1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swap.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * This file contains the default values for the operation of the 10 * Linux VM subsystem. Fine-tuning documentation can be found in 11 * Documentation/admin-guide/sysctl/vm.rst. 12 * Started 18.12.91 13 * Swap aging added 23.2.95, Stephen Tweedie. 14 * Buffermem limits added 12.3.98, Rik van Riel. 15 */ 16 17 #include <linux/mm.h> 18 #include <linux/sched.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/mman.h> 22 #include <linux/pagemap.h> 23 #include <linux/pagevec.h> 24 #include <linux/init.h> 25 #include <linux/export.h> 26 #include <linux/mm_inline.h> 27 #include <linux/percpu_counter.h> 28 #include <linux/memremap.h> 29 #include <linux/percpu.h> 30 #include <linux/cpu.h> 31 #include <linux/notifier.h> 32 #include <linux/backing-dev.h> 33 #include <linux/memcontrol.h> 34 #include <linux/gfp.h> 35 #include <linux/uio.h> 36 #include <linux/hugetlb.h> 37 #include <linux/page_idle.h> 38 #include <linux/local_lock.h> 39 #include <linux/buffer_head.h> 40 41 #include "internal.h" 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/pagemap.h> 45 46 /* How many pages do we try to swap or page in/out together? As a power of 2 */ 47 int page_cluster; 48 static const int page_cluster_max = 31; 49 50 struct cpu_fbatches { 51 /* 52 * The following folio batches are grouped together because they are protected 53 * by disabling preemption (and interrupts remain enabled). 54 */ 55 local_lock_t lock; 56 struct folio_batch lru_add; 57 struct folio_batch lru_deactivate_file; 58 struct folio_batch lru_deactivate; 59 struct folio_batch lru_lazyfree; 60 #ifdef CONFIG_SMP 61 struct folio_batch lru_activate; 62 #endif 63 /* Protecting the following batches which require disabling interrupts */ 64 local_lock_t lock_irq; 65 struct folio_batch lru_move_tail; 66 }; 67 68 static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = { 69 .lock = INIT_LOCAL_LOCK(lock), 70 .lock_irq = INIT_LOCAL_LOCK(lock_irq), 71 }; 72 73 static void __page_cache_release(struct folio *folio, struct lruvec **lruvecp, 74 unsigned long *flagsp) 75 { 76 if (folio_test_lru(folio)) { 77 folio_lruvec_relock_irqsave(folio, lruvecp, flagsp); 78 lruvec_del_folio(*lruvecp, folio); 79 __folio_clear_lru_flags(folio); 80 } 81 } 82 83 /* 84 * This path almost never happens for VM activity - pages are normally freed 85 * in batches. But it gets used by networking - and for compound pages. 86 */ 87 static void page_cache_release(struct folio *folio) 88 { 89 struct lruvec *lruvec = NULL; 90 unsigned long flags; 91 92 __page_cache_release(folio, &lruvec, &flags); 93 if (lruvec) 94 unlock_page_lruvec_irqrestore(lruvec, flags); 95 } 96 97 void __folio_put(struct folio *folio) 98 { 99 if (unlikely(folio_is_zone_device(folio))) { 100 free_zone_device_folio(folio); 101 return; 102 } 103 104 if (folio_test_hugetlb(folio)) { 105 free_huge_folio(folio); 106 return; 107 } 108 109 page_cache_release(folio); 110 folio_unqueue_deferred_split(folio); 111 mem_cgroup_uncharge(folio); 112 free_frozen_pages(&folio->page, folio_order(folio)); 113 } 114 EXPORT_SYMBOL(__folio_put); 115 116 typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio); 117 118 static void lru_add(struct lruvec *lruvec, struct folio *folio) 119 { 120 int was_unevictable = folio_test_clear_unevictable(folio); 121 long nr_pages = folio_nr_pages(folio); 122 123 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 124 125 /* 126 * Is an smp_mb__after_atomic() still required here, before 127 * folio_evictable() tests the mlocked flag, to rule out the possibility 128 * of stranding an evictable folio on an unevictable LRU? I think 129 * not, because __munlock_folio() only clears the mlocked flag 130 * while the LRU lock is held. 131 * 132 * (That is not true of __page_cache_release(), and not necessarily 133 * true of folios_put(): but those only clear the mlocked flag after 134 * folio_put_testzero() has excluded any other users of the folio.) 135 */ 136 if (folio_evictable(folio)) { 137 if (was_unevictable) 138 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages); 139 } else { 140 folio_clear_active(folio); 141 folio_set_unevictable(folio); 142 /* 143 * folio->mlock_count = !!folio_test_mlocked(folio)? 