xref: /linux/mm/swap.c (revision 9009b455811b0fa1f6b0adfa94db136984db5a38)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swap.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * This file contains the default values for the operation of the
10  * Linux VM subsystem. Fine-tuning documentation can be found in
11  * Documentation/admin-guide/sysctl/vm.rst.
12  * Started 18.12.91
13  * Swap aging added 23.2.95, Stephen Tweedie.
14  * Buffermem limits added 12.3.98, Rik van Riel.
15  */
16 
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 
40 #include "internal.h"
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/pagemap.h>
44 
45 /* How many pages do we try to swap or page in/out together? */
46 int page_cluster;
47 
48 /* Protecting only lru_rotate.pvec which requires disabling interrupts */
49 struct lru_rotate {
50 	local_lock_t lock;
51 	struct pagevec pvec;
52 };
53 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
54 	.lock = INIT_LOCAL_LOCK(lock),
55 };
56 
57 /*
58  * The following struct pagevec are grouped together because they are protected
59  * by disabling preemption (and interrupts remain enabled).
60  */
61 struct lru_pvecs {
62 	local_lock_t lock;
63 	struct pagevec lru_add;
64 	struct pagevec lru_deactivate_file;
65 	struct pagevec lru_deactivate;
66 	struct pagevec lru_lazyfree;
67 #ifdef CONFIG_SMP
68 	struct pagevec activate_page;
69 #endif
70 };
71 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
72 	.lock = INIT_LOCAL_LOCK(lock),
73 };
74 
75 /*
76  * This path almost never happens for VM activity - pages are normally
77  * freed via pagevecs.  But it gets used by networking.
78  */
79 static void __page_cache_release(struct page *page)
80 {
81 	if (PageLRU(page)) {
82 		struct lruvec *lruvec;
83 		unsigned long flags;
84 
85 		lruvec = lock_page_lruvec_irqsave(page, &flags);
86 		del_page_from_lru_list(page, lruvec);
87 		__clear_page_lru_flags(page);
88 		unlock_page_lruvec_irqrestore(lruvec, flags);
89 	}
90 	__ClearPageWaiters(page);
91 }
92 
93 static void __put_single_page(struct page *page)
94 {
95 	__page_cache_release(page);
96 	mem_cgroup_uncharge(page);
97 	free_unref_page(page);
98 }
99 
100 static void __put_compound_page(struct page *page)
101 {
102 	/*
103 	 * __page_cache_release() is supposed to be called for thp, not for
104 	 * hugetlb. This is because hugetlb page does never have PageLRU set
105 	 * (it's never listed to any LRU lists) and no memcg routines should
106 	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
107 	 */
108 	if (!PageHuge(page))
109 		__page_cache_release(page);
110 	destroy_compound_page(page);
111 }
112 
113 void __put_page(struct page *page)
114 {
115 	if (is_zone_device_page(page)) {
116 		put_dev_pagemap(page->pgmap);
117 
118 		/*
119 		 * The page belongs to the device that created pgmap. Do
120 		 * not return it to page allocator.
121 		 */
122 		return;
123 	}
124 
125 	if (unlikely(PageCompound(page)))
126 		__put_compound_page(page);
127 	else
128 		__put_single_page(page);
129 }
130 EXPORT_SYMBOL(__put_page);
131 
132 /**
133  * put_pages_list() - release a list of pages
134  * @pages: list of pages threaded on page->lru
135  *
136  * Release a list of pages which are strung together on page.lru.  Currently
137  * used by read_cache_pages() and related error recovery code.
138  */
139 void put_pages_list(struct list_head *pages)
140 {
141 	while (!list_empty(pages)) {
142 		struct page *victim;
143 
144 		victim = lru_to_page(pages);
145 		list_del(&victim->lru);
146 		put_page(victim);
147 	}
148 }
149 EXPORT_SYMBOL(put_pages_list);
150 
151 /*
152  * get_kernel_pages() - pin kernel pages in memory
153  * @kiov:	An array of struct kvec structures
154  * @nr_segs:	number of segments to pin
155  * @write:	pinning for read/write, currently ignored
156  * @pages:	array that receives pointers to the pages pinned.
157  *		Should be at least nr_segs long.
158  *
159  * Returns number of pages pinned. This may be fewer than the number
160  * requested. If nr_pages is 0 or negative, returns 0. If no pages
161  * were pinned, returns -errno. Each page returned must be released
162  * with a put_page() call when it is finished with.
