1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swap.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * This file contains the default values for the operation of the 10 * Linux VM subsystem. Fine-tuning documentation can be found in 11 * Documentation/admin-guide/sysctl/vm.rst. 12 * Started 18.12.91 13 * Swap aging added 23.2.95, Stephen Tweedie. 14 * Buffermem limits added 12.3.98, Rik van Riel. 15 */ 16 17 #include <linux/mm.h> 18 #include <linux/sched.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/mman.h> 22 #include <linux/pagemap.h> 23 #include <linux/pagevec.h> 24 #include <linux/init.h> 25 #include <linux/export.h> 26 #include <linux/mm_inline.h> 27 #include <linux/percpu_counter.h> 28 #include <linux/memremap.h> 29 #include <linux/percpu.h> 30 #include <linux/cpu.h> 31 #include <linux/notifier.h> 32 #include <linux/backing-dev.h> 33 #include <linux/memcontrol.h> 34 #include <linux/gfp.h> 35 #include <linux/uio.h> 36 #include <linux/hugetlb.h> 37 #include <linux/page_idle.h> 38 #include <linux/local_lock.h> 39 40 #include "internal.h" 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/pagemap.h> 44 45 /* How many pages do we try to swap or page in/out together? */ 46 int page_cluster; 47 48 /* Protecting only lru_rotate.pvec which requires disabling interrupts */ 49 struct lru_rotate { 50 local_lock_t lock; 51 struct pagevec pvec; 52 }; 53 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = { 54 .lock = INIT_LOCAL_LOCK(lock), 55 }; 56 57 /* 58 * The following struct pagevec are grouped together because they are protected 59 * by disabling preemption (and interrupts remain enabled). 60 */ 61 struct lru_pvecs { 62 local_lock_t lock; 63 struct pagevec lru_add; 64 struct pagevec lru_deactivate_file; 65 struct pagevec lru_deactivate; 66 struct pagevec lru_lazyfree; 67 #ifdef CONFIG_SMP 68 struct pagevec activate_page; 69 #endif 70 }; 71 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = { 72 .lock = INIT_LOCAL_LOCK(lock), 73 }; 74 75 /* 76 * This path almost never happens for VM activity - pages are normally 77 * freed via pagevecs. But it gets used by networking. 78 */ 79 static void __page_cache_release(struct page *page) 80 { 81 if (PageLRU(page)) { 82 struct lruvec *lruvec; 83 unsigned long flags; 84 85 lruvec = lock_page_lruvec_irqsave(page, &flags); 86 del_page_from_lru_list(page, lruvec); 87 __clear_page_lru_flags(page); 88 unlock_page_lruvec_irqrestore(lruvec, flags); 89 } 90 __ClearPageWaiters(page); 91 } 92 93 static void __put_single_page(struct page *page) 94 { 95 __page_cache_release(page); 96 mem_cgroup_uncharge(page); 97 free_unref_page(page); 98 } 99 100 static void __put_compound_page(struct page *page) 101 { 102 /* 103 * __page_cache_release() is supposed to be called for thp, not for 104 * hugetlb. This is because hugetlb page does never have PageLRU set 105 * (it's never listed to any LRU lists) and no memcg routines should 106 * be called for hugetlb (it has a separate hugetlb_cgroup.) 107 */ 108 if (!PageHuge(page)) 109 __page_cache_release(page); 110 destroy_compound_page(page); 111 } 112 113 void __put_page(struct page *page) 114 { 115 if (is_zone_device_page(page)) { 116 put_dev_pagemap(page->pgmap); 117 118 /* 119 * The page belongs to the device that created pgmap. Do 120 * not return it to page allocator. 121 */ 122 return; 123 } 124 125 if (unlikely(PageCompound(page))) 126 __put_compound_page(page); 127 else 128 __put_single_page(page); 129 } 130 EXPORT_SYMBOL(__put_page); 131 132 /** 133 * put_pages_list() - release a list of pages 134 * @pages: list of pages threaded on page->lru 135 * 136 * Release a list of pages which are strung together on page.lru. Currently 137 * used by read_cache_pages() and related error recovery code. 138 */ 139 void put_pages_list(struct list_head *pages) 140 { 141 while (!list_empty(pages)) { 142 struct page *victim; 143 144 victim = lru_to_page(pages); 145 list_del(&victim->lru); 146 put_page(victim); 147 } 148 } 149 EXPORT_SYMBOL(put_pages_list); 150 151 /* 152 * get_kernel_pages() - pin kernel pages in memory 153 * @kiov: An array of struct kvec structures 154 * @nr_segs: number of segments to pin 155 * @write: pinning for read/write, currently ignored 156 * @pages: array that receives pointers to the pages pinned. 