144 * But that leaves __mlock_folio() in doubt whether another 145 * actor has already counted the mlock or not. Err on the 146 * safe side, underestimate, let page reclaim fix it, rather 147 * than leaving a page on the unevictable LRU indefinitely. 148 */ 149 folio->mlock_count = 0; 150 if (!was_unevictable) 151 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages); 152 } 153 154 lruvec_add_folio(lruvec, folio); 155 trace_mm_lru_insertion(folio); 156 } 157 158 static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn) 159 { 160 int i; 161 struct lruvec *lruvec = NULL; 162 unsigned long flags = 0; 163 164 for (i = 0; i < folio_batch_count(fbatch); i++) { 165 struct folio *folio = fbatch->folios[i]; 166 167 /* block memcg migration while the folio moves between lru */ 168 if (move_fn != lru_add && !folio_test_clear_lru(folio)) 169 continue; 170 171 folio_lruvec_relock_irqsave(folio, &lruvec, &flags); 172 move_fn(lruvec, folio); 173 174 folio_set_lru(folio); 175 } 176 177 if (lruvec) 178 unlock_page_lruvec_irqrestore(lruvec, flags); 179 folios_put(fbatch); 180 } 181 182 static void __folio_batch_add_and_move(struct folio_batch __percpu *fbatch, 183 struct folio *folio, move_fn_t move_fn, bool disable_irq) 184 { 185 unsigned long flags; 186 187 folio_get(folio); 188 189 if (disable_irq) 190 local_lock_irqsave(&cpu_fbatches.lock_irq, flags); 191 else 192 local_lock(&cpu_fbatches.lock); 193 194 if (!folio_batch_add(this_cpu_ptr(fbatch), folio) || 195 !folio_may_be_lru_cached(folio) || lru_cache_disabled()) 196 folio_batch_move_lru(this_cpu_ptr(fbatch), move_fn); 197 198 if (disable_irq) 199 local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags); 200 else 201 local_unlock(&cpu_fbatches.lock); 202 } 203 204 #define folio_batch_add_and_move(folio, op) \ 205 __folio_batch_add_and_move( \ 206 &cpu_fbatches.op, \ 207 folio, \ 208 op, \ 209 offsetof(struct cpu_fbatches, op) >= \ 210 offsetof(struct cpu_fbatches, lock_irq) \ 211 ) 212 213 static void lru_move_tail(struct lruvec *lruvec, struct folio *folio) 214 { 215 if (folio_test_unevictable(folio)) 216 return; 217 218 lruvec_del_folio(lruvec, folio); 219 folio_clear_active(folio); 220 lruvec_add_folio_tail(lruvec, folio); 221 __count_vm_events(PGROTATED, folio_nr_pages(folio)); 222 } 223 224 /* 225 * Writeback is about to end against a folio which has been marked for 226 * immediate reclaim. If it still appears to be reclaimable, move it 227 * to the tail of the inactive list. 228 * 229 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races. 230 */ 231 void folio_rotate_reclaimable(struct folio *folio) 232 { 233 if (folio_test_locked(folio) || folio_test_dirty(folio) || 234 folio_test_unevictable(folio) || !folio_test_lru(folio)) 235 return; 236 237 folio_batch_add_and_move(folio, lru_move_tail); 238 } 239 240 void lru_note_cost_unlock_irq(struct lruvec *lruvec, bool file, 241 unsigned int nr_io, unsigned int nr_rotated) 242 __releases(lruvec->lru_lock) 243 { 244 unsigned long cost; 245 246 /* 247 * Reflect the relative cost of incurring IO and spending CPU 248 * time on rotations. This doesn't attempt to make a precise 249 * comparison, it just says: if reloads are about comparable 250 * between the LRU lists, or rotations are overwhelmingly 251 * different between them, adjust scan balance for CPU work. 252 */ 253 cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated; 254 if (!cost) { 255 spin_unlock_irq(&lruvec->lru_lock); 256 return; 257 } 258 259 for (;;) { 260 unsigned long lrusize; 261 262 /* Record cost event */ 263 if (file) 264 lruvec->file_cost += cost; 265 else 266 lruvec->anon_cost += cost; 267 268 /* 269 * Decay previous events 270 * 271 * Because workloads change over time (and to avoid 272 * overflow) we keep these statistics as a floating 273 * average, which ends up weighing recent refaults 274 * more than old ones. 275 */ 276 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) + 277 lruvec_page_state(lruvec, NR_ACTIVE_ANON) + 278 lruvec_page_state(lruvec, NR_INACTIVE_FILE) + 279 lruvec_page_state(lruvec, NR_ACTIVE_FILE); 280 281 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) { 282 lruvec->file_cost /= 2; 283 lruvec->anon_cost /= 2; 