1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swap.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * This file contains the default values for the operation of the 10 * Linux VM subsystem. Fine-tuning documentation can be found in 11 * Documentation/admin-guide/sysctl/vm.rst. 12 * Started 18.12.91 13 * Swap aging added 23.2.95, Stephen Tweedie. 14 * Buffermem limits added 12.3.98, Rik van Riel. 15 */ 16 17 #include <linux/mm.h> 18 #include <linux/sched.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/mman.h> 22 #include <linux/pagemap.h> 23 #include <linux/pagevec.h> 24 #include <linux/init.h> 25 #include <linux/export.h> 26 #include <linux/mm_inline.h> 27 #include <linux/percpu_counter.h> 28 #include <linux/memremap.h> 29 #include <linux/percpu.h> 30 #include <linux/cpu.h> 31 #include <linux/notifier.h> 32 #include <linux/backing-dev.h> 33 #include <linux/memcontrol.h> 34 #include <linux/gfp.h> 35 #include <linux/uio.h> 36 #include <linux/hugetlb.h> 37 #include <linux/page_idle.h> 38 #include <linux/local_lock.h> 39 #include <linux/buffer_head.h> 40 41 #include "internal.h" 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/pagemap.h> 45 46 /* How many pages do we try to swap or page in/out together? As a power of 2 */ 47 int page_cluster; 48 const int page_cluster_max = 31; 49 50 struct cpu_fbatches { 51 /* 52 * The following folio batches are grouped together because they are protected 53 * by disabling preemption (and interrupts remain enabled). 54 */ 55 local_lock_t lock; 56 struct folio_batch lru_add; 57 struct folio_batch lru_deactivate_file; 58 struct folio_batch lru_deactivate; 59 struct folio_batch lru_lazyfree; 60 #ifdef CONFIG_SMP 61 struct folio_batch lru_activate; 62 #endif 63 /* Protecting the following batches which require disabling interrupts */ 64 local_lock_t lock_irq; 65 struct folio_batch lru_move_tail; 66 }; 67 68 static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = { 69 .lock = INIT_LOCAL_LOCK(lock), 70 .lock_irq = INIT_LOCAL_LOCK(lock_irq), 71 }; 72 73 static void __page_cache_release(struct folio *folio, struct lruvec **lruvecp, 74 unsigned long *flagsp) 75 { 76 if (folio_test_lru(folio)) { 77 folio_lruvec_relock_irqsave(folio, lruvecp, flagsp); 78 lruvec_del_folio(*lruvecp, folio); 79 __folio_clear_lru_flags(folio); 80 } 81 } 82 83 /* 84 * This path almost never happens for VM activity - pages are normally freed 85 * in batches. But it gets used by networking - and for compound pages. 86 */ 87 static void page_cache_release(struct folio *folio) 88 { 89 struct lruvec *lruvec = NULL; 90 unsigned long flags; 91 92 __page_cache_release(folio, &lruvec, &flags); 93 if (lruvec) 94 unlock_page_lruvec_irqrestore(lruvec, flags); 95 } 96 97 void __folio_put(struct folio *folio) 98 { 99 if (unlikely(folio_is_zone_device(folio))) { 100 free_zone_device_folio(folio); 101 return; 102 } 103 104 if (folio_test_hugetlb(folio)) { 105 free_huge_folio(folio); 106 return; 107 } 108 109 page_cache_release(folio); 110 folio_unqueue_deferred_split(folio); 111 mem_cgroup_uncharge(folio); 112 free_unref_page(&folio->page, folio_order(folio)); 113 } 114 EXPORT_SYMBOL(__folio_put); 115 116 /** 117 * put_pages_list() - release a list of pages 118 * @pages: list of pages threaded on page->lru 119 * 120 * Release a list of pages which are strung together on page.lru. 121 */ 122 void put_pages_list(struct list_head *pages) 123 { 124 struct folio_batch fbatch; 125 struct folio *folio, *next; 126 127 folio_batch_init(&fbatch); 128 list_for_each_entry_safe(folio, next, pages, lru) { 129 if (!folio_put_testzero(folio)) 130 continue; 131 if (folio_test_hugetlb(folio)) { 132 free_huge_folio(folio); 