163  */
164 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
165 		struct page **pages)
166 {
167 	int seg;
168 
169 	for (seg = 0; seg < nr_segs; seg++) {
170 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
171 			return seg;
172 
173 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
174 		get_page(pages[seg]);
175 	}
176 
177 	return seg;
178 }
179 EXPORT_SYMBOL_GPL(get_kernel_pages);
180 
181 /*
182  * get_kernel_page() - pin a kernel page in memory
183  * @start:	starting kernel address
184  * @write:	pinning for read/write, currently ignored
185  * @pages:	array that receives pointer to the page pinned.
186  *		Must be at least nr_segs long.
187  *
188  * Returns 1 if page is pinned. If the page was not pinned, returns
189  * -errno. The page returned must be released with a put_page() call
190  * when it is finished with.
191  */
192 int get_kernel_page(unsigned long start, int write, struct page **pages)
193 {
194 	const struct kvec kiov = {
195 		.iov_base = (void *)start,
196 		.iov_len = PAGE_SIZE
197 	};
198 
199 	return get_kernel_pages(&kiov, 1, write, pages);
200 }
201 EXPORT_SYMBOL_GPL(get_kernel_page);
202 
203 static void pagevec_lru_move_fn(struct pagevec *pvec,
204 	void (*move_fn)(struct page *page, struct lruvec *lruvec))
205 {
206 	int i;
207 	struct lruvec *lruvec = NULL;
208 	unsigned long flags = 0;
209 
210 	for (i = 0; i < pagevec_count(pvec); i++) {
211 		struct page *page = pvec->pages[i];
212 
213 		/* block memcg migration during page moving between lru */
214 		if (!TestClearPageLRU(page))
215 			continue;
216 
217 		lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
218 		(*move_fn)(page, lruvec);
219 
220 		SetPageLRU(page);
221 	}
222 	if (lruvec)
223 		unlock_page_lruvec_irqrestore(lruvec, flags);
224 	release_pages(pvec->pages, pvec->nr);
225 	pagevec_reinit(pvec);
226 }
227 
228 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec)
229 {
230 	if (!PageUnevictable(page)) {
231 		del_page_from_lru_list(page, lruvec);
232 		ClearPageActive(page);
233 		add_page_to_lru_list_tail(page, lruvec);
234 		__count_vm_events(PGROTATED, thp_nr_pages(page));
235 	}
236 }
237 
238 /*
239  * Writeback is about to end against a page which has been marked for immediate
240  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
241  * inactive list.
242  *
243  * rotate_reclaimable_page() must disable IRQs, to prevent nasty races.
244  */
245 void rotate_reclaimable_page(struct page *page)
246 {
247 	if (!PageLocked(page) && !PageDirty(page) &&
248 	    !PageUnevictable(page) && PageLRU(page)) {
249 		struct pagevec *pvec;
250 		unsigned long flags;
251 
252 		get_page(page);
253 		local_lock_irqsave(&lru_rotate.lock, flags);
254 		pvec = this_cpu_ptr(&lru_rotate.pvec);
255 		if (!pagevec_add(pvec, page) || PageCompound(page))
256 			pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
257 		local_unlock_irqrestore(&lru_rotate.lock, flags);
258 	}
259 }
260 
261 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
262 {
263 	do {
264 		unsigned long lrusize;
265 
266 		/*
267 		 * Hold lruvec->lru_lock is safe here, since
268 		 * 1) The pinned lruvec in reclaim, or
269 		 * 2) From a pre-LRU page during refault (which also holds the
270 		 *    rcu lock, so would be safe even if the page was on the LRU
271 		 *    and could move simultaneously to a new lruvec).
272 		 */
273 		spin_lock_irq(&lruvec->lru_lock);
274 		/* Record cost event */
275 		if (file)
276 			lruvec->file_cost += nr_pages;
277 		else
278 			lruvec->anon_cost += nr_pages;
279 
280 		/*
281 		 * Decay previous events
282 		 *
283 		 * Because workloads change over time (and to avoid
284 		 * overflow) we keep these statistics as a floating
285 		 * average, which ends up weighing recent refaults
286 		 * more than old ones.