284 } 285 286 spin_unlock_irq(&lruvec->lru_lock); 287 lruvec = parent_lruvec(lruvec); 288 if (!lruvec) 289 break; 290 spin_lock_irq(&lruvec->lru_lock); 291 } 292 } 293 294 void lru_note_cost_refault(struct folio *folio) 295 { 296 struct lruvec *lruvec; 297 298 lruvec = folio_lruvec_lock_irq(folio); 299 lru_note_cost_unlock_irq(lruvec, folio_is_file_lru(folio), 300 folio_nr_pages(folio), 0); 301 } 302 303 static void lru_activate(struct lruvec *lruvec, struct folio *folio) 304 { 305 long nr_pages = folio_nr_pages(folio); 306 307 if (folio_test_active(folio) || folio_test_unevictable(folio)) 308 return; 309 310 311 lruvec_del_folio(lruvec, folio); 312 folio_set_active(folio); 313 lruvec_add_folio(lruvec, folio); 314 trace_mm_lru_activate(folio); 315 316 __count_vm_events(PGACTIVATE, nr_pages); 317 count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, nr_pages); 318 } 319 320 #ifdef CONFIG_SMP 321 static void folio_activate_drain(int cpu) 322 { 323 struct folio_batch *fbatch = &per_cpu(cpu_fbatches.lru_activate, cpu); 324 325 if (folio_batch_count(fbatch)) 326 folio_batch_move_lru(fbatch, lru_activate); 327 } 328 329 void folio_activate(struct folio *folio) 330 { 331 if (folio_test_active(folio) || folio_test_unevictable(folio) || 332 !folio_test_lru(folio)) 333 return; 334 335 folio_batch_add_and_move(folio, lru_activate); 336 } 337 338 #else 339 static inline void folio_activate_drain(int cpu) 340 { 341 } 342 343 void folio_activate(struct folio *folio) 344 { 345 struct lruvec *lruvec; 346 347 if (!folio_test_clear_lru(folio)) 348 return; 349 350 lruvec = folio_lruvec_lock_irq(folio); 351 lru_activate(lruvec, folio); 352 unlock_page_lruvec_irq(lruvec); 353 folio_set_lru(folio); 354 } 355 #endif 356 357 static void __lru_cache_activate_folio(struct folio *folio) 358 { 359 struct folio_batch *fbatch; 360 int i; 361 362 local_lock(&cpu_fbatches.lock); 363 fbatch = this_cpu_ptr(&cpu_fbatches.lru_add); 364 365 /* 366 * Search backwards on the optimistic assumption that the folio being 367 * activated has just been added to this batch. Note that only 368 * the local batch is examined as a !LRU folio could be in the 369 * process of being released, reclaimed, migrated or on a remote 370 * batch that is currently being drained. Furthermore, marking 371 * a remote batch's folio active potentially hits a race where 372 * a folio is marked active just after it is added to the inactive 373 * list causing accounting errors and BUG_ON checks to trigger. 374 */ 375 for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) { 376 struct folio *batch_folio = fbatch->folios[i]; 377 378 if (batch_folio == folio) { 379 folio_set_active(folio); 380 break; 381 } 382 } 383 384 local_unlock(&cpu_fbatches.lock); 385 } 386 387 #ifdef CONFIG_LRU_GEN 388 389 static void lru_gen_inc_refs(struct folio *folio) 390 { 391 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 392 393 if (folio_test_unevictable(folio)) 394 return; 395 396 /* see the comment on LRU_REFS_FLAGS */ 397 if (!folio_test_referenced(folio)) { 398 set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced)); 399 return; 400 } 401 402 do { 403 if ((old_flags & LRU_REFS_MASK) == LRU_REFS_MASK) { 404 if (!folio_test_workingset(folio)) 405 folio_set_workingset(folio); 406 return; 407 } 408 409 new_flags = old_flags + BIT(LRU_REFS_PGOFF); 410 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 411 } 412 413 static bool lru_gen_clear_refs(struct folio *folio) 414 { 415 struct lru_gen_folio *lrugen; 416 int gen = folio_lru_gen(folio); 417 int type = folio_is_file_lru(folio); 418 419 if (gen < 0) 420 return true; 421 422 set_mask_bits(&folio->flags, LRU_REFS_FLAGS | BIT(PG_workingset), 0); 423 424 lrugen = &folio_lruvec(folio)->lrugen; 425 /* whether can do without shuffling under the LRU lock */ 426 return gen == lru_gen_from_seq(READ_ONCE(lrugen->min_seq[type])); 427 } 428 429 #else /* !CONFIG_LRU_GEN */ 430 431 static void lru_gen_inc_refs(struct folio *folio) 432 { 433 } 434 435 static bool lru_gen_clear_refs(struct folio *folio) 436 { 437 return false; 438 } 439 440 #endif /* CONFIG_LRU_GEN */ 441 442 /** 443 * folio_mark_accessed - Mark a folio as having seen activity. 