157 * Should be at least nr_segs long. 158 * 159 * Returns number of pages pinned. This may be fewer than the number 160 * requested. If nr_pages is 0 or negative, returns 0. If no pages 161 * were pinned, returns -errno. Each page returned must be released 162 * with a put_page() call when it is finished with. 163 */ 164 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, 165 struct page **pages) 166 { 167 int seg; 168 169 for (seg = 0; seg < nr_segs; seg++) { 170 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) 171 return seg; 172 173 pages[seg] = kmap_to_page(kiov[seg].iov_base); 174 get_page(pages[seg]); 175 } 176 177 return seg; 178 } 179 EXPORT_SYMBOL_GPL(get_kernel_pages); 180 181 /* 182 * get_kernel_page() - pin a kernel page in memory 183 * @start: starting kernel address 184 * @write: pinning for read/write, currently ignored 185 * @pages: array that receives pointer to the page pinned. 186 * Must be at least nr_segs long. 187 * 188 * Returns 1 if page is pinned. If the page was not pinned, returns 189 * -errno. The page returned must be released with a put_page() call 190 * when it is finished with. 191 */ 192 int get_kernel_page(unsigned long start, int write, struct page **pages) 193 { 194 const struct kvec kiov = { 195 .iov_base = (void *)start, 196 .iov_len = PAGE_SIZE 197 }; 198 199 return get_kernel_pages(&kiov, 1, write, pages); 200 } 201 EXPORT_SYMBOL_GPL(get_kernel_page); 202 203 static void pagevec_lru_move_fn(struct pagevec *pvec, 204 void (*move_fn)(struct page *page, struct lruvec *lruvec)) 205 { 206 int i; 207 struct lruvec *lruvec = NULL; 208 unsigned long flags = 0; 209 210 for (i = 0; i < pagevec_count(pvec); i++) { 211 struct page *page = pvec->pages[i]; 212 213 /* block memcg migration during page moving between lru */ 214 if (!TestClearPageLRU(page)) 215 continue; 216 217 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags); 218 (*move_fn)(page, lruvec); 219 220 SetPageLRU(page); 221 } 222 if (lruvec) 223 unlock_page_lruvec_irqrestore(lruvec, flags); 224 release_pages(pvec->pages, pvec->nr); 225 pagevec_reinit(pvec); 226 } 227 228 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec) 229 { 230 if (!PageUnevictable(page)) { 231 del_page_from_lru_list(page, lruvec); 232 ClearPageActive(page); 233 add_page_to_lru_list_tail(page, lruvec); 234 __count_vm_events(PGROTATED, thp_nr_pages(page)); 235 } 236 } 237 238 /* 239 * Writeback is about to end against a page which has been marked for immediate 240 * reclaim. If it still appears to be reclaimable, move it to the tail of the 241 * inactive list. 242 * 243 * rotate_reclaimable_page() must disable IRQs, to prevent nasty races. 244 */ 245 void rotate_reclaimable_page(struct page *page) 246 { 247 if (!PageLocked(page) && !PageDirty(page) && 248 !PageUnevictable(page) && PageLRU(page)) { 249 struct pagevec *pvec; 250 unsigned long flags; 251 252 get_page(page); 253 local_lock_irqsave(&lru_rotate.lock, flags); 254 pvec = this_cpu_ptr(&lru_rotate.pvec); 255 if (!pagevec_add(pvec, page) || PageCompound(page)) 256 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn); 257 local_unlock_irqrestore(&lru_rotate.lock, flags); 258 } 259 } 260 261 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages) 262 { 263 do { 264 unsigned long lrusize; 265 266 /* 267 * Hold lruvec->lru_lock is safe here, since 268 * 1) The pinned lruvec in reclaim, or 269 * 2) From a pre-LRU page during refault (which also holds the 270 * rcu lock, so would be safe even if the page was on the LRU 271 * and could move simultaneously to a new lruvec). 272 */ 273 spin_lock_irq(&lruvec->lru_lock); 274 /* Record cost event */ 275 if (file) 276 lruvec->file_cost += nr_pages; 277 else 278 lruvec->anon_cost += nr_pages; 279 280 /* 281 * Decay previous events 282 * 283 * Because workloads change over time (and to avoid 284 * overflow) we keep these statistics as a floating 285 * average, which ends up weighing recent refaults 286 * more than old ones. 287 */ 288 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) + 289 lruvec_page_state(lruvec, NR_ACTIVE_ANON) + 290 lruvec_page_state(lruvec, NR_INACTIVE_FILE) + 291 lruvec_page_state(lruvec, NR_ACTIVE_FILE); 292 293 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) { 