1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swap.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * This file contains the default values for the operation of the 10 * Linux VM subsystem. Fine-tuning documentation can be found in 11 * Documentation/admin-guide/sysctl/vm.rst. 12 * Started 18.12.91 13 * Swap aging added 23.2.95, Stephen Tweedie. 14 * Buffermem limits added 12.3.98, Rik van Riel. 15 */ 16 17 #include <linux/mm.h> 18 #include <linux/sched.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/mman.h> 22 #include <linux/pagemap.h> 23 #include <linux/pagevec.h> 24 #include <linux/init.h> 25 #include <linux/export.h> 26 #include <linux/mm_inline.h> 27 #include <linux/percpu_counter.h> 28 #include <linux/memremap.h> 29 #include <linux/percpu.h> 30 #include <linux/cpu.h> 31 #include <linux/notifier.h> 32 #include <linux/backing-dev.h> 33 #include <linux/memcontrol.h> 34 #include <linux/gfp.h> 35 #include <linux/uio.h> 36 #include <linux/hugetlb.h> 37 #include <linux/page_idle.h> 38 #include <linux/local_lock.h> 39 #include <linux/buffer_head.h> 40 41 #include "internal.h" 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/pagemap.h> 45 46 /* How many pages do we try to swap or page in/out together? */ 47 int page_cluster; 48 49 /* Protecting only lru_rotate.pvec which requires disabling interrupts */ 50 struct lru_rotate { 51 local_lock_t lock; 52 struct pagevec pvec; 53 }; 54 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = { 55 .lock = INIT_LOCAL_LOCK(lock), 56 }; 57 58 /* 59 * The following struct pagevec are grouped together because they are protected 60 * by disabling preemption (and interrupts remain enabled). 61 */ 62 struct lru_pvecs { 63 local_lock_t lock; 64 struct pagevec lru_add; 65 struct pagevec lru_deactivate_file; 66 struct pagevec lru_deactivate; 67 struct pagevec lru_lazyfree; 68 #ifdef CONFIG_SMP 69 struct pagevec activate_page; 70 #endif 71 }; 72 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = { 73 .lock = INIT_LOCAL_LOCK(lock), 74 }; 75 76 /* 77 * This path almost never happens for VM activity - pages are normally 78 * freed via pagevecs. But it gets used by networking. 79 */ 80 static void __page_cache_release(struct page *page) 81 { 82 if (PageLRU(page)) { 83 struct folio *folio = page_folio(page); 84 struct lruvec *lruvec; 85 unsigned long flags; 86 87 lruvec = folio_lruvec_lock_irqsave(folio, &flags); 88 del_page_from_lru_list(page, lruvec); 89 __clear_page_lru_flags(page); 90 unlock_page_lruvec_irqrestore(lruvec, flags); 91 } 92 __ClearPageWaiters(page); 93 } 94 95 static void __put_single_page(struct page *page) 96 { 97 __page_cache_release(page); 98 mem_cgroup_uncharge(page_folio(page)); 99 free_unref_page(page, 0); 100 } 101 102 static void __put_compound_page(struct page *page) 103 { 104 /* 105 * __page_cache_release() is supposed to be called for thp, not for 106 * hugetlb. This is because hugetlb page does never have PageLRU set 107 * (it's never listed to any LRU lists) and no memcg routines should 108 * be called for hugetlb (it has a separate hugetlb_cgroup.) 109 */ 110 if (!PageHuge(page)) 111 __page_cache_release(page); 112 destroy_compound_page(page); 113 } 114 115 void __put_page(struct page *page) 116 { 117 if (is_zone_device_page(page)) { 118 put_dev_pagemap(page->pgmap); 119 120 /* 121 * The page belongs to the device that created pgmap. Do 122 * not return it to page allocator. 123 */ 124 return; 125 } 126 127 if (unlikely(PageCompound(page))) 128 __put_compound_page(page); 129 else 130 __put_single_page(page); 131 } 132 EXPORT_SYMBOL(__put_page); 133 134 /** 135 * put_pages_list() - release a list of pages 136 * @pages: list of pages threaded on page->lru 137 * 138 * Release a list of pages which are strung together on page.lru. 139 */ 140 void put_pages_list(struct list_head *pages) 141 { 142 struct page *page, *next; 143 144 list_for_each_entry_safe(page, next, pages, lru) { 145 if (!put_page_testzero(page)) { 146 list_del(&page->lru); 147 continue; 148 } 149 if (PageHead(page)) { 150 list_del(&page->lru); 151 __put_compound_page(page); 152 continue; 153 } 154 /* Cannot be PageLRU because it's passed to us using the lru */ 155 __ClearPageWaiters(page); 156 } 157 158 free_unref_page_list(pages); 159 INIT_LIST_HEAD(pages); 160 } 161 EXPORT_SYMBOL(put_pages_list); 162 163 /* 164 * get_kernel_pages() - pin kernel pages in memory 165 * @kiov: An array of struct kvec structures 166 * @nr_segs: number of segments to pin 167 * @write: pinning for read/write, currently ignored 168 * @pages: array that receives pointers to the pages pinned. 