444 * @folio: The folio to mark. 445 * 446 * This function will perform one of the following transitions: 447 * 448 * * inactive,unreferenced -> inactive,referenced 449 * * inactive,referenced -> active,unreferenced 450 * * active,unreferenced -> active,referenced 451 * 452 * When a newly allocated folio is not yet visible, so safe for non-atomic ops, 453 * __folio_set_referenced() may be substituted for folio_mark_accessed(). 454 */ 455 void folio_mark_accessed(struct folio *folio) 456 { 457 if (folio_test_dropbehind(folio)) 458 return; 459 if (lru_gen_enabled()) { 460 lru_gen_inc_refs(folio); 461 return; 462 } 463 464 if (!folio_test_referenced(folio)) { 465 folio_set_referenced(folio); 466 } else if (folio_test_unevictable(folio)) { 467 /* 468 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But, 469 * this list is never rotated or maintained, so marking an 470 * unevictable page accessed has no effect. 471 */ 472 } else if (!folio_test_active(folio)) { 473 /* 474 * If the folio is on the LRU, queue it for activation via 475 * cpu_fbatches.lru_activate. Otherwise, assume the folio is in a 476 * folio_batch, mark it active and it'll be moved to the active 477 * LRU on the next drain. 478 */ 479 if (folio_test_lru(folio)) 480 folio_activate(folio); 481 else 482 __lru_cache_activate_folio(folio); 483 folio_clear_referenced(folio); 484 workingset_activation(folio); 485 } 486 if (folio_test_idle(folio)) 487 folio_clear_idle(folio); 488 } 489 EXPORT_SYMBOL(folio_mark_accessed); 490 491 /** 492 * folio_add_lru - Add a folio to an LRU list. 493 * @folio: The folio to be added to the LRU. 494 * 495 * Queue the folio for addition to the LRU. The decision on whether 496 * to add the page to the [in]active [file|anon] list is deferred until the 497 * folio_batch is drained. This gives a chance for the caller of folio_add_lru() 498 * have the folio added to the active list using folio_mark_accessed(). 499 */ 500 void folio_add_lru(struct folio *folio) 501 { 502 VM_BUG_ON_FOLIO(folio_test_active(folio) && 503 folio_test_unevictable(folio), folio); 504 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 505 506 /* see the comment in lru_gen_folio_seq() */ 507 if (lru_gen_enabled() && !folio_test_unevictable(folio) && 508 lru_gen_in_fault() && !(current->flags & PF_MEMALLOC)) 509 folio_set_active(folio); 510 511 folio_batch_add_and_move(folio, lru_add); 512 } 513 EXPORT_SYMBOL(folio_add_lru); 514 515 /** 516 * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA. 517 * @folio: The folio to be added to the LRU. 518 * @vma: VMA in which the folio is mapped. 519 * 520 * If the VMA is mlocked, @folio is added to the unevictable list. 521 * Otherwise, it is treated the same way as folio_add_lru(). 522 */ 523 void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma) 524 { 525 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 526 527 if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED)) 528 mlock_new_folio(folio); 529 else 530 folio_add_lru(folio); 531 } 532 533 /* 534 * If the folio cannot be invalidated, it is moved to the 535 * inactive list to speed up its reclaim. It is moved to the 536 * head of the list, rather than the tail, to give the flusher 537 * threads some time to write it out, as this is much more 538 * effective than the single-page writeout from reclaim. 539 * 540 * If the folio isn't mapped and dirty/writeback, the folio 541 * could be reclaimed asap using the reclaim flag. 542 * 543 * 1. active, mapped folio -> none 544 * 2. active, dirty/writeback folio -> inactive, head, reclaim 545 * 3. inactive, mapped folio -> none 546 * 4. inactive, dirty/writeback folio -> inactive, head, reclaim 547 * 5. inactive, clean -> inactive, tail 548 * 6. Others -> none 549 * 550 * In 4, it moves to the head of the inactive list so the folio is 551 * written out by flusher threads as this is much more efficient 552 * than the single-page writeout from reclaim. 553 */ 554 static void lru_deactivate_file(struct lruvec *lruvec, struct folio *folio) 555 { 556 bool active = folio_test_active(folio) || lru_gen_enabled(); 557 long nr_pages = folio_nr_pages(folio); 558 559 if (folio_test_unevictable(folio)) 560 return; 561 562 /* Some processes are using the folio */ 563 if (folio_mapped(folio)) 564 return; 565 566 lruvec_del_folio(lruvec, folio); 567 folio_clear_active(folio); 568 folio_clear_referenced(folio); 569 570 if (folio_test_writeback(folio) || folio_test_dirty(folio)) { 571 /* 572 * Setting the reclaim flag could race with 573 * folio_end_writeback() and confuse readahead. But the 574 * race window is _really_ small and it's not a critical 575 * problem. 