287 		 */
288 		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
289 			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
290 			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
291 			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
292 
293 		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
294 			lruvec->file_cost /= 2;
295 			lruvec->anon_cost /= 2;
296 		}
297 		spin_unlock_irq(&lruvec->lru_lock);
298 	} while ((lruvec = parent_lruvec(lruvec)));
299 }
300 
301 void lru_note_cost_page(struct page *page)
302 {
303 	lru_note_cost(mem_cgroup_page_lruvec(page, page_pgdat(page)),
304 		      page_is_file_lru(page), thp_nr_pages(page));
305 }
306 
307 static void __activate_page(struct page *page, struct lruvec *lruvec)
308 {
309 	if (!PageActive(page) && !PageUnevictable(page)) {
310 		int nr_pages = thp_nr_pages(page);
311 
312 		del_page_from_lru_list(page, lruvec);
313 		SetPageActive(page);
314 		add_page_to_lru_list(page, lruvec);
315 		trace_mm_lru_activate(page);
316 
317 		__count_vm_events(PGACTIVATE, nr_pages);
318 		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
319 				     nr_pages);
320 	}
321 }
322 
323 #ifdef CONFIG_SMP
324 static void activate_page_drain(int cpu)
325 {
326 	struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
327 
328 	if (pagevec_count(pvec))
329 		pagevec_lru_move_fn(pvec, __activate_page);
330 }
331 
332 static bool need_activate_page_drain(int cpu)
333 {
334 	return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
335 }
336 
337 static void activate_page(struct page *page)
338 {
339 	page = compound_head(page);
340 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
341 		struct pagevec *pvec;
342 
343 		local_lock(&lru_pvecs.lock);
344 		pvec = this_cpu_ptr(&lru_pvecs.activate_page);
345 		get_page(page);
346 		if (!pagevec_add(pvec, page) || PageCompound(page))
347 			pagevec_lru_move_fn(pvec, __activate_page);
348 		local_unlock(&lru_pvecs.lock);
349 	}
350 }
351 
352 #else
353 static inline void activate_page_drain(int cpu)
354 {
355 }
356 
357 static void activate_page(struct page *page)
358 {
359 	struct lruvec *lruvec;
360 
361 	page = compound_head(page);
362 	if (TestClearPageLRU(page)) {
363 		lruvec = lock_page_lruvec_irq(page);
364 		__activate_page(page, lruvec);
365 		unlock_page_lruvec_irq(lruvec);
366 		SetPageLRU(page);
367 	}
368 }
369 #endif
370 
371 static void __lru_cache_activate_page(struct page *page)
372 {
373 	struct pagevec *pvec;
374 	int i;
375 
376 	local_lock(&lru_pvecs.lock);
377 	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
378 
379 	/*
380 	 * Search backwards on the optimistic assumption that the page being
381 	 * activated has just been added to this pagevec. Note that only
382 	 * the local pagevec is examined as a !PageLRU page could be in the
383 	 * process of being released, reclaimed, migrated or on a remote
384 	 * pagevec that is currently being drained. Furthermore, marking
385 	 * a remote pagevec's page PageActive potentially hits a race where
386 	 * a page is marked PageActive just after it is added to the inactive
387 	 * list causing accounting errors and BUG_ON checks to trigger.
388 	 */
389 	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
390 		struct page *pagevec_page = pvec->pages[i];
391 
392 		if (pagevec_page == page) {
393 			SetPageActive(page);
394 			break;
395 		}
396 	}
397 
398 	local_unlock(&lru_pvecs.lock);
399 }
400 
401 /*
402  * Mark a page as having seen activity.
403  *
404  * inactive,unreferenced	->	inactive,referenced
405  * inactive,referenced		->	active,unreferenced
406  * active,unreferenced		->	active,referenced
407  *
408  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
409  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
410  */
411 void mark_page_accessed(struct page *page)
412 {
413 	page = compound_head(page);
414 
415 	if (!PageReferenced(page)) {
416 		SetPageReferenced(page);
417 	} else if (PageUnevictable(page)) {
418 		/*
419 		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
420 		 * this list is never rotated or maintained, so marking an
421 		 * evictable page accessed has no effect.
422 		 */
423 	} else if (!PageActive(page)) {
424 		/*
425 		 * If the page is on the LRU, queue it for activation via
426 		 * lru_pvecs.activate_page. Otherwise, assume the page is on a
427 		 * pagevec, mark it active and it'll be moved to the active
428 		 * LRU on the next drain.
429 		 */
430 		if (PageLRU(page))
431 			activate_page(page);
432 		else
433 			__lru_cache_activate_page(page);
434 		ClearPageReferenced(page);
435 		workingset_activation(page);
436 	}
437 	if (page_is_idle(page))
438 		clear_page_idle(page);
439 }
440 EXPORT_SYMBOL(mark_page_accessed);
441 
442 /**
443  * lru_cache_add - add a page to a page list
444  * @page: the page to be added to the LRU.