169 * Should be at least nr_segs long. 170 * 171 * Returns number of pages pinned. This may be fewer than the number 172 * requested. If nr_pages is 0 or negative, returns 0. If no pages 173 * were pinned, returns -errno. Each page returned must be released 174 * with a put_page() call when it is finished with. 175 */ 176 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, 177 struct page **pages) 178 { 179 int seg; 180 181 for (seg = 0; seg < nr_segs; seg++) { 182 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) 183 return seg; 184 185 pages[seg] = kmap_to_page(kiov[seg].iov_base); 186 get_page(pages[seg]); 187 } 188 189 return seg; 190 } 191 EXPORT_SYMBOL_GPL(get_kernel_pages); 192 193 static void pagevec_lru_move_fn(struct pagevec *pvec, 194 void (*move_fn)(struct page *page, struct lruvec *lruvec)) 195 { 196 int i; 197 struct lruvec *lruvec = NULL; 198 unsigned long flags = 0; 199 200 for (i = 0; i < pagevec_count(pvec); i++) { 201 struct page *page = pvec->pages[i]; 202 struct folio *folio = page_folio(page); 203 204 /* block memcg migration during page moving between lru */ 205 if (!TestClearPageLRU(page)) 206 continue; 207 208 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags); 209 (*move_fn)(page, lruvec); 210 211 SetPageLRU(page); 212 } 213 if (lruvec) 214 unlock_page_lruvec_irqrestore(lruvec, flags); 215 release_pages(pvec->pages, pvec->nr); 216 pagevec_reinit(pvec); 217 } 218 219 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec) 220 { 221 struct folio *folio = page_folio(page); 222 223 if (!folio_test_unevictable(folio)) { 224 lruvec_del_folio(lruvec, folio); 225 folio_clear_active(folio); 226 lruvec_add_folio_tail(lruvec, folio); 227 __count_vm_events(PGROTATED, folio_nr_pages(folio)); 228 } 229 } 230 231 /* return true if pagevec needs to drain */ 232 static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page) 233 { 234 bool ret = false; 235 236 if (!pagevec_add(pvec, page) || PageCompound(page) || 237 lru_cache_disabled()) 238 ret = true; 239 240 return ret; 241 } 242 243 /* 244 * Writeback is about to end against a folio which has been marked for 245 * immediate reclaim. If it still appears to be reclaimable, move it 246 * to the tail of the inactive list. 247 * 248 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races. 249 */ 250 void folio_rotate_reclaimable(struct folio *folio) 251 { 252 if (!folio_test_locked(folio) && !folio_test_dirty(folio) && 253 !folio_test_unevictable(folio) && folio_test_lru(folio)) { 254 struct pagevec *pvec; 255 unsigned long flags; 256 257 folio_get(folio); 258 local_lock_irqsave(&lru_rotate.lock, flags); 259 pvec = this_cpu_ptr(&lru_rotate.pvec); 260 if (pagevec_add_and_need_flush(pvec, &folio->page)) 261 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn); 262 local_unlock_irqrestore(&lru_rotate.lock, flags); 263 } 264 } 265 266 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages) 267 { 268 do { 269 unsigned long lrusize; 270 271 /* 272 * Hold lruvec->lru_lock is safe here, since 273 * 1) The pinned lruvec in reclaim, or 274 * 2) From a pre-LRU page during refault (which also holds the 275 * rcu lock, so would be safe even if the page was on the LRU 276 * and could move simultaneously to a new lruvec). 277 */ 278 spin_lock_irq(&lruvec->lru_lock); 279 /* Record cost event */ 280 if (file) 281 lruvec->file_cost += nr_pages; 282 else 283 lruvec->anon_cost += nr_pages; 284 285 /* 286 * Decay previous events 287 * 288 * Because workloads change over time (and to avoid 289 * overflow) we keep these statistics as a floating 290 * average, which ends up weighing recent refaults 291 * more than old ones. 292 */ 293 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) + 294 lruvec_page_state(lruvec, NR_ACTIVE_ANON) + 295 lruvec_page_state(lruvec, NR_INACTIVE_FILE) + 296 lruvec_page_state(lruvec, NR_ACTIVE_FILE); 297 298 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) { 299 lruvec->file_cost /= 2; 300 lruvec->anon_cost /= 2; 301 } 302 spin_unlock_irq(&lruvec->lru_lock); 303 } while ((lruvec = parent_lruvec(lruvec))); 304 } 305 306 void lru_note_cost_folio(struct folio *folio) 307 { 308 lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio), 309 folio_nr_pages(folio)); 310 } 311 312 static void __folio_activate(struct folio *folio, struct lruvec *lruvec) 313 { 314 if (!folio_test_active(folio) && !folio_test_unevictable(folio)) { 315 long nr_pages = folio_nr_pages(folio); 316 317 lruvec_del_folio(lruvec, folio); 318 folio_set_active(folio); 319 lruvec_add_folio(lruvec, folio); 320 trace_mm_lru_activate(folio); 321 322 __count_vm_events(PGACTIVATE, nr_pages); 323 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, 324 nr_pages); 325 } 326 } 327 328 #ifdef CONFIG_SMP 329 static void __activate_page(struct page *page, struct lruvec *lruvec) 330 { 331 return __folio_activate(page_folio(page), lruvec); 332 } 333 334 static void activate_page_drain(int cpu) 335 { 336 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu); 337 338 if (pagevec_count(pvec)) 339 pagevec_lru_move_fn(pvec, __activate_page); 340 } 341 342 static bool need_activate_page_drain(int cpu) 343 { 344 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0; 345 } 346 347 static void folio_activate(struct folio *folio) 348 { 349 if (folio_test_lru(folio) && !folio_test_active(folio) && 350 !folio_test_unevictable(folio)) { 351 struct pagevec *pvec; 352 353 folio_get(folio); 354 local_lock(&lru_pvecs.lock); 355 pvec = this_cpu_ptr(&lru_pvecs.activate_page); 356 if (pagevec_add_and_need_flush(pvec, &folio->page)) 357 pagevec_lru_move_fn(pvec, __activate_page); 358 local_unlock(&lru_pvecs.lock); 359 } 360 } 361 362 #else 363 static inline void activate_page_drain(int cpu) 364 { 365 } 366 367 static void folio_activate(struct folio *folio) 368 { 369 struct lruvec *lruvec; 370 371 if (folio_test_clear_lru(folio)) { 372 lruvec = folio_lruvec_lock_irq(folio); 373 __folio_activate(folio, lruvec); 374 unlock_page_lruvec_irq(lruvec); 375 folio_set_lru(folio); 376 } 377 } 378 #endif 379 380 static void __lru_cache_activate_folio(struct folio *folio) 381 { 382 struct pagevec *pvec; 383 int i; 384 385 local_lock(&lru_pvecs.lock); 386 pvec = this_cpu_ptr(&lru_pvecs.lru_add); 387 388 /* 389 * Search backwards on the optimistic assumption that the page being 390 * activated has just been added to this pagevec. Note that only 391 * the local pagevec is examined as a !PageLRU page could be in the 392 * process of being released, reclaimed, migrated or on a remote 393 * pagevec that is currently being drained. Furthermore, marking 394 * a remote pagevec's page PageActive potentially hits a race where 395 * a page is marked PageActive just after it is added to the inactive 396 * list causing accounting errors and BUG_ON checks to trigger. 397 */ 398 for (i = pagevec_count(pvec) - 1; i >= 0; i--) { 399 struct page *pagevec_page = pvec->pages[i]; 400 401 if (pagevec_page == &folio->page) { 402 folio_set_active(folio); 403 break; 404 } 405 } 406 407 local_unlock(&lru_pvecs.lock); 408 } 409 410 /* 411 * Mark a page as having seen activity. 412 * 413 * inactive,unreferenced -> inactive,referenced 414 * inactive,referenced -> active,unreferenced 415 * active,unreferenced -> active,referenced 416 * 417 * When a newly allocated page is not yet visible, so safe for non-atomic ops, 418 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page). 419 */ 420 void folio_mark_accessed(struct folio *folio) 421 { 422 if (!folio_test_referenced(folio)) { 423 folio_set_referenced(folio); 424 } else if (folio_test_unevictable(folio)) { 425 /* 426 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But, 427 * this list is never rotated or maintained, so marking an 428 * evictable page accessed has no effect. 429 */ 430 } else if (!folio_test_active(folio)) { 431 /* 432 * If the page is on the LRU, queue it for activation via 433 * lru_pvecs.activate_page. Otherwise, assume the page is on a 434 * pagevec, mark it active and it'll be moved to the active 435 * LRU on the next drain. 436 */ 437 if (folio_test_lru(folio)) 438 folio_activate(folio); 439 else 440 __lru_cache_activate_folio(folio); 441 folio_clear_referenced(folio); 442 workingset_activation(folio); 443 } 444 if (folio_test_idle(folio)) 445 folio_clear_idle(folio); 446 } 447 EXPORT_SYMBOL(folio_mark_accessed); 448 449 /** 450 * folio_add_lru - Add a folio to an LRU list. 451 * @folio: The folio to be added to the LRU. 452 * 453 * Queue the folio for addition to the LRU. The decision on whether 454 * to add the page to the [in]active [file|anon] list is deferred until the 455 * pagevec is drained. This gives a chance for the caller of folio_add_lru() 456 * have the folio added to the active list using folio_mark_accessed(). 