294 lruvec->file_cost /= 2; 295 lruvec->anon_cost /= 2; 296 } 297 spin_unlock_irq(&lruvec->lru_lock); 298 } while ((lruvec = parent_lruvec(lruvec))); 299 } 300 301 void lru_note_cost_page(struct page *page) 302 { 303 lru_note_cost(mem_cgroup_page_lruvec(page, page_pgdat(page)), 304 page_is_file_lru(page), thp_nr_pages(page)); 305 } 306 307 static void __activate_page(struct page *page, struct lruvec *lruvec) 308 { 309 if (!PageActive(page) && !PageUnevictable(page)) { 310 int nr_pages = thp_nr_pages(page); 311 312 del_page_from_lru_list(page, lruvec); 313 SetPageActive(page); 314 add_page_to_lru_list(page, lruvec); 315 trace_mm_lru_activate(page); 316 317 __count_vm_events(PGACTIVATE, nr_pages); 318 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, 319 nr_pages); 320 } 321 } 322 323 #ifdef CONFIG_SMP 324 static void activate_page_drain(int cpu) 325 { 326 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu); 327 328 if (pagevec_count(pvec)) 329 pagevec_lru_move_fn(pvec, __activate_page); 330 } 331 332 static bool need_activate_page_drain(int cpu) 333 { 334 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0; 335 } 336 337 static void activate_page(struct page *page) 338 { 339 page = compound_head(page); 340 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 341 struct pagevec *pvec; 342 343 local_lock(&lru_pvecs.lock); 344 pvec = this_cpu_ptr(&lru_pvecs.activate_page); 345 get_page(page); 346 if (!pagevec_add(pvec, page) || PageCompound(page)) 347 pagevec_lru_move_fn(pvec, __activate_page); 348 local_unlock(&lru_pvecs.lock); 349 } 350 } 351 352 #else 353 static inline void activate_page_drain(int cpu) 354 { 355 } 356 357 static void activate_page(struct page *page) 358 { 359 struct lruvec *lruvec; 360 361 page = compound_head(page); 362 if (TestClearPageLRU(page)) { 363 lruvec = lock_page_lruvec_irq(page); 364 __activate_page(page, lruvec); 365 unlock_page_lruvec_irq(lruvec); 366 SetPageLRU(page); 367 } 368 } 369 #endif 370 371 static void __lru_cache_activate_page(struct page *page) 372 { 373 struct pagevec *pvec; 374 int i; 375 376 local_lock(&lru_pvecs.lock); 377 pvec = this_cpu_ptr(&lru_pvecs.lru_add); 378 379 /* 380 * Search backwards on the optimistic assumption that the page being 381 * activated has just been added to this pagevec. Note that only 382 * the local pagevec is examined as a !PageLRU page could be in the 383 * process of being released, reclaimed, migrated or on a remote 384 * pagevec that is currently being drained. Furthermore, marking 385 * a remote pagevec's page PageActive potentially hits a race where 386 * a page is marked PageActive just after it is added to the inactive 387 * list causing accounting errors and BUG_ON checks to trigger. 388 */ 389 for (i = pagevec_count(pvec) - 1; i >= 0; i--) { 390 struct page *pagevec_page = pvec->pages[i]; 391 392 if (pagevec_page == page) { 393 SetPageActive(page); 394 break; 395 } 396 } 397 398 local_unlock(&lru_pvecs.lock); 399 } 400 401 /* 402 * Mark a page as having seen activity. 403 * 404 * inactive,unreferenced -> inactive,referenced 405 * inactive,referenced -> active,unreferenced 406 * active,unreferenced -> active,referenced 407 * 408 * When a newly allocated page is not yet visible, so safe for non-atomic ops, 409 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page). 410 */ 411 void mark_page_accessed(struct page *page) 412 { 413 page = compound_head(page); 414 415 if (!PageReferenced(page)) { 416 SetPageReferenced(page); 417 } else if (PageUnevictable(page)) { 418 /* 419 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But, 420 * this list is never rotated or maintained, so marking an 421 * evictable page accessed has no effect. 422 */ 423 } else if (!PageActive(page)) { 424 /* 425 * If the page is on the LRU, queue it for activation via 426 * lru_pvecs.activate_page. Otherwise, assume the page is on a 427 * pagevec, mark it active and it'll be moved to the active 428 * LRU on the next drain. 