445  *
446  * Queue the page for addition to the LRU via pagevec. The decision on whether
447  * to add the page to the [in]active [file|anon] list is deferred until the
448  * pagevec is drained. This gives a chance for the caller of lru_cache_add()
449  * have the page added to the active list using mark_page_accessed().
450  */
451 void lru_cache_add(struct page *page)
452 {
453 	struct pagevec *pvec;
454 
455 	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
456 	VM_BUG_ON_PAGE(PageLRU(page), page);
457 
458 	get_page(page);
459 	local_lock(&lru_pvecs.lock);
460 	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
461 	if (!pagevec_add(pvec, page) || PageCompound(page))
462 		__pagevec_lru_add(pvec);
463 	local_unlock(&lru_pvecs.lock);
464 }
465 EXPORT_SYMBOL(lru_cache_add);
466 
467 /**
468  * lru_cache_add_inactive_or_unevictable
469  * @page:  the page to be added to LRU
470  * @vma:   vma in which page is mapped for determining reclaimability
471  *
472  * Place @page on the inactive or unevictable LRU list, depending on its
473  * evictability.
474  */
475 void lru_cache_add_inactive_or_unevictable(struct page *page,
476 					 struct vm_area_struct *vma)
477 {
478 	bool unevictable;
479 
480 	VM_BUG_ON_PAGE(PageLRU(page), page);
481 
482 	unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
483 	if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
484 		int nr_pages = thp_nr_pages(page);
485 		/*
486 		 * We use the irq-unsafe __mod_zone_page_stat because this
487 		 * counter is not modified from interrupt context, and the pte
488 		 * lock is held(spinlock), which implies preemption disabled.
489 		 */
490 		__mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
491 		count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
492 	}
493 	lru_cache_add(page);
494 }
495 
496 /*
497  * If the page can not be invalidated, it is moved to the
498  * inactive list to speed up its reclaim.  It is moved to the
499  * head of the list, rather than the tail, to give the flusher
500  * threads some time to write it out, as this is much more
501  * effective than the single-page writeout from reclaim.
502  *
503  * If the page isn't page_mapped and dirty/writeback, the page
504  * could reclaim asap using PG_reclaim.
505  *
506  * 1. active, mapped page -> none
507  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
508  * 3. inactive, mapped page -> none
509  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
510  * 5. inactive, clean -> inactive, tail
511  * 6. Others -> none
512  *
513  * In 4, why it moves inactive's head, the VM expects the page would
514  * be write it out by flusher threads as this is much more effective
515  * than the single-page writeout from reclaim.
516  */
517 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec)
518 {
519 	bool active = PageActive(page);
520 	int nr_pages = thp_nr_pages(page);
521 
522 	if (PageUnevictable(page))
523 		return;
524 
525 	/* Some processes are using the page */
526 	if (page_mapped(page))
527 		return;
528 
529 	del_page_from_lru_list(page, lruvec);
530 	ClearPageActive(page);
531 	ClearPageReferenced(page);
532 
533 	if (PageWriteback(page) || PageDirty(page)) {
534 		/*
535 		 * PG_reclaim could be raced with end_page_writeback
536 		 * It can make readahead confusing.  But race window
537 		 * is _really_ small and  it's non-critical problem.
538 		 */
539 		add_page_to_lru_list(page, lruvec);
540 		SetPageReclaim(page);
541 	} else {
542 		/*
543 		 * The page's writeback ends up during pagevec
544 		 * We moves tha page into tail of inactive.
545 		 */
546 		add_page_to_lru_list_tail(page, lruvec);
547 		__count_vm_events(PGROTATED, nr_pages);
548 	}
549 
550 	if (active) {
551 		__count_vm_events(PGDEACTIVATE, nr_pages);
552 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
553 				     nr_pages);
554 	}
555 }
556 
557 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec)
558 {
559 	if (PageActive(page) && !PageUnevictable(page)) {
560 		int nr_pages = thp_nr_pages(page);
561 
562 		del_page_from_lru_list(page, lruvec);
563 		ClearPageActive(page);
564 		ClearPageReferenced(page);
565 		add_page_to_lru_list(page, lruvec);
566 
567 		__count_vm_events(PGDEACTIVATE, nr_pages);
568 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
569 				     nr_pages);
570 	}
571 }
572 
573 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec)
574 {
575 	if (PageAnon(page) && PageSwapBacked(page) &&
576 	    !PageSwapCache(page) && !PageUnevictable(page)) {
577 		int nr_pages = thp_nr_pages(page);
578 
579 		del_page_from_lru_list(page, lruvec);
580 		ClearPageActive(page);
581 		ClearPageReferenced(page);
582 		/*
583 		 * Lazyfree pages are clean anonymous pages.  They have
584 		 * PG_swapbacked flag cleared, to distinguish them from normal
585 		 * anonymous pages
586 		 */
587 		ClearPageSwapBacked(page);
588 		add_page_to_lru_list(page, lruvec);
589 
590 		__count_vm_events(PGLAZYFREE, nr_pages);
591 		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
592 				     nr_pages);
593 	}
594 }
595 
596 /*
597  * Drain pages out of the cpu's pagevecs.