576 */ 577 lruvec_add_folio(lruvec, folio); 578 folio_set_reclaim(folio); 579 } else { 580 /* 581 * The folio's writeback ended while it was in the batch. 582 * We move that folio to the tail of the inactive list. 583 */ 584 lruvec_add_folio_tail(lruvec, folio); 585 __count_vm_events(PGROTATED, nr_pages); 586 } 587 588 if (active) { 589 __count_vm_events(PGDEACTIVATE, nr_pages); 590 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 591 nr_pages); 592 } 593 } 594 595 static void lru_deactivate(struct lruvec *lruvec, struct folio *folio) 596 { 597 long nr_pages = folio_nr_pages(folio); 598 599 if (folio_test_unevictable(folio) || !(folio_test_active(folio) || lru_gen_enabled())) 600 return; 601 602 lruvec_del_folio(lruvec, folio); 603 folio_clear_active(folio); 604 folio_clear_referenced(folio); 605 lruvec_add_folio(lruvec, folio); 606 607 __count_vm_events(PGDEACTIVATE, nr_pages); 608 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_pages); 609 } 610 611 static void lru_lazyfree(struct lruvec *lruvec, struct folio *folio) 612 { 613 long nr_pages = folio_nr_pages(folio); 614 615 if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) || 616 folio_test_swapcache(folio) || folio_test_unevictable(folio)) 617 return; 618 619 lruvec_del_folio(lruvec, folio); 620 folio_clear_active(folio); 621 if (lru_gen_enabled()) 622 lru_gen_clear_refs(folio); 623 else 624 folio_clear_referenced(folio); 625 /* 626 * Lazyfree folios are clean anonymous folios. They have 627 * the swapbacked flag cleared, to distinguish them from normal 628 * anonymous folios 629 */ 630 folio_clear_swapbacked(folio); 631 lruvec_add_folio(lruvec, folio); 632 633 __count_vm_events(PGLAZYFREE, nr_pages); 634 count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, nr_pages); 635 } 636 637 /* 638 * Drain pages out of the cpu's folio_batch. 639 * Either "cpu" is the current CPU, and preemption has already been 640 * disabled; or "cpu" is being hot-unplugged, and is already dead. 641 */ 642 void lru_add_drain_cpu(int cpu) 643 { 644 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu); 645 struct folio_batch *fbatch = &fbatches->lru_add; 646 647 if (folio_batch_count(fbatch)) 648 folio_batch_move_lru(fbatch, lru_add); 649 650 fbatch = &fbatches->lru_move_tail; 651 /* Disabling interrupts below acts as a compiler barrier. */ 652 if (data_race(folio_batch_count(fbatch))) { 653 unsigned long flags; 654 655 /* No harm done if a racing interrupt already did this */ 656 local_lock_irqsave(&cpu_fbatches.lock_irq, flags); 657 folio_batch_move_lru(fbatch, lru_move_tail); 658 local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags); 659 } 660 661 fbatch = &fbatches->lru_deactivate_file; 662 if (folio_batch_count(fbatch)) 663 folio_batch_move_lru(fbatch, lru_deactivate_file); 664 665 fbatch = &fbatches->lru_deactivate; 666 if (folio_batch_count(fbatch)) 667 folio_batch_move_lru(fbatch, lru_deactivate); 668 669 fbatch = &fbatches->lru_lazyfree; 670 if (folio_batch_count(fbatch)) 671 folio_batch_move_lru(fbatch, lru_lazyfree); 672 673 folio_activate_drain(cpu); 674 } 675 676 /** 677 * deactivate_file_folio() - Deactivate a file folio. 678 * @folio: Folio to deactivate. 679 * 680 * This function hints to the VM that @folio is a good reclaim candidate, 681 * for example if its invalidation fails due to the folio being dirty 682 * or under writeback. 683 * 684 * Context: Caller holds a reference on the folio. 685 */ 686 void deactivate_file_folio(struct folio *folio) 687 { 688 /* Deactivating an unevictable folio will not accelerate reclaim */ 689 if (folio_test_unevictable(folio) || !folio_test_lru(folio)) 690 return; 691 692 if (lru_gen_enabled() && lru_gen_clear_refs(folio)) 693 return; 694 695 folio_batch_add_and_move(folio, lru_deactivate_file); 696 } 697 698 /* 699 * folio_deactivate - deactivate a folio 700 * @folio: folio to deactivate 701 * 702 * folio_deactivate() moves @folio to the inactive list if @folio was on the 703 * active list and was not unevictable. This is done to accelerate the 704 * reclaim of @folio. 