429 */ 430 if (PageLRU(page)) 431 activate_page(page); 432 else 433 __lru_cache_activate_page(page); 434 ClearPageReferenced(page); 435 workingset_activation(page); 436 } 437 if (page_is_idle(page)) 438 clear_page_idle(page); 439 } 440 EXPORT_SYMBOL(mark_page_accessed); 441 442 /** 443 * lru_cache_add - add a page to a page list 444 * @page: the page to be added to the LRU. 445 * 446 * Queue the page for addition to the LRU via pagevec. The decision on whether 447 * to add the page to the [in]active [file|anon] list is deferred until the 448 * pagevec is drained. This gives a chance for the caller of lru_cache_add() 449 * have the page added to the active list using mark_page_accessed(). 450 */ 451 void lru_cache_add(struct page *page) 452 { 453 struct pagevec *pvec; 454 455 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page); 456 VM_BUG_ON_PAGE(PageLRU(page), page); 457 458 get_page(page); 459 local_lock(&lru_pvecs.lock); 460 pvec = this_cpu_ptr(&lru_pvecs.lru_add); 461 if (!pagevec_add(pvec, page) || PageCompound(page)) 462 __pagevec_lru_add(pvec); 463 local_unlock(&lru_pvecs.lock); 464 } 465 EXPORT_SYMBOL(lru_cache_add); 466 467 /** 468 * lru_cache_add_inactive_or_unevictable 469 * @page: the page to be added to LRU 470 * @vma: vma in which page is mapped for determining reclaimability 471 * 472 * Place @page on the inactive or unevictable LRU list, depending on its 473 * evictability. 474 */ 475 void lru_cache_add_inactive_or_unevictable(struct page *page, 476 struct vm_area_struct *vma) 477 { 478 bool unevictable; 479 480 VM_BUG_ON_PAGE(PageLRU(page), page); 481 482 unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED; 483 if (unlikely(unevictable) && !TestSetPageMlocked(page)) { 484 int nr_pages = thp_nr_pages(page); 485 /* 486 * We use the irq-unsafe __mod_zone_page_stat because this 487 * counter is not modified from interrupt context, and the pte 488 * lock is held(spinlock), which implies preemption disabled. 489 */ 490 __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages); 491 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages); 492 } 493 lru_cache_add(page); 494 } 495 496 /* 497 * If the page can not be invalidated, it is moved to the 498 * inactive list to speed up its reclaim. It is moved to the 499 * head of the list, rather than the tail, to give the flusher 500 * threads some time to write it out, as this is much more 501 * effective than the single-page writeout from reclaim. 502 * 503 * If the page isn't page_mapped and dirty/writeback, the page 504 * could reclaim asap using PG_reclaim. 505 * 506 * 1. active, mapped page -> none 507 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim 508 * 3. inactive, mapped page -> none 509 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim 510 * 5. inactive, clean -> inactive, tail 511 * 6. Others -> none 512 * 513 * In 4, why it moves inactive's head, the VM expects the page would 514 * be write it out by flusher threads as this is much more effective 515 * than the single-page writeout from reclaim. 516 */ 517 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec) 518 { 519 bool active = PageActive(page); 520 int nr_pages = thp_nr_pages(page); 521 522 if (PageUnevictable(page)) 523 return; 524 525 /* Some processes are using the page */ 526 if (page_mapped(page)) 527 return; 528 529 del_page_from_lru_list(page, lruvec); 530 ClearPageActive(page); 531 ClearPageReferenced(page); 532 533 if (PageWriteback(page) || PageDirty(page)) { 534 /* 535 * PG_reclaim could be raced with end_page_writeback 536 * It can make readahead confusing. But race window 537 * is _really_ small and it's non-critical problem. 538 */ 539 add_page_to_lru_list(page, lruvec); 540 SetPageReclaim(page); 541 } else { 542 /* 543 * The page's writeback ends up during pagevec 544 * We moves tha page into tail of inactive. 545 */ 546 add_page_to_lru_list_tail(page, lruvec); 547 __count_vm_events(PGROTATED, nr_pages); 548 } 549 550 if (active) { 551 __count_vm_events(PGDEACTIVATE, nr_pages); 552 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 553 nr_pages); 554 } 555 } 556 557 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec) 558 { 559 if (PageActive(page) && !PageUnevictable(page)) { 560 int nr_pages = thp_nr_pages(page); 561 562 del_page_from_lru_list(page, lruvec); 563 ClearPageActive(page); 564 ClearPageReferenced(page); 565 add_page_to_lru_list(page, lruvec); 566 567 __count_vm_events(PGDEACTIVATE, nr_pages); 568 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 569 