598  * Either "cpu" is the current CPU, and preemption has already been
599  * disabled; or "cpu" is being hot-unplugged, and is already dead.
600  */
601 void lru_add_drain_cpu(int cpu)
602 {
603 	struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
604 
605 	if (pagevec_count(pvec))
606 		__pagevec_lru_add(pvec);
607 
608 	pvec = &per_cpu(lru_rotate.pvec, cpu);
609 	/* Disabling interrupts below acts as a compiler barrier. */
610 	if (data_race(pagevec_count(pvec))) {
611 		unsigned long flags;
612 
613 		/* No harm done if a racing interrupt already did this */
614 		local_lock_irqsave(&lru_rotate.lock, flags);
615 		pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
616 		local_unlock_irqrestore(&lru_rotate.lock, flags);
617 	}
618 
619 	pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
620 	if (pagevec_count(pvec))
621 		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
622 
623 	pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
624 	if (pagevec_count(pvec))
625 		pagevec_lru_move_fn(pvec, lru_deactivate_fn);
626 
627 	pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
628 	if (pagevec_count(pvec))
629 		pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
630 
631 	activate_page_drain(cpu);
632 }
633 
634 /**
635  * deactivate_file_page - forcefully deactivate a file page
636  * @page: page to deactivate
637  *
638  * This function hints the VM that @page is a good reclaim candidate,
639  * for example if its invalidation fails due to the page being dirty
640  * or under writeback.
641  */
642 void deactivate_file_page(struct page *page)
643 {
644 	/*
645 	 * In a workload with many unevictable page such as mprotect,
646 	 * unevictable page deactivation for accelerating reclaim is pointless.
647 	 */
648 	if (PageUnevictable(page))
649 		return;
650 
651 	if (likely(get_page_unless_zero(page))) {
652 		struct pagevec *pvec;
653 
654 		local_lock(&lru_pvecs.lock);
655 		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
656 
657 		if (!pagevec_add(pvec, page) || PageCompound(page))
658 			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
659 		local_unlock(&lru_pvecs.lock);
660 	}
661 }
662 
663 /*
664  * deactivate_page - deactivate a page
665  * @page: page to deactivate
666  *
667  * deactivate_page() moves @page to the inactive list if @page was on the active
668  * list and was not an unevictable page.  This is done to accelerate the reclaim
669  * of @page.
670  */
671 void deactivate_page(struct page *page)
672 {
673 	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
674 		struct pagevec *pvec;
675 
676 		local_lock(&lru_pvecs.lock);
677 		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
678 		get_page(page);
679 		if (!pagevec_add(pvec, page) || PageCompound(page))
680 			pagevec_lru_move_fn(pvec, lru_deactivate_fn);
681 		local_unlock(&lru_pvecs.lock);
682 	}
683 }
684 
685 /**
686  * mark_page_lazyfree - make an anon page lazyfree
687  * @page: page to deactivate
688  *
689  * mark_page_lazyfree() moves @page to the inactive file list.
690  * This is done to accelerate the reclaim of @page.
691  */
692 void mark_page_lazyfree(struct page *page)
693 {
694 	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
695 	    !PageSwapCache(page) && !PageUnevictable(page)) {
696 		struct pagevec *pvec;
697 
698 		local_lock(&lru_pvecs.lock);
699 		pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
700 		get_page(page);
701 		if (!pagevec_add(pvec, page) || PageCompound(page))
702 			pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
703 		local_unlock(&lru_pvecs.lock);
704 	}
705 }
706 
707 void lru_add_drain(void)
708 {
709 	local_lock(&lru_pvecs.lock);
710 	lru_add_drain_cpu(smp_processor_id());
711 	local_unlock(&lru_pvecs.lock);
712 }
713 
714 void lru_add_drain_cpu_zone(struct zone *zone)
715 {
716 	local_lock(&lru_pvecs.lock);
717 	lru_add_drain_cpu(smp_processor_id());
718 	drain_local_pages(zone);
719 	local_unlock(&lru_pvecs.lock);
720 }
721 
722 #ifdef CONFIG_SMP
723 
724 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
725 
726 static void lru_add_drain_per_cpu(struct work_struct *dummy)
727 {
728 	lru_add_drain();
729 }
730 
731 /*
732  * Doesn't need any cpu hotplug locking because we do rely on per-cpu
733  * kworkers being shut down before our page_alloc_cpu_dead callback is
734  * executed on the offlined cpu.