705 */ 706 void folio_deactivate(struct folio *folio) 707 { 708 if (folio_test_unevictable(folio) || !folio_test_lru(folio)) 709 return; 710 711 if (lru_gen_enabled() ? lru_gen_clear_refs(folio) : !folio_test_active(folio)) 712 return; 713 714 folio_batch_add_and_move(folio, lru_deactivate); 715 } 716 717 /** 718 * folio_mark_lazyfree - make an anon folio lazyfree 719 * @folio: folio to deactivate 720 * 721 * folio_mark_lazyfree() moves @folio to the inactive file list. 722 * This is done to accelerate the reclaim of @folio. 723 */ 724 void folio_mark_lazyfree(struct folio *folio) 725 { 726 if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) || 727 !folio_test_lru(folio) || 728 folio_test_swapcache(folio) || folio_test_unevictable(folio)) 729 return; 730 731 folio_batch_add_and_move(folio, lru_lazyfree); 732 } 733 734 void lru_add_drain(void) 735 { 736 local_lock(&cpu_fbatches.lock); 737 lru_add_drain_cpu(smp_processor_id()); 738 local_unlock(&cpu_fbatches.lock); 739 mlock_drain_local(); 740 } 741 742 /* 743 * It's called from per-cpu workqueue context in SMP case so 744 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on 745 * the same cpu. It shouldn't be a problem in !SMP case since 746 * the core is only one and the locks will disable preemption. 747 */ 748 static void lru_add_and_bh_lrus_drain(void) 749 { 750 local_lock(&cpu_fbatches.lock); 751 lru_add_drain_cpu(smp_processor_id()); 752 local_unlock(&cpu_fbatches.lock); 753 invalidate_bh_lrus_cpu(); 754 mlock_drain_local(); 755 } 756 757 void lru_add_drain_cpu_zone(struct zone *zone) 758 { 759 local_lock(&cpu_fbatches.lock); 760 lru_add_drain_cpu(smp_processor_id()); 761 drain_local_pages(zone); 762 local_unlock(&cpu_fbatches.lock); 763 mlock_drain_local(); 764 } 765 766 #ifdef CONFIG_SMP 767 768 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); 769 770 static void lru_add_drain_per_cpu(struct work_struct *dummy) 771 { 772 lru_add_and_bh_lrus_drain(); 773 } 774 775 static bool cpu_needs_drain(unsigned int cpu) 776 { 777 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu); 778 779 /* Check these in order of likelihood that they're not zero */ 780 return folio_batch_count(&fbatches->lru_add) || 781 folio_batch_count(&fbatches->lru_move_tail) || 782 folio_batch_count(&fbatches->lru_deactivate_file) || 783 folio_batch_count(&fbatches->lru_deactivate) || 784 folio_batch_count(&fbatches->lru_lazyfree) || 785 folio_batch_count(&fbatches->lru_activate) || 786 need_mlock_drain(cpu) || 787 has_bh_in_lru(cpu, NULL); 788 } 789 790 /* 791 * Doesn't need any cpu hotplug locking because we do rely on per-cpu 792 * kworkers being shut down before our page_alloc_cpu_dead callback is 793 * executed on the offlined cpu. 794 * Calling this function with cpu hotplug locks held can actually lead 795 * to obscure indirect dependencies via WQ context. 796 */ 797 static inline void __lru_add_drain_all(bool force_all_cpus) 798 { 799 /* 800 * lru_drain_gen - Global pages generation number 801 * 802 * (A) Definition: global lru_drain_gen = x implies that all generations 803 * 0 < n <= x are already *scheduled* for draining. 804 * 805 * This is an optimization for the highly-contended use case where a 806 * user space workload keeps constantly generating a flow of pages for 807 * each CPU. 808 */ 809 static unsigned int lru_drain_gen; 810 static struct cpumask has_work; 811 static DEFINE_MUTEX(lock); 812 unsigned cpu, this_gen; 813 814 /* 815 * Make sure nobody triggers this path before mm_percpu_wq is fully 816 * initialized. 817 */ 818 if (WARN_ON(!mm_percpu_wq)) 819 return; 820 821 /* 822 * Guarantee folio_batch counter stores visible by this CPU 823 * are visible to other CPUs before loading the current drain 824 * generation. 825 */ 826 smp_mb(); 827 828 /* 829 * (B) Locally cache global LRU draining generation number 830 * 831 * The read barrier ensures that the counter is loaded before the mutex 832 * is taken. It pairs with smp_mb() inside the mutex critical section 833 * at (D). 