1 /* 2 * linux/mm/swap.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * This file contains the default values for the opereation of the 9 * Linux VM subsystem. Fine-tuning documentation can be found in 10 * Documentation/sysctl/vm.txt. 11 * Started 18.12.91 12 * Swap aging added 23.2.95, Stephen Tweedie. 13 * Buffermem limits added 12.3.98, Rik van Riel. 14 */ 15 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/swap.h> 20 #include <linux/mman.h> 21 #include <linux/pagemap.h> 22 #include <linux/pagevec.h> 23 #include <linux/init.h> 24 #include <linux/module.h> 25 #include <linux/mm_inline.h> 26 #include <linux/buffer_head.h> /* for try_to_release_page() */ 27 #include <linux/module.h> 28 #include <linux/percpu_counter.h> 29 #include <linux/percpu.h> 30 #include <linux/cpu.h> 31 #include <linux/notifier.h> 32 #include <linux/init.h> 33 34 /* How many pages do we try to swap or page in/out together? */ 35 int page_cluster; 36 37 void put_page(struct page *page) 38 { 39 if (unlikely(PageCompound(page))) { 40 page = (struct page *)page_private(page); 41 if (put_page_testzero(page)) { 42 void (*dtor)(struct page *page); 43 44 dtor = (void (*)(struct page *))page[1].mapping; 45 (*dtor)(page); 46 } 47 return; 48 } 49 if (put_page_testzero(page)) 50 __page_cache_release(page); 51 } 52 EXPORT_SYMBOL(put_page); 53 54 /* 55 * Writeback is about to end against a page which has been marked for immediate 56 * reclaim. If it still appears to be reclaimable, move it to the tail of the 57 * inactive list. The page still has PageWriteback set, which will pin it. 58 * 59 * We don't expect many pages to come through here, so don't bother batching 60 * things up. 61 * 62 * To avoid placing the page at the tail of the LRU while PG_writeback is still 63 * set, this function will clear PG_writeback before performing the page 64 * motion. Do that inside the lru lock because once PG_writeback is cleared 65 * we may not touch the page. 66 * 67 * Returns zero if it cleared PG_writeback. 68 */ 69 int rotate_reclaimable_page(struct page *page) 70 { 71 struct zone *zone; 72 unsigned long flags; 73 74 if (PageLocked(page)) 75 return 1; 76 if (PageDirty(page)) 77 return 1; 78 if (PageActive(page)) 79 return 1; 80 if (!PageLRU(page)) 81 return 1; 82 83 zone = page_zone(page); 84 spin_lock_irqsave(&zone->lru_lock, flags); 85 if (PageLRU(page) && !PageActive(page)) { 86 list_del(&page->lru); 87 list_add_tail(&page->lru, &zone->inactive_list); 88 inc_page_state(pgrotated); 89 } 90 if (!test_clear_page_writeback(page)) 91 BUG(); 92 spin_unlock_irqrestore(&zone->lru_lock, flags); 93 return 0; 94 } 95 96 /* 97 * FIXME: speed this up? 98 */ 99 void fastcall activate_page(struct page *page) 100 { 101 struct zone *zone = page_zone(page); 102 103 spin_lock_irq(&zone->lru_lock); 104 if (PageLRU(page) && !PageActive(page)) { 105 del_page_from_inactive_list(zone, page); 106 SetPageActive(page); 107 add_page_to_active_list(zone, page); 108 inc_page_state(pgactivate); 109 } 110 spin_unlock_irq(&zone->lru_lock); 111 } 112 113 /* 114 * Mark a page as having seen activity. 