735  * Calling this function with cpu hotplug locks held can actually lead
736  * to obscure indirect dependencies via WQ context.
737  */
738 void lru_add_drain_all(void)
739 {
740 	/*
741 	 * lru_drain_gen - Global pages generation number
742 	 *
743 	 * (A) Definition: global lru_drain_gen = x implies that all generations
744 	 *     0 < n <= x are already *scheduled* for draining.
745 	 *
746 	 * This is an optimization for the highly-contended use case where a
747 	 * user space workload keeps constantly generating a flow of pages for
748 	 * each CPU.
749 	 */
750 	static unsigned int lru_drain_gen;
751 	static struct cpumask has_work;
752 	static DEFINE_MUTEX(lock);
753 	unsigned cpu, this_gen;
754 
755 	/*
756 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
757 	 * initialized.
758 	 */
759 	if (WARN_ON(!mm_percpu_wq))
760 		return;
761 
762 	/*
763 	 * Guarantee pagevec counter stores visible by this CPU are visible to
764 	 * other CPUs before loading the current drain generation.
765 	 */
766 	smp_mb();
767 
768 	/*
769 	 * (B) Locally cache global LRU draining generation number
770 	 *
771 	 * The read barrier ensures that the counter is loaded before the mutex
772 	 * is taken. It pairs with smp_mb() inside the mutex critical section
773 	 * at (D).
774 	 */
775 	this_gen = smp_load_acquire(&lru_drain_gen);
776 
777 	mutex_lock(&lock);
778 
779 	/*
780 	 * (C) Exit the draining operation if a newer generation, from another
781 	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
782 	 */
783 	if (unlikely(this_gen != lru_drain_gen))
784 		goto done;
785 
786 	/*
787 	 * (D) Increment global generation number
788 	 *
789 	 * Pairs with smp_load_acquire() at (B), outside of the critical
790 	 * section. Use a full memory barrier to guarantee that the new global
791 	 * drain generation number is stored before loading pagevec counters.
792 	 *
793 	 * This pairing must be done here, before the for_each_online_cpu loop
794 	 * below which drains the page vectors.
795 	 *
796 	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
797 	 * Assume CPU #z is is in the middle of the for_each_online_cpu loop
798 	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
799 	 * along, adds some pages to its per-cpu vectors, then calls
800 	 * lru_add_drain_all().
801 	 *
802 	 * If the paired barrier is done at any later step, e.g. after the
803 	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
804 	 * added pages.
805 	 */
806 	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
807 	smp_mb();
808 
809 	cpumask_clear(&has_work);
810 	for_each_online_cpu(cpu) {
811 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
812 
813 		if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
814 		    data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
815 		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
816 		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
817 		    pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
818 		    need_activate_page_drain(cpu)) {
819 			INIT_WORK(work, lru_add_drain_per_cpu);
820 			queue_work_on(cpu, mm_percpu_wq, work);
821 			__cpumask_set_cpu(cpu, &has_work);
822 		}
823 	}
824 
825 	for_each_cpu(cpu, &has_work)
826 		flush_work(&per_cpu(lru_add_drain_work, cpu));
827 
828 done:
829 	mutex_unlock(&lock);
830 }
831 #else
832 void lru_add_drain_all(void)
833 {
834 	lru_add_drain();
835 }
836 #endif /* CONFIG_SMP */
837 
838 /**
839  * release_pages - batched put_page()
840  * @pages: array of pages to release
841  * @nr: number of pages
842  *
843  * Decrement the reference count on all the pages in @pages.  If it
844  * fell to zero, remove the page from the LRU and free it.
845  */
846 void release_pages(struct page **pages, int nr)
847 {
848 	int i;
849 	LIST_HEAD(pages_to_free);
850 	struct lruvec *lruvec = NULL;
851 	unsigned long flags;
852 	unsigned int lock_batch;
853 
854 	for (i = 0; i < nr; i++) {
855 		struct page *page = pages[i];
856 
857 		/*
858 		 * Make sure the IRQ-safe lock-holding time does not get
859 		 * excessive with a continuous string of pages from the
860 		 * same lruvec. The lock is held only if lruvec != NULL.