nr_pages); 570 } 571 } 572 573 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec) 574 { 575 if (PageAnon(page) && PageSwapBacked(page) && 576 !PageSwapCache(page) && !PageUnevictable(page)) { 577 int nr_pages = thp_nr_pages(page); 578 579 del_page_from_lru_list(page, lruvec); 580 ClearPageActive(page); 581 ClearPageReferenced(page); 582 /* 583 * Lazyfree pages are clean anonymous pages. They have 584 * PG_swapbacked flag cleared, to distinguish them from normal 585 * anonymous pages 586 */ 587 ClearPageSwapBacked(page); 588 add_page_to_lru_list(page, lruvec); 589 590 __count_vm_events(PGLAZYFREE, nr_pages); 591 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, 592 nr_pages); 593 } 594 } 595 596 /* 597 * Drain pages out of the cpu's pagevecs. 598 * Either "cpu" is the current CPU, and preemption has already been 599 * disabled; or "cpu" is being hot-unplugged, and is already dead. 600 */ 601 void lru_add_drain_cpu(int cpu) 602 { 603 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu); 604 605 if (pagevec_count(pvec)) 606 __pagevec_lru_add(pvec); 607 608 pvec = &per_cpu(lru_rotate.pvec, cpu); 609 /* Disabling interrupts below acts as a compiler barrier. */ 610 if (data_race(pagevec_count(pvec))) { 611 unsigned long flags; 612 613 /* No harm done if a racing interrupt already did this */ 614 local_lock_irqsave(&lru_rotate.lock, flags); 615 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn); 616 local_unlock_irqrestore(&lru_rotate.lock, flags); 617 } 618 619 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu); 620 if (pagevec_count(pvec)) 621 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn); 622 623 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu); 624 if (pagevec_count(pvec)) 625 pagevec_lru_move_fn(pvec, lru_deactivate_fn); 626 627 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu); 628 if (pagevec_count(pvec)) 629 pagevec_lru_move_fn(pvec, lru_lazyfree_fn); 630 631 activate_page_drain(cpu); 632 } 633 634 /** 635 * deactivate_file_page - forcefully deactivate a file page 636 * @page: page to deactivate 637 * 638 * This function hints the VM that @page is a good reclaim candidate, 639 * for example if its invalidation fails due to the page being dirty 640 * or under writeback. 641 */ 642 void deactivate_file_page(struct page *page) 643 { 644 /* 645 * In a workload with many unevictable page such as mprotect, 646 * unevictable page deactivation for accelerating reclaim is pointless. 647 */ 648 if (PageUnevictable(page)) 649 return; 650 651 if (likely(get_page_unless_zero(page))) { 652 struct pagevec *pvec; 653 654 local_lock(&lru_pvecs.lock); 655 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file); 656 657 if (!pagevec_add(pvec, page) || PageCompound(page)) 658 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn); 659 local_unlock(&lru_pvecs.lock); 660 } 661 } 662 663 /* 664 * deactivate_page - deactivate a page 665 * @page: page to deactivate 666 * 667 * deactivate_page() moves @page to the inactive list if @page was on the active 668 * list and was not an unevictable page. This is done to accelerate the reclaim 669 * of @page. 670 */ 671 void deactivate_page(struct page *page) 672 { 673 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) { 674 struct pagevec *pvec; 675 676 local_lock(&lru_pvecs.lock); 677 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate); 678 get_page(page); 679 if (!pagevec_add(pvec, page) || PageCompound(page)) 680 pagevec_lru_move_fn(pvec, lru_deactivate_fn); 681 local_unlock(&lru_pvecs.lock); 682 } 683 } 684 685 /** 686 * mark_page_lazyfree - make an anon page lazyfree 687 * @page: page to deactivate 688 * 689 * mark_page_lazyfree() moves @page to the inactive file list. 690 * This is done to accelerate the reclaim of @page. 691 */ 692 void mark_page_lazyfree(struct page *page) 693 { 694 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) && 695 !PageSwapCache(page) && !PageUnevictable(page)) { 696 struct pagevec *pvec; 697 698 local_lock(&lru_pvecs.lock); 699 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree); 700 get_page(page); 701 if (!pagevec_add(pvec, page) || PageCompound(page)) 702 pagevec_lru_move_fn(pvec, lru_lazyfree_fn); 703 local_unlock(&lru_pvecs.lock); 704 } 705 } 706 707 void