xref: /linux/mm/swap.c (revision 9ce7677cfd7cd871adb457c80bea3b581b839641)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the opereation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page() */
27 #include <linux/module.h>
28 #include <linux/percpu_counter.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/init.h>
33 
34 /* How many pages do we try to swap or page in/out together? */
35 int page_cluster;
36 
37 void put_page(struct page *page)
38 {
39 	if (unlikely(PageCompound(page))) {
40 		page = (struct page *)page_private(page);
41 		if (put_page_testzero(page)) {
42 			void (*dtor)(struct page *page);
43 
44 			dtor = (void (*)(struct page *))page[1].mapping;
45 			(*dtor)(page);
46 		}
47 		return;
48 	}
49 	if (put_page_testzero(page))
50 		__page_cache_release(page);
51 }
52 EXPORT_SYMBOL(put_page);
53 
54 /*
55  * Writeback is about to end against a page which has been marked for immediate
56  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
57  * inactive list.  The page still has PageWriteback set, which will pin it.
58  *
59  * We don't expect many pages to come through here, so don't bother batching
60  * things up.
61  *
62  * To avoid placing the page at the tail of the LRU while PG_writeback is still
63  * set, this function will clear PG_writeback before performing the page
64  * motion.  Do that inside the lru lock because once PG_writeback is cleared
65  * we may not touch the page.
66  *
67  * Returns zero if it cleared PG_writeback.
68  */
69 int rotate_reclaimable_page(struct page *page)
70 {
71 	struct zone *zone;
72 	unsigned long flags;
73 
74 	if (PageLocked(page))
75 		return 1;
76 	if (PageDirty(page))
77 		return 1;
78 	if (PageActive(page))
79 		return 1;
80 	if (!PageLRU(page))
81 		return 1;
82 
83 	zone = page_zone(page);
84 	spin_lock_irqsave(&zone->lru_lock, flags);
85 	if (PageLRU(page) && !PageActive(page)) {
86 		list_del(&page->lru);
87 		list_add_tail(&page->lru, &zone->inactive_list);
88 		inc_page_state(pgrotated);
89 	}
90 	if (!test_clear_page_writeback(page))
91 		BUG();
92 	spin_unlock_irqrestore(&zone->lru_lock, flags);
93 	return 0;
94 }
95 
96 /*
97  * FIXME: speed this up?
98  */
99 void fastcall activate_page(struct page *page)
100 {
101 	struct zone *zone = page_zone(page);
102 
103 	spin_lock_irq(&zone->lru_lock);
104 	if (PageLRU(page) && !PageActive(page)) {
105 		del_page_from_inactive_list(zone, page);
106 		SetPageActive(page);
107 		add_page_to_active_list(zone, page);
108 		inc_page_state(pgactivate);
109 	}
110 	spin_unlock_irq(&zone->lru_lock);
111 }
112 
113 /*
114  * Mark a page as having seen activity.