457 */ 458 void folio_add_lru(struct folio *folio) 459 { 460 struct pagevec *pvec; 461 462 VM_BUG_ON_FOLIO(folio_test_active(folio) && folio_test_unevictable(folio), folio); 463 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 464 465 folio_get(folio); 466 local_lock(&lru_pvecs.lock); 467 pvec = this_cpu_ptr(&lru_pvecs.lru_add); 468 if (pagevec_add_and_need_flush(pvec, &folio->page)) 469 __pagevec_lru_add(pvec); 470 local_unlock(&lru_pvecs.lock); 471 } 472 EXPORT_SYMBOL(folio_add_lru); 473 474 /** 475 * lru_cache_add_inactive_or_unevictable 476 * @page: the page to be added to LRU 477 * @vma: vma in which page is mapped for determining reclaimability 478 * 479 * Place @page on the inactive or unevictable LRU list, depending on its 480 * evictability. 481 */ 482 void lru_cache_add_inactive_or_unevictable(struct page *page, 483 struct vm_area_struct *vma) 484 { 485 bool unevictable; 486 487 VM_BUG_ON_PAGE(PageLRU(page), page); 488 489 unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED; 490 if (unlikely(unevictable) && !TestSetPageMlocked(page)) { 491 int nr_pages = thp_nr_pages(page); 492 /* 493 * We use the irq-unsafe __mod_zone_page_state because this 494 * counter is not modified from interrupt context, and the pte 495 * lock is held(spinlock), which implies preemption disabled. 496 */ 497 __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages); 498 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages); 499 } 500 lru_cache_add(page); 501 } 502 503 /* 504 * If the page can not be invalidated, it is moved to the 505 * inactive list to speed up its reclaim. It is moved to the 506 * head of the list, rather than the tail, to give the flusher 507 * threads some time to write it out, as this is much more 508 * effective than the single-page writeout from reclaim. 509 * 510 * If the page isn't page_mapped and dirty/writeback, the page 511 * could reclaim asap using PG_reclaim. 512 * 513 * 1. active, mapped page -> none 514 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim 515 * 3. inactive, mapped page -> none 516 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim 517 * 5. inactive, clean -> inactive, tail 518 * 6. Others -> none 519 * 520 * In 4, why it moves inactive's head, the VM expects the page would 521 * be write it out by flusher threads as this is much more effective 522 * than the single-page writeout from reclaim. 523 */ 524 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec) 525 { 526 bool active = PageActive(page); 527 int nr_pages = thp_nr_pages(page); 528 529 if (PageUnevictable(page)) 530 return; 531 532 /* Some processes are using the page */ 533 if (page_mapped(page)) 534 return; 535 536 del_page_from_lru_list(page, lruvec); 537 ClearPageActive(page); 538 ClearPageReferenced(page); 539 540 if (PageWriteback(page) || PageDirty(page)) { 541 /* 542 * PG_reclaim could be raced with end_page_writeback 543 * It can make readahead confusing. But race window 544 * is _really_ small and it's non-critical problem. 545 */ 546 add_page_to_lru_list(page, lruvec); 547 SetPageReclaim(page); 548 } else { 549 /* 550 * The page's writeback ends up during pagevec 551 * We move that page into tail of inactive. 552 */ 553 add_page_to_lru_list_tail(page, lruvec); 554 __count_vm_events(PGROTATED, nr_pages); 555 } 556 557 if (active) { 558 __count_vm_events(PGDEACTIVATE, nr_pages); 559 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 560 nr_pages); 561 } 562 } 563 564 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec) 565 { 566 if (PageActive(page) && !PageUnevictable(page)) { 567 int nr_pages = thp_nr_pages(page); 568 569 del_page_from_lru_list(page, lruvec); 570 ClearPageActive(page); 571 ClearPageReferenced(page); 572 add_page_to_lru_list(page, lruvec); 573 574 __count_vm_events(PGDEACTIVATE, nr_pages); 575 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 576 nr_pages); 577 } 578 } 579 580 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec) 581 { 582 if (PageAnon(page) && PageSwapBacked(page) && 583 !PageSwapCache(page) && !PageUnevictable(page)) { 584 int nr_pages = thp_nr_pages(page); 585 586 del_page_from_lru_list(page, lruvec); 587 ClearPageActive(page); 588 ClearPageReferenced(page); 589 /* 590 * Lazyfree pages are clean anonymous pages. They have 591 * PG_swapbacked flag cleared, to distinguish them from normal 592 * anonymous pages 593 */ 594 ClearPageSwapBacked(page); 595 add_page_to_lru_list(page, lruvec); 596 597 __count_vm_events(PGLAZYFREE, nr_pages); 598 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, 599 nr_pages); 600 } 601 } 602 603 /* 604 * Drain pages out of the cpu's pagevecs. 