lru_add_drain(void) 708 { 709 local_lock(&lru_pvecs.lock); 710 lru_add_drain_cpu(smp_processor_id()); 711 local_unlock(&lru_pvecs.lock); 712 } 713 714 void lru_add_drain_cpu_zone(struct zone *zone) 715 { 716 local_lock(&lru_pvecs.lock); 717 lru_add_drain_cpu(smp_processor_id()); 718 drain_local_pages(zone); 719 local_unlock(&lru_pvecs.lock); 720 } 721 722 #ifdef CONFIG_SMP 723 724 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); 725 726 static void lru_add_drain_per_cpu(struct work_struct *dummy) 727 { 728 lru_add_drain(); 729 } 730 731 /* 732 * Doesn't need any cpu hotplug locking because we do rely on per-cpu 733 * kworkers being shut down before our page_alloc_cpu_dead callback is 734 * executed on the offlined cpu. 735 * Calling this function with cpu hotplug locks held can actually lead 736 * to obscure indirect dependencies via WQ context. 737 */ 738 void lru_add_drain_all(void) 739 { 740 /* 741 * lru_drain_gen - Global pages generation number 742 * 743 * (A) Definition: global lru_drain_gen = x implies that all generations 744 * 0 < n <= x are already *scheduled* for draining. 745 * 746 * This is an optimization for the highly-contended use case where a 747 * user space workload keeps constantly generating a flow of pages for 748 * each CPU. 749 */ 750 static unsigned int lru_drain_gen; 751 static struct cpumask has_work; 752 static DEFINE_MUTEX(lock); 753 unsigned cpu, this_gen; 754 755 /* 756 * Make sure nobody triggers this path before mm_percpu_wq is fully 757 * initialized. 758 */ 759 if (WARN_ON(!mm_percpu_wq)) 760 return; 761 762 /* 763 * Guarantee pagevec counter stores visible by this CPU are visible to 764 * other CPUs before loading the current drain generation. 765 */ 766 smp_mb(); 767 768 /* 769 * (B) Locally cache global LRU draining generation number 770 * 771 * The read barrier ensures that the counter is loaded before the mutex 772 * is taken. It pairs with smp_mb() inside the mutex critical section 773 * at (D). 774 */ 775 this_gen = smp_load_acquire(&lru_drain_gen); 776 777 mutex_lock(&lock); 778 779 /* 780 * (C) Exit the draining operation if a newer generation, from another 781 * lru_add_drain_all(), was already scheduled for draining. Check (A). 782 */ 783 if (unlikely(this_gen != lru_drain_gen)) 784 goto done; 785 786 /* 787 * (D) Increment global generation number 788 * 789 * Pairs with smp_load_acquire() at (B), outside of the critical 790 * section. Use a full memory barrier to guarantee that the new global 791 * drain generation number is stored before loading pagevec counters. 792 * 793 * This pairing must be done here, before the for_each_online_cpu loop 794 * below which drains the page vectors. 795 * 796 * Let x, y, and z represent some system CPU numbers, where x < y < z. 797 * Assume CPU #z is is in the middle of the for_each_online_cpu loop 798 * below and has already reached CPU #y's per-cpu data. CPU #x comes 799 * along, adds some pages to its per-cpu vectors, then calls 800 * lru_add_drain_all(). 801 * 802 * If the paired barrier is done at any later step, e.g. after the 803 * loop, CPU #x will just exit at (C) and miss flushing out all of its 804 * added pages. 805 */ 806 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1); 807 smp_mb(); 808 809 cpumask_clear(&has_work); 810 for_each_online_cpu(cpu) { 811 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); 812 813 if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) || 814 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) || 815 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) || 816 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) || 817 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) || 818 need_activate_page_drain(cpu)) { 819 INIT_WORK(work, lru_add_drain_per_cpu); 820 queue_work_on(cpu, mm_percpu_wq, work); 821 __cpumask_set_cpu(cpu, &has_work); 822 } 823 } 824 825 for_each_cpu(cpu, &has_work) 826 flush_work(&per_cpu(lru_add_drain_work, cpu)); 827 828 done: 829 mutex_unlock(&lock); 830 } 831 #else 832 void lru_add_drain_all(void) 833 { 834 lru_add_drain(); 835 } 836 #endif /* CONFIG_SMP */ 837 838 /** 839 * release_pages - batched put_page() 840 * @pages: array of pages to release 841 * @nr: number of pages 842 * 843 * Decrement the