115 * 116 * inactive,unreferenced -> inactive,referenced 117 * inactive,referenced -> active,unreferenced 118 * active,unreferenced -> active,referenced 119 */ 120 void fastcall mark_page_accessed(struct page *page) 121 { 122 if (!PageActive(page) && PageReferenced(page) && PageLRU(page)) { 123 activate_page(page); 124 ClearPageReferenced(page); 125 } else if (!PageReferenced(page)) { 126 SetPageReferenced(page); 127 } 128 } 129 130 EXPORT_SYMBOL(mark_page_accessed); 131 132 /** 133 * lru_cache_add: add a page to the page lists 134 * @page: the page to add 135 */ 136 static DEFINE_PER_CPU(struct pagevec, lru_add_pvecs) = { 0, }; 137 static DEFINE_PER_CPU(struct pagevec, lru_add_active_pvecs) = { 0, }; 138 139 void fastcall lru_cache_add(struct page *page) 140 { 141 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs); 142 143 page_cache_get(page); 144 if (!pagevec_add(pvec, page)) 145 __pagevec_lru_add(pvec); 146 put_cpu_var(lru_add_pvecs); 147 } 148 149 void fastcall lru_cache_add_active(struct page *page) 150 { 151 struct pagevec *pvec = &get_cpu_var(lru_add_active_pvecs); 152 153 page_cache_get(page); 154 if (!pagevec_add(pvec, page)) 155 __pagevec_lru_add_active(pvec); 156 put_cpu_var(lru_add_active_pvecs); 157 } 158 159 void lru_add_drain(void) 160 { 161 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs); 162 163 if (pagevec_count(pvec)) 164 __pagevec_lru_add(pvec); 165 pvec = &__get_cpu_var(lru_add_active_pvecs); 166 if (pagevec_count(pvec)) 167 __pagevec_lru_add_active(pvec); 168 put_cpu_var(lru_add_pvecs); 169 } 170 171 /* 172 * This path almost never happens for VM activity - pages are normally 173 * freed via pagevecs. But it gets used by networking. 174 */ 175 void fastcall __page_cache_release(struct page *page) 176 { 177 unsigned long flags; 178 struct zone *zone = page_zone(page); 179 180 spin_lock_irqsave(&zone->lru_lock, flags); 181 if (TestClearPageLRU(page)) 182 del_page_from_lru(zone, page); 183 if (page_count(page) != 0) 184 page = NULL; 185 spin_unlock_irqrestore(&zone->lru_lock, flags); 186 if (page) 187 free_hot_page(page); 188 } 189 190 EXPORT_SYMBOL(__page_cache_release); 191 192 /* 193 * Batched page_cache_release(). Decrement the reference count on all the 194 * passed pages. If it fell to zero then remove the page from the LRU and 195 * free it. 196 * 197 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it 198 * for the remainder of the operation. 199 * 200 * The locking in this function is against shrink_cache(): we recheck the 201 * page count inside the lock to see whether shrink_cache grabbed the page 202 * via the LRU. If it did, give up: shrink_cache will free it. 203 */ 204 void release_pages(struct page **pages, int nr, int cold) 205 { 206 int i; 207 struct pagevec pages_to_free; 208 struct zone *zone = NULL; 209 210 pagevec_init(&pages_to_free, cold); 211 for (i = 0; i < nr; i++) { 212 struct page *page = pages[i]; 213 struct zone *pagezone; 214 215 if (!put_page_testzero(page)) 216 continue; 217 218 pagezone = page_zone(page); 219 if (pagezone != zone) { 220 if (zone) 221 spin_unlock_irq(&zone->lru_lock); 222 zone = pagezone; 223 spin_lock_irq(&zone->lru_lock); 224 } 225 if (TestClearPageLRU(page)) 226 del_page_from_lru(zone, page); 227 if (page_count(page) == 0) { 228 if (!pagevec_add(&pages_to_free, page)) { 229 spin_unlock_irq(&zone->lru_lock); 230 __pagevec_free(&pages_to_free); 231 pagevec_reinit(&pages_to_free); 232 zone = NULL; /* No lock is held */ 233 } 234 } 235 } 236 if (zone) 237 spin_unlock_irq(&zone->lru_lock); 238 239 pagevec_free(&pages_to_free); 