
483 
484 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
485 		pgoff_t *index, int tag, unsigned nr_pages)
486 {
487 	pvec->nr = find_get_pages_tag(mapping, index, tag,
488 					nr_pages, pvec->pages);
489 	return pagevec_count(pvec);
490 }
491 
492 EXPORT_SYMBOL(pagevec_lookup_tag);
493 
494 #ifdef CONFIG_SMP
495 /*
496  * We tolerate a little inaccuracy to avoid ping-ponging the counter between
497  * CPUs
498  */
499 #define ACCT_THRESHOLD	max(16, NR_CPUS * 2)
500 
501 static DEFINE_PER_CPU(long, committed_space);
502 
503 void vm_acct_memory(long pages)
504 {
505 	long *local;
506 
507 	preempt_disable();
508 	local = &__get_cpu_var(committed_space);
509 	*local += pages;
510 	if (*local > ACCT_THRESHOLD || *local < -ACCT_THRESHOLD) {
511 		atomic_long_add(*local, &vm_committed_space);
512 		*local = 0;
513 	}
514 	preempt_enable();
515 }
516 
517 #ifdef CONFIG_HOTPLUG_CPU
518 
519 /* Drop the CPU's cached committed space back into the central pool. */
520 static int cpu_swap_callback(struct notifier_block *nfb,
521 			     unsigned long action,
522 			     void *hcpu)
523 {
524 	long *committed;
525 
526 	committed = &per_cpu(committed_space, (long)hcpu);
527 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
528 		atomic_long_add(*committed, &vm_committed_space);
529 		*committed = 0;
530 		drain_cpu_pagevecs((long)hcpu);
531 	}
532 	return NOTIFY_OK;
533 }
534 #endif /* CONFIG_HOTPLUG_CPU */
535 #endif /* CONFIG_SMP */
536 
537 /*
538  * Perform any setup for the swap system
539  */
540 void __init swap_setup(void)
541 {
542 	unsigned long megs = num_physpages >> (20 - PAGE_SHIFT);
543 
544 #ifdef CONFIG_SWAP
545 	bdi_init(swapper_space.backing_dev_info);
546 #endif
547 
548 	/* Use a smaller cluster for small-memory machines */
549 	if (megs < 16)
550 		page_cluster = 2;
551 	else
552 		page_cluster = 3;
553 	/*
554 	 * Right now other parts of the system means that we
555 	 * _really_ don't want to cluster much more
556 	 */
557 #ifdef CONFIG_HOTPLUG_CPU
558 	hotcpu_notifier(cpu_swap_callback, 0);
559 #endif
560 }
561