reference count on all the pages in @pages. If it 844 * fell to zero, remove the page from the LRU and free it. 845 */ 846 void release_pages(struct page **pages, int nr) 847 { 848 int i; 849 LIST_HEAD(pages_to_free); 850 struct lruvec *lruvec = NULL; 851 unsigned long flags; 852 unsigned int lock_batch; 853 854 for (i = 0; i < nr; i++) { 855 struct page *page = pages[i]; 856 857 /* 858 * Make sure the IRQ-safe lock-holding time does not get 859 * excessive with a continuous string of pages from the 860 * same lruvec. The lock is held only if lruvec != NULL. 861 */ 862 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) { 863 unlock_page_lruvec_irqrestore(lruvec, flags); 864 lruvec = NULL; 865 } 866 867 page = compound_head(page); 868 if (is_huge_zero_page(page)) 869 continue; 870 871 if (is_zone_device_page(page)) { 872 if (lruvec) { 873 unlock_page_lruvec_irqrestore(lruvec, flags); 874 lruvec = NULL; 875 } 876 /* 877 * ZONE_DEVICE pages that return 'false' from 878 * page_is_devmap_managed() do not require special 879 * processing, and instead, expect a call to 880 * put_page_testzero(). 881 */ 882 if (page_is_devmap_managed(page)) { 883 put_devmap_managed_page(page); 884 continue; 885 } 886 if (put_page_testzero(page)) 887 put_dev_pagemap(page->pgmap); 888 continue; 889 } 890 891 if (!put_page_testzero(page)) 892 continue; 893 894 if (PageCompound(page)) { 895 if (lruvec) { 896 unlock_page_lruvec_irqrestore(lruvec, flags); 897 lruvec = NULL; 898 } 899 __put_compound_page(page); 900 continue; 901 } 902 903 if (PageLRU(page)) { 904 struct lruvec *prev_lruvec = lruvec; 905 906 lruvec = relock_page_lruvec_irqsave(page, lruvec, 907 &flags); 908 if (prev_lruvec != lruvec) 909 lock_batch = 0; 910 911 del_page_from_lru_list(page, lruvec); 912 __clear_page_lru_flags(page); 913 } 914 915 __ClearPageWaiters(page); 916 917 list_add(&page->lru, &pages_to_free); 918 } 919 if (lruvec) 920 unlock_page_lruvec_irqrestore(lruvec, flags); 921 922 mem_cgroup_uncharge_list(&pages_to_free); 923 free_unref_page_list(&pages_to_free); 924 } 925 EXPORT_SYMBOL(release_pages); 926 927 /* 928 * The pages which we're about to release may be in the deferred lru-addition 929 * queues. That would prevent them from really being freed right now. That's 930 * OK from a correctness point of view but is inefficient - those pages may be 931 * cache-warm and we want to give them back to the page allocator ASAP. 932 * 933 * So __pagevec_release() will drain those queues here. __pagevec_lru_add() 934 * and __pagevec_lru_add_active() call release_pages() directly to avoid 935 * mutual recursion. 936 */ 937 void __pagevec_release(struct pagevec *pvec) 938 { 939 if (!pvec->percpu_pvec_drained) { 940 lru_add_drain(); 941 pvec->percpu_pvec_drained = true; 942 } 943 release_pages(pvec->pages, pagevec_count(pvec)); 944 pagevec_reinit(pvec); 945 } 946 EXPORT_SYMBOL(__pagevec_release); 947 948 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec) 949 { 950 int was_unevictable = TestClearPageUnevictable(page); 951 int nr_pages = thp_nr_pages(page); 952 953 VM_BUG_ON_PAGE(PageLRU(page), page); 954 955 /* 956 * Page becomes evictable in two ways: 957 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()]. 958 * 2) Before acquiring LRU lock to put the page to correct LRU and then 959 * a) do PageLRU check with lock [check_move_unevictable_pages] 960 * b) do PageLRU check before lock [clear_page_mlock] 961 * 962 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need 963 * following strict ordering: 964 * 965 * #0: __pagevec_lru_add_fn #1: clear_page_mlock 966 * 967 * SetPageLRU() TestClearPageMlocked() 968 * smp_mb() // explicit ordering // above provides strict 969 * // ordering 970 * PageMlocked() PageLRU() 971 * 972 * 973 * if '#1' does not observe setting of PG_lru by '#0' and fails 974 * isolation, the explicit barrier will make sure that page_evictable 975 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU 976 * can be reordered after PageMlocked check and can make '#1' to fail 977 * the isolation of the page whose Mlocked bit is cleared (#0 is also 978 * looking at the same page) and the evictable page will be stranded 979 * in an unevictable LRU. 980 */ 981 SetPageLRU(page); 982 smp_mb__after_atomic(); 983 984 if (page_evictable(page)) { 985 if (was_unevictable) 986 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages); 987 } else { 988 ClearPageActive(page); 989 SetPageUnevictable(page); 990 if (!was_unevictable) 991 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages); 992 } 993 994 add_page_to_lru_list(page, lruvec); 995 trace_mm_lru_insertion(page); 996 } 997 998 /* 999 * Add the passed pages to the LRU, then drop the caller's refcount 1000 * on them. Reinitialises the caller's pagevec. 