605 * Either "cpu" is the current CPU, and preemption has already been 606 * disabled; or "cpu" is being hot-unplugged, and is already dead. 607 */ 608 void lru_add_drain_cpu(int cpu) 609 { 610 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu); 611 612 if (pagevec_count(pvec)) 613 __pagevec_lru_add(pvec); 614 615 pvec = &per_cpu(lru_rotate.pvec, cpu); 616 /* Disabling interrupts below acts as a compiler barrier. */ 617 if (data_race(pagevec_count(pvec))) { 618 unsigned long flags; 619 620 /* No harm done if a racing interrupt already did this */ 621 local_lock_irqsave(&lru_rotate.lock, flags); 622 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn); 623 local_unlock_irqrestore(&lru_rotate.lock, flags); 624 } 625 626 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu); 627 if (pagevec_count(pvec)) 628 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn); 629 630 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu); 631 if (pagevec_count(pvec)) 632 pagevec_lru_move_fn(pvec, lru_deactivate_fn); 633 634 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu); 635 if (pagevec_count(pvec)) 636 pagevec_lru_move_fn(pvec, lru_lazyfree_fn); 637 638 activate_page_drain(cpu); 639 } 640 641 /** 642 * deactivate_file_page - forcefully deactivate a file page 643 * @page: page to deactivate 644 * 645 * This function hints the VM that @page is a good reclaim candidate, 646 * for example if its invalidation fails due to the page being dirty 647 * or under writeback. 648 */ 649 void deactivate_file_page(struct page *page) 650 { 651 /* 652 * In a workload with many unevictable page such as mprotect, 653 * unevictable page deactivation for accelerating reclaim is pointless. 654 */ 655 if (PageUnevictable(page)) 656 return; 657 658 if (likely(get_page_unless_zero(page))) { 659 struct pagevec *pvec; 660 661 local_lock(&lru_pvecs.lock); 662 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file); 663 664 if (pagevec_add_and_need_flush(pvec, page)) 665 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn); 666 local_unlock(&lru_pvecs.lock); 667 } 668 } 669 670 /* 671 * deactivate_page - deactivate a page 672 * @page: page to deactivate 673 * 674 * deactivate_page() moves @page to the inactive list if @page was on the active 675 * list and was not an unevictable page. This is done to accelerate the reclaim 676 * of @page. 677 */ 678 void deactivate_page(struct page *page) 679 { 680 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) { 681 struct pagevec *pvec; 682 683 local_lock(&lru_pvecs.lock); 684 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate); 685 get_page(page); 686 if (pagevec_add_and_need_flush(pvec, page)) 687 pagevec_lru_move_fn(pvec, lru_deactivate_fn); 688 local_unlock(&lru_pvecs.lock); 689 } 690 } 691 692 /** 693 * mark_page_lazyfree - make an anon page lazyfree 694 * @page: page to deactivate 695 * 696 * mark_page_lazyfree() moves @page to the inactive file list. 697 * This is done to accelerate the reclaim of @page. 698 */ 699 void mark_page_lazyfree(struct page *page) 700 { 701 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) && 702 !PageSwapCache(page) && !PageUnevictable(page)) { 703 struct pagevec *pvec; 704 705 local_lock(&lru_pvecs.lock); 706 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree); 707 get_page(page); 708 if (pagevec_add_and_need_flush(pvec, page)) 709 pagevec_lru_move_fn(pvec, lru_lazyfree_fn); 710 local_unlock(&lru_pvecs.lock); 711 } 712 } 713 714 void lru_add_drain(void) 715 { 716 local_lock(&lru_pvecs.lock); 717 lru_add_drain_cpu(smp_processor_id()); 718 local_unlock(&lru_pvecs.lock); 719 } 720 721 /* 722 * It's called from per-cpu workqueue context in SMP case so 723 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on 724 * the same cpu. It shouldn't be a problem in !SMP case since 725 * the core is only one and the locks will disable preemption. 726 */ 727 static void lru_add_and_bh_lrus_drain(void) 728 { 729 local_lock(&lru_pvecs.lock); 730 lru_add_drain_cpu(smp_processor_id()); 731 local_unlock(&lru_pvecs.lock); 732 invalidate_bh_lrus_cpu(); 733 } 734 735 void lru_add_drain_cpu_zone(struct zone *zone) 736 { 737 local_lock(&lru_pvecs.lock); 738 lru_add_drain_cpu(smp_processor_id()); 739 drain_local_pages(zone); 740 local_unlock(&lru_pvecs.lock); 741 } 742 743 #ifdef CONFIG_SMP 744 745 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); 746 747 static void lru_add_drain_per_cpu(struct work_struct *dummy) 748 { 749 lru_add_and_bh_lrus_drain(); 750 } 751 752 /* 753 * Doesn't need any cpu hotplug locking because we do rely on per-cpu 754 * kworkers being shut down before our page_alloc_cpu_dead callback is 755 * executed on the offlined cpu. 756 * Calling this function with cpu hotplug locks held can actually lead 757 * to obscure indirect dependencies via WQ context. 