133 continue; 134 } 135 /* LRU flag must be clear because it's passed using the lru */ 136 if (folio_batch_add(&fbatch, folio) > 0) 137 continue; 138 free_unref_folios(&fbatch); 139 } 140 141 if (fbatch.nr) 142 free_unref_folios(&fbatch); 143 INIT_LIST_HEAD(pages); 144 } 145 EXPORT_SYMBOL(put_pages_list); 146 147 typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio); 148 149 static void lru_add(struct lruvec *lruvec, struct folio *folio) 150 { 151 int was_unevictable = folio_test_clear_unevictable(folio); 152 long nr_pages = folio_nr_pages(folio); 153 154 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 155 156 /* 157 * Is an smp_mb__after_atomic() still required here, before 158 * folio_evictable() tests the mlocked flag, to rule out the possibility 159 * of stranding an evictable folio on an unevictable LRU? I think 160 * not, because __munlock_folio() only clears the mlocked flag 161 * while the LRU lock is held. 162 * 163 * (That is not true of __page_cache_release(), and not necessarily 164 * true of folios_put(): but those only clear the mlocked flag after 165 * folio_put_testzero() has excluded any other users of the folio.) 166 */ 167 if (folio_evictable(folio)) { 168 if (was_unevictable) 169 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages); 170 } else { 171 folio_clear_active(folio); 172 folio_set_unevictable(folio); 173 /* 174 * folio->mlock_count = !!folio_test_mlocked(folio)? 175 * But that leaves __mlock_folio() in doubt whether another 176 * actor has already counted the mlock or not. Err on the 177 * safe side, underestimate, let page reclaim fix it, rather 178 * than leaving a page on the unevictable LRU indefinitely. 179 */ 180 folio->mlock_count = 0; 181 if (!was_unevictable) 182 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages); 183 } 184 185 lruvec_add_folio(lruvec, folio); 186 trace_mm_lru_insertion(folio); 187 } 188 189 static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn) 190 { 191 int i; 192 struct lruvec *lruvec = NULL; 193 unsigned long flags = 0; 194 195 for (i = 0; i < folio_batch_count(fbatch); i++) { 196 struct folio *folio = fbatch->folios[i]; 197 198 folio_lruvec_relock_irqsave(folio, &lruvec, &flags); 199 move_fn(lruvec, folio); 200 201 folio_set_lru(folio); 202 } 203 204 if (lruvec) 205 unlock_page_lruvec_irqrestore(lruvec, flags); 206 folios_put(fbatch); 207 } 208 209 static void __folio_batch_add_and_move(struct folio_batch __percpu *fbatch, 210 struct folio *folio, move_fn_t move_fn, 211 bool on_lru, bool disable_irq) 212 { 213 unsigned long flags; 214 215 if (on_lru && !folio_test_clear_lru(folio)) 216 return; 217 218 folio_get(folio); 219 220 if (disable_irq) 221 local_lock_irqsave(&cpu_fbatches.lock_irq, flags); 222 else 223 local_lock(&cpu_fbatches.lock); 224 225 if (!folio_batch_add(this_cpu_ptr(fbatch), folio) || folio_test_large(folio) || 226 lru_cache_disabled()) 227 folio_batch_move_lru(this_cpu_ptr(fbatch), move_fn); 228 229 if (disable_irq) 230 local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags); 231 else 232 local_unlock(&cpu_fbatches.lock); 233 } 234 235 #define folio_batch_add_and_move(folio, op, on_lru) \ 236 __folio_batch_add_and_move( \ 237 &cpu_fbatches.op, \ 238 folio, \ 239 op, \ 240 on_lru, \ 241 offsetof(struct cpu_fbatches, op) >= offsetof(struct cpu_fbatches, lock_irq) \ 242 ) 243 244 static void lru_move_tail(struct lruvec *lruvec, struct folio *folio) 245 { 246 if (folio_test_unevictable(folio)) 247 return; 248 249 lruvec_del_folio(lruvec, folio); 250 folio_clear_active(folio); 251 lruvec_add_folio_tail(lruvec, folio); 252 __count_vm_events(PGROTATED, folio_nr_pages(folio)); 253 } 254 255 /* 256 * Writeback is about to end against a folio which has been marked for 257 * immediate reclaim. If it still appears to be reclaimable, move it 258 * to the tail of the inactive list. 259 * 260 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races. 