240 } 241 242 /* 243 * The pages which we're about to release may be in the deferred lru-addition 244 * queues. That would prevent them from really being freed right now. That's 245 * OK from a correctness point of view but is inefficient - those pages may be 246 * cache-warm and we want to give them back to the page allocator ASAP. 247 * 248 * So __pagevec_release() will drain those queues here. __pagevec_lru_add() 249 * and __pagevec_lru_add_active() call release_pages() directly to avoid 250 * mutual recursion. 251 */ 252 void __pagevec_release(struct pagevec *pvec) 253 { 254 lru_add_drain(); 255 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold); 256 pagevec_reinit(pvec); 257 } 258 259 EXPORT_SYMBOL(__pagevec_release); 260 261 /* 262 * pagevec_release() for pages which are known to not be on the LRU 263 * 264 * This function reinitialises the caller's pagevec. 265 */ 266 void __pagevec_release_nonlru(struct pagevec *pvec) 267 { 268 int i; 269 struct pagevec pages_to_free; 270 271 pagevec_init(&pages_to_free, pvec->cold); 272 for (i = 0; i < pagevec_count(pvec); i++) { 273 struct page *page = pvec->pages[i]; 274 275 BUG_ON(PageLRU(page)); 276 if (put_page_testzero(page)) 277 pagevec_add(&pages_to_free, page); 278 } 279 pagevec_free(&pages_to_free); 280 pagevec_reinit(pvec); 281 } 282 283 /* 284 * Add the passed pages to the LRU, then drop the caller's refcount 285 * on them. Reinitialises the caller's pagevec. 286 */ 287 void __pagevec_lru_add(struct pagevec *pvec) 288 { 289 int i; 290 struct zone *zone = NULL; 291 292 for (i = 0; i < pagevec_count(pvec); i++) { 293 struct page *page = pvec->pages[i]; 294 struct zone *pagezone = page_zone(page); 295 296 if (pagezone != zone) { 297 if (zone) 298 spin_unlock_irq(&zone->lru_lock); 299 zone = pagezone; 300 spin_lock_irq(&zone->lru_lock); 301 } 302 if (TestSetPageLRU(page)) 303 BUG(); 304 add_page_to_inactive_list(zone, page); 305 } 306 if (zone) 307 spin_unlock_irq(&zone->lru_lock); 308 release_pages(pvec->pages, pvec->nr, pvec->cold); 309 pagevec_reinit(pvec); 310 } 311 312 EXPORT_SYMBOL(__pagevec_lru_add); 313 314 void __pagevec_lru_add_active(struct pagevec *pvec) 315 { 316 int i; 317 struct zone *zone = NULL; 318 319 for (i = 0; i < pagevec_count(pvec); i++) { 320 struct page *page = pvec->pages[i]; 321 struct zone *pagezone = page_zone(page); 322 323 if (pagezone != zone) { 324 if (zone) 325 spin_unlock_irq(&zone->lru_lock); 326 zone = pagezone; 327 spin_lock_irq(&zone->lru_lock); 328 } 329 if (TestSetPageLRU(page)) 330 BUG(); 331 if (TestSetPageActive(page)) 332 BUG(); 333 add_page_to_active_list(zone, page); 334 } 335 if (zone) 336 spin_unlock_irq(&zone->lru_lock); 337 release_pages(pvec->pages, pvec->nr, pvec->cold); 338 pagevec_reinit(pvec); 339 } 340 341 /* 342 * Try to drop buffers from the pages in a pagevec 343 */ 344 void pagevec_strip(struct pagevec *pvec) 345 { 346 int i; 347 348 for (i = 0; i < pagevec_count(pvec); i++) { 349 struct page *page = pvec->pages[i]; 350 351 if (PagePrivate(page) && !TestSetPageLocked(page)) { 352 try_to_release_page(page, 0); 353 unlock_page(page); 354 } 355 } 356 } 357 358 /** 359 * pagevec_lookup - gang pagecache lookup 360 * @pvec: Where the resulting pages are placed 361 * @mapping: The address_space to search 362 * @start: The starting page index 363 * @nr_pages: The maximum number of pages 364 * 365 * pagevec_lookup() will search for and return a group of up to @nr_pages pages 366 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a 367 * reference against the pages in @pvec. 368 * 369 * The search returns a group of mapping-contiguous pages with ascending 370 * indexes. There may be holes in the indices due to not-present pages. 