861 		 */
862 		if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
863 			unlock_page_lruvec_irqrestore(lruvec, flags);
864 			lruvec = NULL;
865 		}
866 
867 		page = compound_head(page);
868 		if (is_huge_zero_page(page))
869 			continue;
870 
871 		if (is_zone_device_page(page)) {
872 			if (lruvec) {
873 				unlock_page_lruvec_irqrestore(lruvec, flags);
874 				lruvec = NULL;
875 			}
876 			/*
877 			 * ZONE_DEVICE pages that return 'false' from
878 			 * page_is_devmap_managed() do not require special
879 			 * processing, and instead, expect a call to
880 			 * put_page_testzero().
881 			 */
882 			if (page_is_devmap_managed(page)) {
883 				put_devmap_managed_page(page);
884 				continue;
885 			}
886 			if (put_page_testzero(page))
887 				put_dev_pagemap(page->pgmap);
888 			continue;
889 		}
890 
891 		if (!put_page_testzero(page))
892 			continue;
893 
894 		if (PageCompound(page)) {
895 			if (lruvec) {
896 				unlock_page_lruvec_irqrestore(lruvec, flags);
897 				lruvec = NULL;
898 			}
899 			__put_compound_page(page);
900 			continue;
901 		}
902 
903 		if (PageLRU(page)) {
904 			struct lruvec *prev_lruvec = lruvec;
905 
906 			lruvec = relock_page_lruvec_irqsave(page, lruvec,
907 									&flags);
908 			if (prev_lruvec != lruvec)
909 				lock_batch = 0;
910 
911 			del_page_from_lru_list(page, lruvec);
912 			__clear_page_lru_flags(page);
913 		}
914 
915 		__ClearPageWaiters(page);
916 
917 		list_add(&page->lru, &pages_to_free);
918 	}
919 	if (lruvec)
920 		unlock_page_lruvec_irqrestore(lruvec, flags);
921 
922 	mem_cgroup_uncharge_list(&pages_to_free);
923 	free_unref_page_list(&pages_to_free);
924 }
925 EXPORT_SYMBOL(release_pages);
926 
927 /*
928  * The pages which we're about to release may be in the deferred lru-addition
929  * queues.  That would prevent them from really being freed right now.  That's
930  * OK from a correctness point of view but is inefficient - those pages may be
931  * cache-warm and we want to give them back to the page allocator ASAP.
932  *
933  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
934  * and __pagevec_lru_add_active() call release_pages() directly to avoid
935  * mutual recursion.
936  */
937 void __pagevec_release(struct pagevec *pvec)
938 {
939 	if (!pvec->percpu_pvec_drained) {
940 		lru_add_drain();
941 		pvec->percpu_pvec_drained = true;
942 	}
943 	release_pages(pvec->pages, pagevec_count(pvec));
944 	pagevec_reinit(pvec);
945 }
946 EXPORT_SYMBOL(__pagevec_release);
947 
948 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec)
949 {
950 	int was_unevictable = TestClearPageUnevictable(page);
951 	int nr_pages = thp_nr_pages(page);
952 
953 	VM_BUG_ON_PAGE(PageLRU(page), page);
954 
955 	/*
956 	 * Page becomes evictable in two ways:
957 	 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
958 	 * 2) Before acquiring LRU lock to put the page to correct LRU and then
959 	 *   a) do PageLRU check with lock [check_move_unevictable_pages]
960 	 *   b) do PageLRU check before lock [clear_page_mlock]
961 	 *
962 	 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
963 	 * following strict ordering:
964 	 *
965 	 * #0: __pagevec_lru_add_fn		#1: clear_page_mlock
966 	 *
967 	 * SetPageLRU()				TestClearPageMlocked()
968 	 * smp_mb() // explicit ordering	// above provides strict
969 	 *					// ordering
970 	 * PageMlocked()			PageLRU()
971 	 *
972 	 *
973 	 * if '#1' does not observe setting of PG_lru by '#0' and fails
974 	 * isolation, the explicit barrier will make sure that page_evictable
975 	 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
976 	 * can be reordered after PageMlocked check and can make '#1' to fail
977 	 * the isolation of the page whose Mlocked bit is cleared (#0 is also
978 	 * looking at the same page) and the evictable page will be stranded
979 	 * in an unevictable LRU.