115  *
116  * inactive,unreferenced	->	inactive,referenced
117  * inactive,referenced		->	active,unreferenced
118  * active,unreferenced		->	active,referenced
119  */
120 void fastcall mark_page_accessed(struct page *page)
121 {
122 	if (!PageActive(page) && PageReferenced(page) && PageLRU(page)) {
123 		activate_page(page);
124 		ClearPageReferenced(page);
125 	} else if (!PageReferenced(page)) {
126 		SetPageReferenced(page);
127 	}
128 }
129 
130 EXPORT_SYMBOL(mark_page_accessed);
131 
132 /**
133  * lru_cache_add: add a page to the page lists
134  * @page: the page to add
135  */
136 static DEFINE_PER_CPU(struct pagevec, lru_add_pvecs) = { 0, };
137 static DEFINE_PER_CPU(struct pagevec, lru_add_active_pvecs) = { 0, };
138 
139 void fastcall lru_cache_add(struct page *page)
140 {
141 	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs);
142 
143 	page_cache_get(page);
144 	if (!pagevec_add(pvec, page))
145 		__pagevec_lru_add(pvec);
146 	put_cpu_var(lru_add_pvecs);
147 }
148 
149 void fastcall lru_cache_add_active(struct page *page)
150 {
151 	struct pagevec *pvec = &get_cpu_var(lru_add_active_pvecs);
152 
153 	page_cache_get(page);
154 	if (!pagevec_add(pvec, page))
155 		__pagevec_lru_add_active(pvec);
156 	put_cpu_var(lru_add_active_pvecs);
157 }
158 
159 void lru_add_drain(void)
160 {
161 	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs);
162 
163 	if (pagevec_count(pvec))
164 		__pagevec_lru_add(pvec);
165 	pvec = &__get_cpu_var(lru_add_active_pvecs);
166 	if (pagevec_count(pvec))
167 		__pagevec_lru_add_active(pvec);
168 	put_cpu_var(lru_add_pvecs);
169 }
170 
171 /*
172  * This path almost never happens for VM activity - pages are normally
173  * freed via pagevecs.  But it gets used by networking.
174  */
175 void fastcall __page_cache_release(struct page *page)
176 {
177 	unsigned long flags;
178 	struct zone *zone = page_zone(page);
179 
180 	spin_lock_irqsave(&zone->lru_lock, flags);
181 	if (TestClearPageLRU(page))
182 		del_page_from_lru(zone, page);
183 	if (page_count(page) != 0)
184 		page = NULL;
185 	spin_unlock_irqrestore(&zone->lru_lock, flags);
186 	if (page)
187 		free_hot_page(page);
188 }
189 
190 EXPORT_SYMBOL(__page_cache_release);
191 
192 /*
193  * Batched page_cache_release().  Decrement the reference count on all the
194  * passed pages.  If it fell to zero then remove the page from the LRU and
195  * free it.
196  *
197  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
198  * for the remainder of the operation.
199  *
200  * The locking in this function is against shrink_cache(): we recheck the
201  * page count inside the lock to see whether shrink_cache grabbed the page
202  * via the LRU.  If it did, give up: shrink_cache will free it.
203  */
204 void release_pages(struct page **pages, int nr, int cold)
205 {
206 	int i;
207 	struct pagevec pages_to_free;
208 	struct zone *zone = NULL;
209 
210 	pagevec_init(&pages_to_free, cold);
211 	for (i = 0; i < nr; i++) {
212 		struct page *page = pages[i];
213 		struct zone *pagezone;
214 
215 		if (!put_page_testzero(page))
216 			continue;
217 
218 		pagezone = page_zone(page);
219 		if (pagezone != zone) {
220 			if (zone)
221 				spin_unlock_irq(&zone->lru_lock);
222 			zone = pagezone;
223 			spin_lock_irq(&zone->lru_lock);
224 		}
225 		if (TestClearPageLRU(page))
226 			del_page_from_lru(zone, page);
227 		if (page_count(page) == 0) {
228 			if (!pagevec_add(&pages_to_free, page)) {
229 				spin_unlock_irq(&zone->lru_lock);
230 				__pagevec_free(&pages_to_free);
231 				pagevec_reinit(&pages_to_free);
232 				zone = NULL;	/* No lock is held */
233 			}
234 		}
235 	}
236 	if (zone)
237 		spin_unlock_irq(&zone->lru_lock);
238 
239 	pagevec_free(&pages_to_free);
240 }
241 
242 /*
243  * The pages which we're about to release may be in the deferred lru-addition
244  * queues.  That would prevent them from really being freed right now.  That's
245  * OK from a correctness point of view but is inefficient - those pages may be
246  * cache-warm and we want to give them back to the page allocator ASAP.
247  *
248  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
249  * and __pagevec_lru_add_active() call release_pages() directly to avoid
250  * mutual recursion.