758 */ 759 inline void __lru_add_drain_all(bool force_all_cpus) 760 { 761 /* 762 * lru_drain_gen - Global pages generation number 763 * 764 * (A) Definition: global lru_drain_gen = x implies that all generations 765 * 0 < n <= x are already *scheduled* for draining. 766 * 767 * This is an optimization for the highly-contended use case where a 768 * user space workload keeps constantly generating a flow of pages for 769 * each CPU. 770 */ 771 static unsigned int lru_drain_gen; 772 static struct cpumask has_work; 773 static DEFINE_MUTEX(lock); 774 unsigned cpu, this_gen; 775 776 /* 777 * Make sure nobody triggers this path before mm_percpu_wq is fully 778 * initialized. 779 */ 780 if (WARN_ON(!mm_percpu_wq)) 781 return; 782 783 /* 784 * Guarantee pagevec counter stores visible by this CPU are visible to 785 * other CPUs before loading the current drain generation. 786 */ 787 smp_mb(); 788 789 /* 790 * (B) Locally cache global LRU draining generation number 791 * 792 * The read barrier ensures that the counter is loaded before the mutex 793 * is taken. It pairs with smp_mb() inside the mutex critical section 794 * at (D). 795 */ 796 this_gen = smp_load_acquire(&lru_drain_gen); 797 798 mutex_lock(&lock); 799 800 /* 801 * (C) Exit the draining operation if a newer generation, from another 802 * lru_add_drain_all(), was already scheduled for draining. Check (A). 803 */ 804 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus)) 805 goto done; 806 807 /* 808 * (D) Increment global generation number 809 * 810 * Pairs with smp_load_acquire() at (B), outside of the critical 811 * section. Use a full memory barrier to guarantee that the new global 812 * drain generation number is stored before loading pagevec counters. 813 * 814 * This pairing must be done here, before the for_each_online_cpu loop 815 * below which drains the page vectors. 816 * 817 * Let x, y, and z represent some system CPU numbers, where x < y < z. 818 * Assume CPU #z is in the middle of the for_each_online_cpu loop 819 * below and has already reached CPU #y's per-cpu data. CPU #x comes 820 * along, adds some pages to its per-cpu vectors, then calls 821 * lru_add_drain_all(). 822 * 823 * If the paired barrier is done at any later step, e.g. after the 824 * loop, CPU #x will just exit at (C) and miss flushing out all of its 825 * added pages. 826 */ 827 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1); 828 smp_mb(); 829 830 cpumask_clear(&has_work); 831 for_each_online_cpu(cpu) { 832 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); 833 834 if (force_all_cpus || 835 pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) || 836 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) || 837 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) || 838 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) || 839 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) || 840 need_activate_page_drain(cpu) || 841 has_bh_in_lru(cpu, NULL)) { 842 INIT_WORK(work, lru_add_drain_per_cpu); 843 queue_work_on(cpu, mm_percpu_wq, work); 844 __cpumask_set_cpu(cpu, &has_work); 845 } 846 } 847 848 for_each_cpu(cpu, &has_work) 849 flush_work(&per_cpu(lru_add_drain_work, cpu)); 850 851 done: 852 mutex_unlock(&lock); 853 } 854 855 void lru_add_drain_all(void) 856 { 857 __lru_add_drain_all(false); 858 } 859 #else 860 void lru_add_drain_all(void) 861 { 862 lru_add_drain(); 863 } 864 #endif /* CONFIG_SMP */ 865 866 atomic_t lru_disable_count = ATOMIC_INIT(0); 867 868 /* 869 * lru_cache_disable() needs to be called before we start compiling 870 * a list of pages to be migrated using isolate_lru_page(). 871 * It drains pages on LRU cache and then disable on all cpus until 872 * lru_cache_enable is called. 873 * 874 * Must be paired with a call to lru_cache_enable(). 875 */ 876 void lru_cache_disable(void) 877 { 878 atomic_inc(&lru_disable_count); 879 #ifdef CONFIG_SMP 880 /* 881 * lru_add_drain_all in the force mode will schedule draining on 882 * all online CPUs so any calls of lru_cache_disabled wrapped by 883 * local_lock or preemption disabled would be ordered by that. 884 * The atomic operation doesn't need to have stronger ordering 885 * requirements because that is enforeced by the scheduling 886 * guarantees. 