371 * 372 * pagevec_lookup() returns the number of pages which were found. 373 */ 374 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping, 375 pgoff_t start, unsigned nr_pages) 376 { 377 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages); 378 return pagevec_count(pvec); 379 } 380 381 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping, 382 pgoff_t *index, int tag, unsigned nr_pages) 383 { 384 pvec->nr = find_get_pages_tag(mapping, index, tag, 385 nr_pages, pvec->pages); 386 return pagevec_count(pvec); 387 } 388 389 EXPORT_SYMBOL(pagevec_lookup_tag); 390 391 #ifdef CONFIG_SMP 392 /* 393 * We tolerate a little inaccuracy to avoid ping-ponging the counter between 394 * CPUs 395 */ 396 #define ACCT_THRESHOLD max(16, NR_CPUS * 2) 397 398 static DEFINE_PER_CPU(long, committed_space) = 0; 399 400 void vm_acct_memory(long pages) 401 { 402 long *local; 403 404 preempt_disable(); 405 local = &__get_cpu_var(committed_space); 406 *local += pages; 407 if (*local > ACCT_THRESHOLD || *local < -ACCT_THRESHOLD) { 408 atomic_add(*local, &vm_committed_space); 409 *local = 0; 410 } 411 preempt_enable(); 412 } 413 414 #ifdef CONFIG_HOTPLUG_CPU 415 static void lru_drain_cache(unsigned int cpu) 416 { 417 struct pagevec *pvec = &per_cpu(lru_add_pvecs, cpu); 418 419 /* CPU is dead, so no locking needed. */ 420 if (pagevec_count(pvec)) 421 __pagevec_lru_add(pvec); 422 pvec = &per_cpu(lru_add_active_pvecs, cpu); 423 if (pagevec_count(pvec)) 424 __pagevec_lru_add_active(pvec); 425 } 426 427 /* Drop the CPU's cached committed space back into the central pool. */ 428 static int cpu_swap_callback(struct notifier_block *nfb, 429 unsigned long action, 430 void *hcpu) 431 { 432 long *committed; 433 434 committed = &per_cpu(committed_space, (long)hcpu); 435 if (action == CPU_DEAD) { 436 atomic_add(*committed, &vm_committed_space); 437 *committed = 0; 438 lru_drain_cache((long)hcpu); 439 } 440 return NOTIFY_OK; 441 } 442 #endif /* CONFIG_HOTPLUG_CPU */ 443 #endif /* CONFIG_SMP */ 444 445 #ifdef CONFIG_SMP 446 void percpu_counter_mod(struct percpu_counter *fbc, long amount) 447 { 448 long count; 449 long *pcount; 450 int cpu = get_cpu(); 451 452 pcount = per_cpu_ptr(fbc->counters, cpu); 453 count = *pcount + amount; 454 if (count >= FBC_BATCH || count <= -FBC_BATCH) { 455 spin_lock(&fbc->lock); 456 fbc->count += count; 457 spin_unlock(&fbc->lock); 458 count = 0; 459 } 460 *pcount = count; 461 put_cpu(); 462 } 463 EXPORT_SYMBOL(percpu_counter_mod); 464 #endif 465 466 /* 467 * Perform any setup for the swap system 468 */ 469 void __init swap_setup(void) 470 { 471 unsigned long megs = num_physpages >> (20 - PAGE_SHIFT); 472 473 /* Use a smaller cluster for small-memory machines */ 474 if (megs < 16) 475 page_cluster = 2; 476 else 477 page_cluster = 3; 478 /* 479 * Right now other parts of the system means that we 480 * _really_ don't want to cluster much more 481 */ 482 hotcpu_notifier(cpu_swap_callback, 0); 483 } 484