251  */
252 void __pagevec_release(struct pagevec *pvec)
253 {
254 	lru_add_drain();
255 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
256 	pagevec_reinit(pvec);
257 }
258 
259 EXPORT_SYMBOL(__pagevec_release);
260 
261 /*
262  * pagevec_release() for pages which are known to not be on the LRU
263  *
264  * This function reinitialises the caller's pagevec.
265  */
266 void __pagevec_release_nonlru(struct pagevec *pvec)
267 {
268 	int i;
269 	struct pagevec pages_to_free;
270 
271 	pagevec_init(&pages_to_free, pvec->cold);
272 	for (i = 0; i < pagevec_count(pvec); i++) {
273 		struct page *page = pvec->pages[i];
274 
275 		BUG_ON(PageLRU(page));
276 		if (put_page_testzero(page))
277 			pagevec_add(&pages_to_free, page);
278 	}
279 	pagevec_free(&pages_to_free);
280 	pagevec_reinit(pvec);
281 }
282 
283 /*
284  * Add the passed pages to the LRU, then drop the caller's refcount
285  * on them.  Reinitialises the caller's pagevec.
286  */
287 void __pagevec_lru_add(struct pagevec *pvec)
288 {
289 	int i;
290 	struct zone *zone = NULL;
291 
292 	for (i = 0; i < pagevec_count(pvec); i++) {
293 		struct page *page = pvec->pages[i];
294 		struct zone *pagezone = page_zone(page);
295 
296 		if (pagezone != zone) {
297 			if (zone)
298 				spin_unlock_irq(&zone->lru_lock);
299 			zone = pagezone;
300 			spin_lock_irq(&zone->lru_lock);
301 		}
302 		if (TestSetPageLRU(page))
303 			BUG();
304 		add_page_to_inactive_list(zone, page);
305 	}
306 	if (zone)
307 		spin_unlock_irq(&zone->lru_lock);
308 	release_pages(pvec->pages, pvec->nr, pvec->cold);
309 	pagevec_reinit(pvec);
310 }
311 
312 EXPORT_SYMBOL(__pagevec_lru_add);
313 
314 void __pagevec_lru_add_active(struct pagevec *pvec)
315 {
316 	int i;
317 	struct zone *zone = NULL;
318 
319 	for (i = 0; i < pagevec_count(pvec); i++) {
320 		struct page *page = pvec->pages[i];
321 		struct zone *pagezone = page_zone(page);
322 
323 		if (pagezone != zone) {
324 			if (zone)
325 				spin_unlock_irq(&zone->lru_lock);
326 			zone = pagezone;
327 			spin_lock_irq(&zone->lru_lock);
328 		}
329 		if (TestSetPageLRU(page))
330 			BUG();
331 		if (TestSetPageActive(page))
332 			BUG();
333 		add_page_to_active_list(zone, page);
334 	}
335 	if (zone)
336 		spin_unlock_irq(&zone->lru_lock);
337 	release_pages(pvec->pages, pvec->nr, pvec->cold);
338 	pagevec_reinit(pvec);
339 }
340 
341 /*
342  * Try to drop buffers from the pages in a pagevec
343  */
344 void pagevec_strip(struct pagevec *pvec)
345 {
346 	int i;
347 
348 	for (i = 0; i < pagevec_count(pvec); i++) {
349 		struct page *page = pvec->pages[i];
350 
351 		if (PagePrivate(page) && !TestSetPageLocked(page)) {
352 			try_to_release_page(page, 0);
353 			unlock_page(page);
354 		}
355 	}
356 }
357 
358 /**
359  * pagevec_lookup - gang pagecache lookup
360  * @pvec:	Where the resulting pages are placed
361  * @mapping:	The address_space to search
362  * @start:	The starting page index
363  * @nr_pages:	The maximum number of pages
364  *
365  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
366  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
367  * reference against the pages in @pvec.
368  *
369  * The search returns a group of mapping-contiguous pages with ascending
370  * indexes.  There may be holes in the indices due to not-present pages.