980 	 */
981 	SetPageLRU(page);
982 	smp_mb__after_atomic();
983 
984 	if (page_evictable(page)) {
985 		if (was_unevictable)
986 			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
987 	} else {
988 		ClearPageActive(page);
989 		SetPageUnevictable(page);
990 		if (!was_unevictable)
991 			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
992 	}
993 
994 	add_page_to_lru_list(page, lruvec);
995 	trace_mm_lru_insertion(page);
996 }
997 
998 /*
999  * Add the passed pages to the LRU, then drop the caller's refcount
1000  * on them.  Reinitialises the caller's pagevec.
1001  */
1002 void __pagevec_lru_add(struct pagevec *pvec)
1003 {
1004 	int i;
1005 	struct lruvec *lruvec = NULL;
1006 	unsigned long flags = 0;
1007 
1008 	for (i = 0; i < pagevec_count(pvec); i++) {
1009 		struct page *page = pvec->pages[i];
1010 
1011 		lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
1012 		__pagevec_lru_add_fn(page, lruvec);
1013 	}
1014 	if (lruvec)
1015 		unlock_page_lruvec_irqrestore(lruvec, flags);
1016 	release_pages(pvec->pages, pvec->nr);
1017 	pagevec_reinit(pvec);
1018 }
1019 
1020 /**
1021  * pagevec_remove_exceptionals - pagevec exceptionals pruning
1022  * @pvec:	The pagevec to prune
1023  *
1024  * find_get_entries() fills both pages and XArray value entries (aka
1025  * exceptional entries) into the pagevec.  This function prunes all
1026  * exceptionals from @pvec without leaving holes, so that it can be
1027  * passed on to page-only pagevec operations.
1028  */
1029 void pagevec_remove_exceptionals(struct pagevec *pvec)
1030 {
1031 	int i, j;
1032 
1033 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1034 		struct page *page = pvec->pages[i];
1035 		if (!xa_is_value(page))
1036 			pvec->pages[j++] = page;
1037 	}
1038 	pvec->nr = j;
1039 }
1040 
1041 /**
1042  * pagevec_lookup_range - gang pagecache lookup
1043  * @pvec:	Where the resulting pages are placed
1044  * @mapping:	The address_space to search
1045  * @start:	The starting page index
1046  * @end:	The final page index
1047  *
1048  * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1049  * pages in the mapping starting from index @start and upto index @end
1050  * (inclusive).  The pages are placed in @pvec.  pagevec_lookup() takes a
1051  * reference against the pages in @pvec.
1052  *
1053  * The search returns a group of mapping-contiguous pages with ascending
1054  * indexes.  There may be holes in the indices due to not-present pages. We
1055  * also update @start to index the next page for the traversal.
1056  *
1057  * pagevec_lookup_range() returns the number of pages which were found. If this
1058  * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1059  * reached.
1060  */
1061 unsigned pagevec_lookup_range(struct pagevec *pvec,
1062 		struct address_space *mapping, pgoff_t *start, pgoff_t end)
1063 {
1064 	pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1065 					pvec->pages);
1066 	return pagevec_count(pvec);
1067 }
1068 EXPORT_SYMBOL(pagevec_lookup_range);
1069 
1070 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1071 		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1072 		xa_mark_t tag)
1073 {
1074 	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1075 					PAGEVEC_SIZE, pvec->pages);
1076 	return pagevec_count(pvec);
1077 }
1078 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1079 
1080 /*
1081  * Perform any setup for the swap system
1082  */
1083 void __init swap_setup(void)
1084 {
1085 	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1086 
1087 	/* Use a smaller cluster for small-memory machines */
1088 	if (megs < 16)
1089 		page_cluster = 2;
1090 	else
1091 		page_cluster = 3;
1092 	/*
1093 	 * Right now other parts of the system means that we
1094 	 * _really_ don't want to cluster much more
1095 	 */
1096 }
1097 
1098 #ifdef CONFIG_DEV_PAGEMAP_OPS
1099 void put_devmap_managed_page(struct page *page)
1100 {
1101 	int count;
1102 
1103 	if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1104 		return;
1105 
1106 	count = page_ref_dec_return(page);
1107 
1108 	/*
1109 	 * devmap page refcounts are 1-based, rather than 0-based: if
1110 	 * refcount is 1, then the page is free and the refcount is
1111 	 * stable because nobody holds a reference on the page.
1112 	 */
1113 	if (count == 1)
1114 		free_devmap_managed_page(page);
1115 	else if (!count)
1116 		__put_page(page);
1117 }
1118 EXPORT_SYMBOL(put_devmap_managed_page);
1119 #endif
1120