261 */ 262 void folio_rotate_reclaimable(struct folio *folio) 263 { 264 if (folio_test_locked(folio) || folio_test_dirty(folio) || 265 folio_test_unevictable(folio)) 266 return; 267 268 folio_batch_add_and_move(folio, lru_move_tail, true); 269 } 270 271 void lru_note_cost(struct lruvec *lruvec, bool file, 272 unsigned int nr_io, unsigned int nr_rotated) 273 { 274 unsigned long cost; 275 276 /* 277 * Reflect the relative cost of incurring IO and spending CPU 278 * time on rotations. This doesn't attempt to make a precise 279 * comparison, it just says: if reloads are about comparable 280 * between the LRU lists, or rotations are overwhelmingly 281 * different between them, adjust scan balance for CPU work. 282 */ 283 cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated; 284 285 do { 286 unsigned long lrusize; 287 288 /* 289 * Hold lruvec->lru_lock is safe here, since 290 * 1) The pinned lruvec in reclaim, or 291 * 2) From a pre-LRU page during refault (which also holds the 292 * rcu lock, so would be safe even if the page was on the LRU 293 * and could move simultaneously to a new lruvec). 294 */ 295 spin_lock_irq(&lruvec->lru_lock); 296 /* Record cost event */ 297 if (file) 298 lruvec->file_cost += cost; 299 else 300 lruvec->anon_cost += cost; 301 302 /* 303 * Decay previous events 304 * 305 * Because workloads change over time (and to avoid 306 * overflow) we keep these statistics as a floating 307 * average, which ends up weighing recent refaults 308 * more than old ones. 309 */ 310 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) + 311 lruvec_page_state(lruvec, NR_ACTIVE_ANON) + 312 lruvec_page_state(lruvec, NR_INACTIVE_FILE) + 313 lruvec_page_state(lruvec, NR_ACTIVE_FILE); 314 315 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) { 316 lruvec->file_cost /= 2; 317 lruvec->anon_cost /= 2; 318 } 319 spin_unlock_irq(&lruvec->lru_lock); 320 } while ((lruvec = parent_lruvec(lruvec))); 321 } 322 323 void lru_note_cost_refault(struct folio *folio) 324 { 325 lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio), 326 folio_nr_pages(folio), 0); 327 } 328 329 static void lru_activate(struct lruvec *lruvec, struct folio *folio) 330 { 331 long nr_pages = folio_nr_pages(folio); 332 333 if (folio_test_active(folio) || folio_test_unevictable(folio)) 334 return; 335 336 337 lruvec_del_folio(lruvec, folio); 338 folio_set_active(folio); 339 lruvec_add_folio(lruvec, folio); 340 trace_mm_lru_activate(folio); 341 342 __count_vm_events(PGACTIVATE, nr_pages); 343 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, nr_pages); 344 } 345 346 #ifdef CONFIG_SMP 347 static void folio_activate_drain(int cpu) 348 { 349 struct folio_batch *fbatch = &per_cpu(cpu_fbatches.lru_activate, cpu); 350 351 if (folio_batch_count(fbatch)) 352 folio_batch_move_lru(fbatch, lru_activate); 353 } 354 355 void folio_activate(struct folio *folio) 356 { 357 if (folio_test_active(folio) || folio_test_unevictable(folio)) 358 return; 359 360 folio_batch_add_and_move(folio, lru_activate, true); 361 } 362 363 #else 364 static inline void folio_activate_drain(int cpu) 365 { 366 } 367 368 void folio_activate(struct folio *folio) 369 { 370 struct lruvec *lruvec; 371 372 if (!folio_test_clear_lru(folio)) 373 return; 374 375 lruvec = folio_lruvec_lock_irq(folio); 376 lru_activate(lruvec, folio); 377 unlock_page_lruvec_irq(lruvec); 378 folio_set_lru(folio); 379 } 380 #endif 381 382 static void __lru_cache_activate_folio(struct folio *folio) 383 { 384 struct folio_batch *fbatch; 385 int i; 386 387 local_lock(&cpu_fbatches.lock); 388 fbatch = this_cpu_ptr(&cpu_fbatches.lru_add); 389 390 /* 391 * Search backwards on the optimistic assumption that the folio being 392 * activated has just been added to this batch. Note that only 393 * the local batch is examined as a !LRU folio could be in the 394 * process of being released, reclaimed, migrated or on a remote 395 * batch that is currently being drained. Furthermore, marking 396 * a remote batch's folio active potentially hits a race where 397 * a folio is marked active just after it is added to the inactive 398 * list causing accounting errors and BUG_ON checks to trigger. 399 */ 400 for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) { 401 struct folio *batch_folio = fbatch->folios[i]; 402 403 if (batch_folio == folio) { 404 folio_set_active(folio); 405 break; 406 } 407 } 408 409 local_unlock(&cpu_fbatches.lock); 410 } 411 412 #ifdef CONFIG_LRU_GEN 413 static void folio_inc_refs(struct folio *folio) 414 { 415 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 416 417 if (folio_test_unevictable(folio)) 418 return; 419 420 if (!folio_test_referenced(folio)) { 421 folio_set_referenced(folio); 422 return; 423 } 424 425 if (!folio_test_workingset(folio)) { 426 folio_set_workingset(folio); 427 return; 428 } 429 430 /* see the comment on MAX_NR_TIERS */ 431 do { 432 new_flags = old_flags & LRU_REFS_MASK; 433 if (new_flags == LRU_REFS_MASK) 434 break; 435 436 new_flags += BIT(LRU_REFS_PGOFF); 437 new_flags |= old_flags & ~LRU_REFS_MASK; 438 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 439 } 440 #else 441 static void folio_inc_refs(struct folio *folio) 442 { 443 } 444 #endif /* CONFIG_LRU_GEN */ 445 446 /** 447 * folio_mark_accessed - Mark a folio as having seen activity. 448 * @folio: The folio to mark. 449 * 450 * This function will perform one of the following transitions: 451 * 452 * * inactive,unreferenced -> inactive,referenced 453 * * inactive,referenced -> active,unreferenced 454 * * active,unreferenced -> active,referenced 455 * 456 * When a newly allocated folio is not yet visible, so safe for non-atomic ops, 457 * __folio_set_referenced() may be substituted for folio_mark_accessed(). 458 */ 459 void folio_mark_accessed(struct folio *folio) 460 { 461 if (lru_gen_enabled()) { 462 folio_inc_refs(folio); 463 return; 464 } 465 466 if (!folio_test_referenced(folio)) { 467 folio_set_referenced(folio); 468 } else if (folio_test_unevictable(folio)) { 469 /* 470 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But, 471 * this list is never rotated or maintained, so marking an 472 * unevictable page accessed has no effect. 473 */ 474 } else if (!folio_test_active(folio)) { 475 /* 476 * If the folio is on the LRU, queue it for activation via 477 * cpu_fbatches.lru_activate. Otherwise, assume the folio is in a 478 * folio_batch, mark it active and it'll be moved to the active 479 * LRU on the next drain. 480 */ 481 if (folio_test_lru(folio)) 482 folio_activate(folio); 483 else 484 __lru_cache_activate_folio(folio); 485 folio_clear_referenced(folio); 486 workingset_activation(folio); 487 } 488 if (folio_test_idle(folio)) 489 folio_clear_idle(folio); 490 } 491 EXPORT_SYMBOL(folio_mark_accessed); 492 493 /** 494 * folio_add_lru - Add a folio to an LRU list. 495 * @folio: The folio to be added to the LRU. 496 * 497 * Queue the folio for addition to the LRU. The decision on whether 498 * to add the page to the [in]active [file|anon] list is deferred until the 499 * folio_batch is drained. This gives a chance for the caller of folio_add_lru() 500 * have the folio added to the active list using folio_mark_accessed(). 