887 */ 888 __lru_add_drain_all(true); 889 #else 890 lru_add_and_bh_lrus_drain(); 891 #endif 892 } 893 894 /** 895 * release_pages - batched put_page() 896 * @pages: array of pages to release 897 * @nr: number of pages 898 * 899 * Decrement the reference count on all the pages in @pages. If it 900 * fell to zero, remove the page from the LRU and free it. 901 */ 902 void release_pages(struct page **pages, int nr) 903 { 904 int i; 905 LIST_HEAD(pages_to_free); 906 struct lruvec *lruvec = NULL; 907 unsigned long flags = 0; 908 unsigned int lock_batch; 909 910 for (i = 0; i < nr; i++) { 911 struct page *page = pages[i]; 912 struct folio *folio = page_folio(page); 913 914 /* 915 * Make sure the IRQ-safe lock-holding time does not get 916 * excessive with a continuous string of pages from the 917 * same lruvec. The lock is held only if lruvec != NULL. 918 */ 919 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) { 920 unlock_page_lruvec_irqrestore(lruvec, flags); 921 lruvec = NULL; 922 } 923 924 page = &folio->page; 925 if (is_huge_zero_page(page)) 926 continue; 927 928 if (is_zone_device_page(page)) { 929 if (lruvec) { 930 unlock_page_lruvec_irqrestore(lruvec, flags); 931 lruvec = NULL; 932 } 933 /* 934 * ZONE_DEVICE pages that return 'false' from 935 * page_is_devmap_managed() do not require special 936 * processing, and instead, expect a call to 937 * put_page_testzero(). 938 */ 939 if (page_is_devmap_managed(page)) { 940 put_devmap_managed_page(page); 941 continue; 942 } 943 if (put_page_testzero(page)) 944 put_dev_pagemap(page->pgmap); 945 continue; 946 } 947 948 if (!put_page_testzero(page)) 949 continue; 950 951 if (PageCompound(page)) { 952 if (lruvec) { 953 unlock_page_lruvec_irqrestore(lruvec, flags); 954 lruvec = NULL; 955 } 956 __put_compound_page(page); 957 continue; 958 } 959 960 if (PageLRU(page)) { 961 struct lruvec *prev_lruvec = lruvec; 962 963 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, 964 &flags); 965 if (prev_lruvec != lruvec) 966 lock_batch = 0; 967 968 del_page_from_lru_list(page, lruvec); 969 __clear_page_lru_flags(page); 970 } 971 972 __ClearPageWaiters(page); 973 974 list_add(&page->lru, &pages_to_free); 975 } 976 if (lruvec) 977 unlock_page_lruvec_irqrestore(lruvec, flags); 978 979 mem_cgroup_uncharge_list(&pages_to_free); 980 free_unref_page_list(&pages_to_free); 981 } 982 EXPORT_SYMBOL(release_pages); 983 984 /* 985 * The pages which we're about to release may be in the deferred lru-addition 986 * queues. That would prevent them from really being freed right now. That's 987 * OK from a correctness point of view but is inefficient - those pages may be 988 * cache-warm and we want to give them back to the page allocator ASAP. 989 * 990 * So __pagevec_release() will drain those queues here. __pagevec_lru_add() 991 * and __pagevec_lru_add_active() call release_pages() directly to avoid 992 * mutual recursion. 993 */ 994 void __pagevec_release(struct pagevec *pvec) 995 { 996 if (!pvec->percpu_pvec_drained) { 997 lru_add_drain(); 998 pvec->percpu_pvec_drained = true; 999 } 1000 release_pages(pvec->pages, pagevec_count(pvec)); 1001 pagevec_reinit(pvec); 1002 } 1003 EXPORT_SYMBOL(__pagevec_release); 1004 1005 static void __pagevec_lru_add_fn(struct folio *folio, struct lruvec *lruvec) 1006 { 1007 int was_unevictable = folio_test_clear_unevictable(folio); 1008 long nr_pages = folio_nr_pages(folio); 1009 1010 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 1011 1012 /* 1013 * A folio becomes evictable in two ways: 1014 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()]. 1015 * 2) Before acquiring LRU lock to put the folio on the correct LRU 1016 * and then 1017 * a) do PageLRU check with lock [check_move_unevictable_pages] 1018 * b) do PageLRU check before lock [clear_page_mlock] 1019 * 1020 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need 1021 * following strict ordering: 1022 * 1023 * #0: __pagevec_lru_add_fn #1: clear_page_mlock 1024 * 1025 * folio_set_lru() folio_test_clear_mlocked() 1026 * smp_mb() // explicit ordering // above provides strict 1027 * // ordering 1028 * folio_test_mlocked() folio_test_lru() 1029 * 1030 * 1031 * if '#1' does not observe setting of PG_lru by '#0' and 1032 * fails isolation, the explicit barrier will make sure that 1033 * folio_evictable check will put the folio on the correct 1034 * LRU. Without smp_mb(), folio_set_lru() can be reordered 1035 * after folio_test_mlocked() check and can make '#1' fail the 1036 * isolation of the folio whose