834 */ 835 this_gen = smp_load_acquire(&lru_drain_gen); 836 837 mutex_lock(&lock); 838 839 /* 840 * (C) Exit the draining operation if a newer generation, from another 841 * lru_add_drain_all(), was already scheduled for draining. Check (A). 842 */ 843 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus)) 844 goto done; 845 846 /* 847 * (D) Increment global generation number 848 * 849 * Pairs with smp_load_acquire() at (B), outside of the critical 850 * section. Use a full memory barrier to guarantee that the 851 * new global drain generation number is stored before loading 852 * folio_batch counters. 853 * 854 * This pairing must be done here, before the for_each_online_cpu loop 855 * below which drains the page vectors. 856 * 857 * Let x, y, and z represent some system CPU numbers, where x < y < z. 858 * Assume CPU #z is in the middle of the for_each_online_cpu loop 859 * below and has already reached CPU #y's per-cpu data. CPU #x comes 860 * along, adds some pages to its per-cpu vectors, then calls 861 * lru_add_drain_all(). 862 * 863 * If the paired barrier is done at any later step, e.g. after the 864 * loop, CPU #x will just exit at (C) and miss flushing out all of its 865 * added pages. 866 */ 867 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1); 868 smp_mb(); 869 870 cpumask_clear(&has_work); 871 for_each_online_cpu(cpu) { 872 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); 873 874 if (cpu_needs_drain(cpu)) { 875 INIT_WORK(work, lru_add_drain_per_cpu); 876 queue_work_on(cpu, mm_percpu_wq, work); 877 __cpumask_set_cpu(cpu, &has_work); 878 } 879 } 880 881 for_each_cpu(cpu, &has_work) 882 flush_work(&per_cpu(lru_add_drain_work, cpu)); 883 884 done: 885 mutex_unlock(&lock); 886 } 887 888 void lru_add_drain_all(void) 889 { 890 __lru_add_drain_all(false); 891 } 892 #else 893 void lru_add_drain_all(void) 894 { 895 lru_add_drain(); 896 } 897 #endif /* CONFIG_SMP */ 898 899 atomic_t lru_disable_count = ATOMIC_INIT(0); 900 901 /* 902 * lru_cache_disable() needs to be called before we start compiling 903 * a list of folios to be migrated using folio_isolate_lru(). 904 * It drains folios on LRU cache and then disable on all cpus until 905 * lru_cache_enable is called. 906 * 907 * Must be paired with a call to lru_cache_enable(). 908 */ 909 void lru_cache_disable(void) 910 { 911 atomic_inc(&lru_disable_count); 912 /* 913 * Readers of lru_disable_count are protected by either disabling 914 * preemption or rcu_read_lock: 915 * 916 * preempt_disable, local_irq_disable [bh_lru_lock()] 917 * rcu_read_lock [rt_spin_lock CONFIG_PREEMPT_RT] 918 * preempt_disable [local_lock !CONFIG_PREEMPT_RT] 919 * 920 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on 921 * preempt_disable() regions of code. So any CPU which sees 922 * lru_disable_count = 0 will have exited the critical 923 * section when synchronize_rcu() returns. 924 */ 925 synchronize_rcu_expedited(); 926 #ifdef CONFIG_SMP 927 __lru_add_drain_all(true); 928 #else 929 lru_add_and_bh_lrus_drain(); 930 #endif 931 } 932 933 /** 934 * folios_put_refs - Reduce the reference count on a batch of folios. 935 * @folios: The folios. 936 * @refs: The number of refs to subtract from each folio. 937 * 938 * Like folio_put(), but for a batch of folios. This is more efficient 939 * than writing the loop yourself as it will optimise the locks which need 940 * to be taken if the folios are freed. The folios batch is returned 941 * empty and ready to be reused for another batch; there is no need 942 * to reinitialise it. If @refs is NULL, we subtract one from each 943 * folio refcount. 944 * 945 * Context: May be called in process or interrupt context, but not in NMI 946 * context. May be called while holding a spinlock. 