501 */ 502 void folio_add_lru(struct folio *folio) 503 { 504 VM_BUG_ON_FOLIO(folio_test_active(folio) && 505 folio_test_unevictable(folio), folio); 506 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 507 508 /* see the comment in lru_gen_add_folio() */ 509 if (lru_gen_enabled() && !folio_test_unevictable(folio) && 510 lru_gen_in_fault() && !(current->flags & PF_MEMALLOC)) 511 folio_set_active(folio); 512 513 folio_batch_add_and_move(folio, lru_add, false); 514 } 515 EXPORT_SYMBOL(folio_add_lru); 516 517 /** 518 * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA. 519 * @folio: The folio to be added to the LRU. 520 * @vma: VMA in which the folio is mapped. 521 * 522 * If the VMA is mlocked, @folio is added to the unevictable list. 523 * Otherwise, it is treated the same way as folio_add_lru(). 524 */ 525 void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma) 526 { 527 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 528 529 if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED)) 530 mlock_new_folio(folio); 531 else 532 folio_add_lru(folio); 533 } 534 535 /* 536 * If the folio cannot be invalidated, it is moved to the 537 * inactive list to speed up its reclaim. It is moved to the 538 * head of the list, rather than the tail, to give the flusher 539 * threads some time to write it out, as this is much more 540 * effective than the single-page writeout from reclaim. 541 * 542 * If the folio isn't mapped and dirty/writeback, the folio 543 * could be reclaimed asap using the reclaim flag. 544 * 545 * 1. active, mapped folio -> none 546 * 2. active, dirty/writeback folio -> inactive, head, reclaim 547 * 3. inactive, mapped folio -> none 548 * 4. inactive, dirty/writeback folio -> inactive, head, reclaim 549 * 5. inactive, clean -> inactive, tail 550 * 6. Others -> none 551 * 552 * In 4, it moves to the head of the inactive list so the folio is 553 * written out by flusher threads as this is much more efficient 554 * than the single-page writeout from reclaim. 555 */ 556 static void lru_deactivate_file(struct lruvec *lruvec, struct folio *folio) 557 { 558 bool active = folio_test_active(folio); 559 long nr_pages = folio_nr_pages(folio); 560 561 if (folio_test_unevictable(folio)) 562 return; 563 564 /* Some processes are using the folio */ 565 if (folio_mapped(folio)) 566 return; 567 568 lruvec_del_folio(lruvec, folio); 569 folio_clear_active(folio); 570 folio_clear_referenced(folio); 571 572 if (folio_test_writeback(folio) || folio_test_dirty(folio)) { 573 /* 574 * Setting the reclaim flag could race with 575 * folio_end_writeback() and confuse readahead. But the 576 * race window is _really_ small and it's not a critical 577 * problem. 578 */ 579 lruvec_add_folio(lruvec, folio); 580 folio_set_reclaim(folio); 581 } else { 582 /* 583 * The folio's writeback ended while it was in the batch. 584 * We move that folio to the tail of the inactive list. 585 */ 586 lruvec_add_folio_tail(lruvec, folio); 587 __count_vm_events(PGROTATED, nr_pages); 588 } 589 590 if (active) { 591 __count_vm_events(PGDEACTIVATE, nr_pages); 592 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 593 nr_pages); 594 } 595 } 596 597 static void lru_deactivate(struct lruvec *lruvec, struct folio *folio) 598 { 599 long nr_pages = folio_nr_pages(folio); 600 601 if (folio_test_unevictable(folio) || !