mlocked bit is cleared (#0 is 1037 * also looking at the same folio) and the evictable folio will 1038 * be stranded on an unevictable LRU. 1039 */ 1040 folio_set_lru(folio); 1041 smp_mb__after_atomic(); 1042 1043 if (folio_evictable(folio)) { 1044 if (was_unevictable) 1045 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages); 1046 } else { 1047 folio_clear_active(folio); 1048 folio_set_unevictable(folio); 1049 if (!was_unevictable) 1050 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages); 1051 } 1052 1053 lruvec_add_folio(lruvec, folio); 1054 trace_mm_lru_insertion(folio); 1055 } 1056 1057 /* 1058 * Add the passed pages to the LRU, then drop the caller's refcount 1059 * on them. Reinitialises the caller's pagevec. 1060 */ 1061 void __pagevec_lru_add(struct pagevec *pvec) 1062 { 1063 int i; 1064 struct lruvec *lruvec = NULL; 1065 unsigned long flags = 0; 1066 1067 for (i = 0; i < pagevec_count(pvec); i++) { 1068 struct folio *folio = page_folio(pvec->pages[i]); 1069 1070 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags); 1071 __pagevec_lru_add_fn(folio, lruvec); 1072 } 1073 if (lruvec) 1074 unlock_page_lruvec_irqrestore(lruvec, flags); 1075 release_pages(pvec->pages, pvec->nr); 1076 pagevec_reinit(pvec); 1077 } 1078 1079 /** 1080 * pagevec_remove_exceptionals - pagevec exceptionals pruning 1081 * @pvec: The pagevec to prune 1082 * 1083 * find_get_entries() fills both pages and XArray value entries (aka 1084 * exceptional entries) into the pagevec. This function prunes all 1085 * exceptionals from @pvec without leaving holes, so that it can be 1086 * passed on to page-only pagevec operations. 1087 */ 1088 void pagevec_remove_exceptionals(struct pagevec *pvec) 1089 { 1090 int i, j; 1091 1092 for (i = 0, j = 0; i < pagevec_count(pvec); i++) { 1093 struct page *page = pvec->pages[i]; 1094 if (!xa_is_value(page)) 1095 pvec->pages[j++] = page; 1096 } 1097 pvec->nr = j; 1098 } 1099 1100 /** 1101 * pagevec_lookup_range - gang pagecache lookup 1102 * @pvec: Where the resulting pages are placed 1103 * @mapping: The address_space to search 1104 * @start: The starting page index 1105 * @end: The final page index 1106 * 1107 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE 1108 * pages in the mapping starting from index @start and upto index @end 1109 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a 1110 * reference against the pages in @pvec. 1111 * 1112 * The search returns a group of mapping-contiguous pages with ascending 1113 * indexes. There may be holes in the indices due to not-present pages. We 1114 * also update @start to index the next page for the traversal. 1115 * 1116 * pagevec_lookup_range() returns the number of pages which were found. If this 1117 * number is smaller than PAGEVEC_SIZE, the end of specified range has been 1118 * reached. 1119 */ 1120 unsigned pagevec_lookup_range(struct pagevec *pvec, 1121 struct address_space *mapping, pgoff_t *start, pgoff_t end) 1122 { 1123 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE, 1124 pvec->pages); 1125 return pagevec_count(pvec); 1126 } 1127 EXPORT_SYMBOL(pagevec_lookup_range); 1128 1129 unsigned pagevec_lookup_range_tag(struct pagevec *pvec, 1130 struct address_space *mapping, pgoff_t *index, pgoff_t end, 1131 xa_mark_t tag) 1132 { 1133 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag, 1134 PAGEVEC_SIZE, pvec->pages); 1135 return pagevec_count(pvec); 1136 } 1137 EXPORT_SYMBOL(pagevec_lookup_range_tag); 1138 1139 /* 1140 * Perform any setup for the swap system 1141 */ 1142 void __init swap_setup(void) 1143 { 1144 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT); 1145 1146 /* Use a smaller cluster for small-memory machines */ 1147 if (megs < 16) 1148 page_cluster = 2; 1149 else 1150 page_cluster = 3; 1151 /* 1152 * Right now other parts of the system means that we 1153 * _really_ don't want to cluster much more 1154 */ 1155 } 1156 1157 #ifdef CONFIG_DEV_PAGEMAP_OPS 1158 void put_devmap_managed_page(struct page *page) 1159 { 1160 int count; 1161 1162 if (WARN_ON_ONCE(!page_is_devmap_managed(page))) 1163 return; 1164 1165 count = page_ref_dec_return(page); 1166 1167 /* 1168 * devmap page refcounts are 1-based, rather than 0-based: if 1169 * refcount is 1, then the page is free and the refcount is 1170 * stable because nobody holds a reference on the page. 1171 */ 1172 if (count == 1) 1173 free_devmap_managed_page(page); 1174 else if (!count) 1175 __put_page(page); 1176 } 1177 EXPORT_SYMBOL(put_devmap_managed_page); 1178 #endif 1179