947 */ 948 void folios_put_refs(struct folio_batch *folios, unsigned int *refs) 949 { 950 int i, j; 951 struct lruvec *lruvec = NULL; 952 unsigned long flags = 0; 953 954 for (i = 0, j = 0; i < folios->nr; i++) { 955 struct folio *folio = folios->folios[i]; 956 unsigned int nr_refs = refs ? refs[i] : 1; 957 958 if (is_huge_zero_folio(folio)) 959 continue; 960 961 if (folio_is_zone_device(folio)) { 962 if (lruvec) { 963 unlock_page_lruvec_irqrestore(lruvec, flags); 964 lruvec = NULL; 965 } 966 if (folio_ref_sub_and_test(folio, nr_refs)) 967 free_zone_device_folio(folio); 968 continue; 969 } 970 971 if (!folio_ref_sub_and_test(folio, nr_refs)) 972 continue; 973 974 /* hugetlb has its own memcg */ 975 if (folio_test_hugetlb(folio)) { 976 if (lruvec) { 977 unlock_page_lruvec_irqrestore(lruvec, flags); 978 lruvec = NULL; 979 } 980 free_huge_folio(folio); 981 continue; 982 } 983 folio_unqueue_deferred_split(folio); 984 __page_cache_release(folio, &lruvec, &flags); 985 986 if (j != i) 987 folios->folios[j] = folio; 988 j++; 989 } 990 if (lruvec) 991 unlock_page_lruvec_irqrestore(lruvec, flags); 992 if (!j) { 993 folio_batch_reinit(folios); 994 return; 995 } 996 997 folios->nr = j; 998 mem_cgroup_uncharge_folios(folios); 999 free_unref_folios(folios); 1000 } 1001 EXPORT_SYMBOL(folios_put_refs); 1002 1003 /** 1004 * release_pages - batched put_page() 1005 * @arg: array of pages to release 1006 * @nr: number of pages 1007 * 1008 * Decrement the reference count on all the pages in @arg. If it 1009 * fell to zero, remove the page from the LRU and free it. 1010 * 1011 * Note that the argument can be an array of pages, encoded pages, 1012 * or folio pointers. We ignore any encoded bits, and turn any of 1013 * them into just a folio that gets free'd. 1014 */ 1015 void release_pages(release_pages_arg arg, int nr) 1016 { 1017 struct folio_batch fbatch; 1018 int refs[PAGEVEC_SIZE]; 1019 struct encoded_page **encoded = arg.encoded_pages; 1020 int i; 1021 1022 folio_batch_init(&fbatch); 1023 for (i = 0; i < nr; i++) { 1024 /* Turn any of the argument types into a folio */ 1025 struct folio *folio = page_folio(encoded_page_ptr(encoded[i])); 1026 1027 /* Is our next entry actually "nr_pages" -> "nr_refs" ? */ 1028 refs[fbatch.nr] = 1; 1029 if (unlikely(encoded_page_flags(encoded[i]) & 1030 ENCODED_PAGE_BIT_NR_PAGES_NEXT)) 1031 refs[fbatch.nr] = encoded_nr_pages(encoded[++i]); 1032 1033 if (folio_batch_add(&fbatch, folio) > 0) 1034 continue; 1035 folios_put_refs(&fbatch, refs); 1036 } 1037 1038 if (fbatch.nr) 1039 folios_put_refs(&fbatch, refs); 1040 } 1041 EXPORT_SYMBOL(release_pages); 1042 1043 /* 1044 * The folios which we're about to release may be in the deferred lru-addition 1045 * queues. That would prevent them from really being freed right now. That's 1046 * OK from a correctness point of view but is inefficient - those folios may be 1047 * cache-warm and we want to give them back to the page allocator ASAP. 1048 * 1049 * So __folio_batch_release() will drain those queues here. 1050 * folio_batch_move_lru() calls folios_put() directly to avoid 1051 * mutual recursion. 1052 */ 1053 void __folio_batch_release(struct folio_batch *fbatch) 1054 { 1055 if (!fbatch->percpu_pvec_drained) { 1056 lru_add_drain(); 1057 fbatch->percpu_pvec_drained = true; 1058 } 1059 folios_put(fbatch); 1060 } 1061 EXPORT_SYMBOL(__folio_batch_release); 1062 1063 /** 1064 * folio_batch_remove_exceptionals() - Prune non-folios from a batch. 1065 * @fbatch: The batch to prune 1066 * 1067 * find_get_entries() fills a batch with both folios and shadow/swap/DAX 1068 * entries. This function prunes all the non-folio entries from @fbatch 1069 * without leaving holes, so that it can be passed on to folio-only batch 1070 * operations. 1071 */ 1072 void folio_batch_remove_exceptionals(struct folio_batch *fbatch) 1073 { 1074 unsigned int i, j; 1075 1076 for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) { 1077 struct folio *folio = fbatch->folios[i]; 1078 if (!xa_is_value(folio)) 1079 fbatch->folios[j++] = folio; 1080 } 1081 fbatch->nr = j; 1082 } 1083 1084 static const struct ctl_table swap_sysctl_table[] = { 1085 { 1086 .procname = "page-cluster", 1087 .data = &page_cluster, 1088 .maxlen = sizeof(int), 1089 .mode = 0644, 1090 .proc_handler = proc_dointvec_minmax, 1091 .extra1 = SYSCTL_ZERO, 1092 .extra2 = (void *)&page_cluster_max, 1093 } 1094 }; 1095 1096 /* 1097 * Perform any setup for the swap system 1098 */ 1099 void __init swap_setup(void) 1100 { 1101 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT); 1102 1103 /* Use a smaller cluster for small-memory machines */ 1104 if (megs < 16) 1105 page_cluster = 2; 1106 else 1107 page_cluster = 3; 1108 /* 1109 * Right now other parts of the system means that we 1110 * _really_ don't want to cluster much more 1111 */ 1112 1113 register_sysctl_init("vm", swap_sysctl_table); 1114 } 1115