(folio_test_active(folio) || lru_gen_enabled())) 602 return; 603 604 lruvec_del_folio(lruvec, folio); 605 folio_clear_active(folio); 606 folio_clear_referenced(folio); 607 lruvec_add_folio(lruvec, folio); 608 609 __count_vm_events(PGDEACTIVATE, nr_pages); 610 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_pages); 611 } 612 613 static void lru_lazyfree(struct lruvec *lruvec, struct folio *folio) 614 { 615 long nr_pages = folio_nr_pages(folio); 616 617 if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) || 618 folio_test_swapcache(folio) || folio_test_unevictable(folio)) 619 return; 620 621 lruvec_del_folio(lruvec, folio); 622 folio_clear_active(folio); 623 folio_clear_referenced(folio); 624 /* 625 * Lazyfree folios are clean anonymous folios. They have 626 * the swapbacked flag cleared, to distinguish them from normal 627 * anonymous folios 628 */ 629 folio_clear_swapbacked(folio); 630 lruvec_add_folio(lruvec, folio); 631 632 __count_vm_events(PGLAZYFREE, nr_pages); 633 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, nr_pages); 634 } 635 636 /* 637 * Drain pages out of the cpu's folio_batch. 638 * Either "cpu" is the current CPU, and preemption has already been 639 * disabled; or "cpu" is being hot-unplugged, and is already dead. 640 */ 641 void lru_add_drain_cpu(int cpu) 642 { 643 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu); 644 struct folio_batch *fbatch = &fbatches->lru_add; 645 646 if (folio_batch_count(fbatch)) 647 folio_batch_move_lru(fbatch, lru_add); 648 649 fbatch = &fbatches->lru_move_tail; 650 /* Disabling interrupts below acts as a compiler barrier. */ 651 if (data_race(folio_batch_count(fbatch))) { 652 unsigned long flags; 653 654 /* No harm done if a racing interrupt already did this */ 655 local_lock_irqsave(&cpu_fbatches.lock_irq, flags); 656 folio_batch_move_lru(fbatch, lru_move_tail); 657 local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags); 658 } 659 660 fbatch = &fbatches->lru_deactivate_file; 661 if (folio_batch_count(fbatch)) 662 folio_batch_move_lru(fbatch, lru_deactivate_file); 663 664 fbatch = &fbatches->lru_deactivate; 665 if (folio_batch_count(fbatch)) 666 folio_batch_move_lru(fbatch, lru_deactivate); 667 668 fbatch = &fbatches->lru_lazyfree; 669 if (folio_batch_count(fbatch)) 670 folio_batch_move_lru(fbatch, lru_lazyfree); 671 672 folio_activate_drain(cpu); 673 } 674 675 /** 676 * deactivate_file_folio() - Deactivate a file folio. 677 * @folio: Folio to deactivate. 678 * 679 * This function hints to the VM that @folio is a good reclaim candidate, 680 * for example if its invalidation fails due to the folio being dirty 681 * or under writeback. 682 * 683 * Context: Caller holds a reference on the folio. 684 */ 685 void deactivate_file_folio(struct folio *folio) 686 { 687 /* Deactivating an unevictable folio will not accelerate reclaim */ 688 if (folio_test_unevictable(folio)) 689 return; 690 691 folio_batch_add_and_move(folio, lru_deactivate_file, true); 692 } 693 694 /* 695 * folio_deactivate - deactivate a folio 696 * @folio: folio to deactivate 697 * 698 * folio_deactivate() moves @folio to the inactive list if @folio was on the 699 * active list and was not unevictable. This is done to accelerate the 700 * reclaim of @folio. 701 */ 702 void folio_deactivate(struct folio *folio) 703 { 704 if (folio_test_unevictable(folio) || !(folio_test_active(folio) || lru_gen_enabled())) 705 return; 706 707 folio_batch_add_and_move(folio, lru_deactivate, true); 708 } 709 710 /** 711 * folio_mark_lazyfree - make an anon folio lazyfree 712 * @folio: folio to deactivate 713 * 714 * folio_mark_lazyfree() moves @folio to the inactive file list. 715 * This is done to accelerate the reclaim of @folio. 