371  *
372  * pagevec_lookup() returns the number of pages which were found.
373  */
374 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
375 		pgoff_t start, unsigned nr_pages)
376 {
377 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
378 	return pagevec_count(pvec);
379 }
380 
381 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
382 		pgoff_t *index, int tag, unsigned nr_pages)
383 {
384 	pvec->nr = find_get_pages_tag(mapping, index, tag,
385 					nr_pages, pvec->pages);
386 	return pagevec_count(pvec);
387 }
388 
389 EXPORT_SYMBOL(pagevec_lookup_tag);
390 
391 #ifdef CONFIG_SMP
392 /*
393  * We tolerate a little inaccuracy to avoid ping-ponging the counter between
394  * CPUs
395  */
396 #define ACCT_THRESHOLD	max(16, NR_CPUS * 2)
397 
398 static DEFINE_PER_CPU(long, committed_space) = 0;
399 
400 void vm_acct_memory(long pages)
401 {
402 	long *local;
403 
404 	preempt_disable();
405 	local = &__get_cpu_var(committed_space);
406 	*local += pages;
407 	if (*local > ACCT_THRESHOLD || *local < -ACCT_THRESHOLD) {
408 		atomic_add(*local, &vm_committed_space);
409 		*local = 0;
410 	}
411 	preempt_enable();
412 }
413 
414 #ifdef CONFIG_HOTPLUG_CPU
415 static void lru_drain_cache(unsigned int cpu)
416 {
417 	struct pagevec *pvec = &per_cpu(lru_add_pvecs, cpu);
418 
419 	/* CPU is dead, so no locking needed. */
420 	if (pagevec_count(pvec))
421 		__pagevec_lru_add(pvec);
422 	pvec = &per_cpu(lru_add_active_pvecs, cpu);
423 	if (pagevec_count(pvec))
424 		__pagevec_lru_add_active(pvec);
425 }
426 
427 /* Drop the CPU's cached committed space back into the central pool. */
428 static int cpu_swap_callback(struct notifier_block *nfb,
429 			     unsigned long action,
430 			     void *hcpu)
431 {
432 	long *committed;
433 
434 	committed = &per_cpu(committed_space, (long)hcpu);
435 	if (action == CPU_DEAD) {
436 		atomic_add(*committed, &vm_committed_space);
437 		*committed = 0;
438 		lru_drain_cache((long)hcpu);
439 	}
440 	return NOTIFY_OK;
441 }
442 #endif /* CONFIG_HOTPLUG_CPU */
443 #endif /* CONFIG_SMP */
444 
445 #ifdef CONFIG_SMP
446 void percpu_counter_mod(struct percpu_counter *fbc, long amount)
447 {
448 	long count;
449 	long *pcount;
450 	int cpu = get_cpu();
451 
452 	pcount = per_cpu_ptr(fbc->counters, cpu);
453 	count = *pcount + amount;
454 	if (count >= FBC_BATCH || count <= -FBC_BATCH) {
455 		spin_lock(&fbc->lock);
456 		fbc->count += count;
457 		spin_unlock(&fbc->lock);
458 		count = 0;
459 	}
460 	*pcount = count;
461 	put_cpu();
462 }
463 EXPORT_SYMBOL(percpu_counter_mod);
464 #endif
465 
466 /*
467  * Perform any setup for the swap system
468  */
469 void __init swap_setup(void)
470 {
471 	unsigned long megs = num_physpages >> (20 - PAGE_SHIFT);
472 
473 	/* Use a smaller cluster for small-memory machines */
474 	if (megs < 16)
475 		page_cluster = 2;
476 	else
477 		page_cluster = 3;
478 	/*
479 	 * Right now other parts of the system means that we
480 	 * _really_ don't want to cluster much more
481 	 */
482 	hotcpu_notifier(cpu_swap_callback, 0);
483 }
484