1001 */ 1002 void __pagevec_lru_add(struct pagevec *pvec) 1003 { 1004 int i; 1005 struct lruvec *lruvec = NULL; 1006 unsigned long flags = 0; 1007 1008 for (i = 0; i < pagevec_count(pvec); i++) { 1009 struct page *page = pvec->pages[i]; 1010 1011 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags); 1012 __pagevec_lru_add_fn(page, lruvec); 1013 } 1014 if (lruvec) 1015 unlock_page_lruvec_irqrestore(lruvec, flags); 1016 release_pages(pvec->pages, pvec->nr); 1017 pagevec_reinit(pvec); 1018 } 1019 1020 /** 1021 * pagevec_remove_exceptionals - pagevec exceptionals pruning 1022 * @pvec: The pagevec to prune 1023 * 1024 * find_get_entries() fills both pages and XArray value entries (aka 1025 * exceptional entries) into the pagevec. This function prunes all 1026 * exceptionals from @pvec without leaving holes, so that it can be 1027 * passed on to page-only pagevec operations. 1028 */ 1029 void pagevec_remove_exceptionals(struct pagevec *pvec) 1030 { 1031 int i, j; 1032 1033 for (i = 0, j = 0; i < pagevec_count(pvec); i++) { 1034 struct page *page = pvec->pages[i]; 1035 if (!xa_is_value(page)) 1036 pvec->pages[j++] = page; 1037 } 1038 pvec->nr = j; 1039 } 1040 1041 /** 1042 * pagevec_lookup_range - gang pagecache lookup 1043 * @pvec: Where the resulting pages are placed 1044 * @mapping: The address_space to search 1045 * @start: The starting page index 1046 * @end: The final page index 1047 * 1048 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE 1049 * pages in the mapping starting from index @start and upto index @end 1050 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a 1051 * reference against the pages in @pvec. 1052 * 1053 * The search returns a group of mapping-contiguous pages with ascending 1054 * indexes. There may be holes in the indices due to not-present pages. We 1055 * also update @start to index the next page for the traversal. 1056 * 1057 * pagevec_lookup_range() returns the number of pages which were found. If this 1058 * number is smaller than PAGEVEC_SIZE, the end of specified range has been 1059 * reached. 1060 */ 1061 unsigned pagevec_lookup_range(struct pagevec *pvec, 1062 struct address_space *mapping, pgoff_t *start, pgoff_t end) 1063 { 1064 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE, 1065 pvec->pages); 1066 return pagevec_count(pvec); 1067 } 1068 EXPORT_SYMBOL(pagevec_lookup_range); 1069 1070 unsigned pagevec_lookup_range_tag(struct pagevec *pvec, 1071 struct address_space *mapping, pgoff_t *index, pgoff_t end, 1072 xa_mark_t tag) 1073 { 1074 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag, 1075 PAGEVEC_SIZE, pvec->pages); 1076 return pagevec_count(pvec); 1077 } 1078 EXPORT_SYMBOL(pagevec_lookup_range_tag); 1079 1080 /* 1081 * Perform any setup for the swap system 1082 */ 1083 void __init swap_setup(void) 1084 { 1085 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT); 1086 1087 /* Use a smaller cluster for small-memory machines */ 1088 if (megs < 16) 1089 page_cluster = 2; 1090 else 1091 page_cluster = 3; 1092 /* 1093 * Right now other parts of the system means that we 1094 * _really_ don't want to cluster much more 1095 */ 1096 } 1097 1098 #ifdef CONFIG_DEV_PAGEMAP_OPS 1099 void put_devmap_managed_page(struct page *page) 1100 { 1101 int count; 1102 1103 if (WARN_ON_ONCE(!page_is_devmap_managed(page))) 1104 return; 1105 1106 count = page_ref_dec_return(page); 1107 1108 /* 1109 * devmap page refcounts are 1-based, rather than 0-based: if 1110 * refcount is 1, then the page is free and the refcount is 1111 * stable because nobody holds a reference on the page. 1112 */ 1113 if (count == 1) 1114 free_devmap_managed_page(page); 1115 else if (!count) 1116 __put_page(page); 1117 } 1118 EXPORT_SYMBOL(put_devmap_managed_page); 1119 #endif 1120