716 */ 717 void folio_mark_lazyfree(struct folio *folio) 718 { 719 if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) || 720 folio_test_swapcache(folio) || folio_test_unevictable(folio)) 721 return; 722 723 folio_batch_add_and_move(folio, lru_lazyfree, true); 724 } 725 726 void lru_add_drain(void) 727 { 728 local_lock(&cpu_fbatches.lock); 729 lru_add_drain_cpu(smp_processor_id()); 730 local_unlock(&cpu_fbatches.lock); 731 mlock_drain_local(); 732 } 733 734 /* 735 * It's called from per-cpu workqueue context in SMP case so 736 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on 737 * the same cpu. It shouldn't be a problem in !SMP case since 738 * the core is only one and the locks will disable preemption. 739 */ 740 static void lru_add_and_bh_lrus_drain(void) 741 { 742 local_lock(&cpu_fbatches.lock); 743 lru_add_drain_cpu(smp_processor_id()); 744 local_unlock(&cpu_fbatches.lock); 745 invalidate_bh_lrus_cpu(); 746 mlock_drain_local(); 747 } 748 749 void lru_add_drain_cpu_zone(struct zone *zone) 750 { 751 local_lock(&cpu_fbatches.lock); 752 lru_add_drain_cpu(smp_processor_id()); 753 drain_local_pages(zone); 754 local_unlock(&cpu_fbatches.lock); 755 mlock_drain_local(); 756 } 757 758 #ifdef CONFIG_SMP 759 760 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); 761 762 static void lru_add_drain_per_cpu(struct work_struct *dummy) 763 { 764 lru_add_and_bh_lrus_drain(); 765 } 766 767 static bool cpu_needs_drain(unsigned int cpu) 768 { 769 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu); 770 771 /* Check these in order of likelihood that they're not zero */ 772 return folio_batch_count(&fbatches->lru_add) || 773 folio_batch_count(&fbatches->lru_move_tail) || 774 folio_batch_count(&fbatches->lru_deactivate_file) || 775 folio_batch_count(&fbatches->lru_deactivate) || 776 folio_batch_count(&fbatches->lru_lazyfree) || 777 folio_batch_count(&fbatches->lru_activate) || 778 need_mlock_drain(cpu) || 779 has_bh_in_lru(cpu, NULL); 780 } 781 782 /* 783 * Doesn't need any cpu hotplug locking because we do rely on per-cpu 784 * kworkers being shut down before our page_alloc_cpu_dead callback is 785 * executed on the offlined cpu. 786 * Calling this function with cpu hotplug locks held can actually lead 787 * to obscure indirect dependencies via WQ context. 788 */ 789 static inline void __lru_add_drain_all(bool force_all_cpus) 790 { 791 /* 792 * lru_drain_gen - Global pages generation number 793 * 794 * (A) Definition: global lru_drain_gen = x implies that all generations 795 * 0 < n <= x are already *scheduled* for draining. 796 * 797 * This is an optimization for the highly-contended use case where a 798 * user space workload keeps constantly generating a flow of pages for 799 * each CPU. 800 */ 801 static unsigned int lru_drain_gen; 802 static struct cpumask has_work; 803 static DEFINE_MUTEX(lock); 804 unsigned cpu, this_gen; 805 806 /* 807 * Make sure nobody triggers this path before mm_percpu_wq is fully 808 * initialized. 809 */ 810 if (WARN_ON(!mm_percpu_wq)) 811 return; 812 813 /* 814 * Guarantee folio_batch counter stores visible by this CPU 815 * are visible to other CPUs before loading the current drain 816 * generation. 817 */ 818 smp_mb(); 819 820 /* 821 * (B) Locally cache global LRU draining generation number 822 * 823 * The read barrier ensures that the counter is loaded before the mutex 824 * is taken. It pairs with smp_mb() inside the mutex critical section 825 * at (D). 826 */ 827 this_gen = smp_load_acquire(&lru_drain_gen); 828 829 mutex_lock(&lock); 830 831 /* 832 * (C) Exit the draining operation if a newer generation, from another 833 * lru_add_drain_all(), was already scheduled for draining. Check (A). 834 */ 835 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus)) 836 goto done; 837 838 /* 839 * (D) Increment global generation number 840 * 841 * Pairs with smp_load_acquire() at (B), outside of the critical 842 * section. Use a full memory barrier to guarantee that the 843 * new global drain generation number is stored before loading 844 * folio_batch counters. 845 * 846 * This pairing must be done here, before the for_each_online_cpu loop 847 * below which drains the page vectors. 848 * 849 * Let x, y, and z represent some system CPU numbers, where x < y < z. 850 * Assume CPU #z is in the middle of the for_each_online_cpu loop 851 * below and has already reached CPU #y's per-cpu data. CPU #x comes 852 * along, adds some pages to its per-cpu vectors, then calls 853 * lru_add_drain_all(). 854 * 855 * If the paired barrier is done at any later step, e.g. after the 856 * loop, CPU #x will just exit at (C) and miss flushing out all of its 857 * added pages. 858 */ 859 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1); 860 smp_mb(); 861 862 cpumask_clear(&has_work); 863 for_each_online_cpu(cpu) { 864 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); 865 866 if (cpu_needs_drain(cpu)) { 867 INIT_WORK(work, lru_add_drain_per_cpu); 868 queue_work_on(cpu, mm_percpu_wq, work); 869 __cpumask_set_cpu(cpu, &has_work); 870 } 871 } 872 873 for_each_cpu(cpu, &has_work) 874 flush_work(&per_cpu(lru_add_drain_work, cpu)); 875 876 done: 877 mutex_unlock(&lock); 878 } 879 880 void lru_add_drain_all(void) 881 { 882 __lru_add_drain_all(false); 883 } 884 #else 885 void lru_add_drain_all(void) 886 { 887 lru_add_drain(); 888 } 889 #endif /* CONFIG_SMP */ 890 891 atomic_t lru_disable_count = ATOMIC_INIT(0); 892 893 /* 894 * lru_cache_disable() needs to be called before we start compiling 895 * a list of folios to be migrated using folio_isolate_lru(). 896 * It drains folios on LRU cache and then disable on all cpus until 897 * lru_cache_enable is called. 898 * 899 * Must be paired with a call to lru_cache_enable(). 900 */ 901 void lru_cache_disable(void) 902 { 903 atomic_inc(&lru_disable_count); 904 /* 905 * Readers of lru_disable_count are protected by either disabling 906 * preemption or rcu_read_lock: 907 * 908 * preempt_disable, local_irq_disable [bh_lru_lock()] 909 * rcu_read_lock [rt_spin_lock CONFIG_PREEMPT_RT] 910 * preempt_disable [local_lock !CONFIG_PREEMPT_RT] 911 * 912 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on 913 * preempt_disable() regions of code. So any CPU which sees 914 * lru_disable_count = 0 will have exited the critical 915 * section when synchronize_rcu() returns. 916 */ 917 synchronize_rcu_expedited(); 918 #ifdef CONFIG_SMP 919 __lru_add_drain_all(true); 920 #else 921 lru_add_and_bh_lrus_drain(); 922 #endif 923 } 924 925 /** 926 * folios_put_refs - Reduce the reference count on a batch of folios. 927 * @folios: The folios. 928 * @refs: The number of refs to subtract from each folio. 929 * 930 * Like folio_put(), but for a batch of folios. This is more efficient 931 * than writing the loop yourself as it will optimise the locks which need 932 * to be taken if the folios are freed. The folios batch is returned 933 * empty and ready to be reused for another batch; there is no need 934 * to reinitialise it. If @refs is NULL, we subtract one from each 935 * folio refcount. 936 * 937 * Context: May be called in process or interrupt context, but not in NMI 938 * context. May be called while holding a spinlock. 939 */ 940 void folios_put_refs(struct folio_batch *folios, unsigned int *refs) 941 { 942 int i, j; 943 struct lruvec *lruvec = NULL; 944 unsigned long flags = 0; 945 946 for (i = 0, j = 0; i < folios->nr; i++) { 947 struct folio *folio = folios->folios[i]; 948 unsigned int nr_refs = refs ? refs[i] : 1; 949 950 if (is_huge_zero_folio(folio)) 951 continue; 952 953 if (folio_is_zone_device(folio)) { 954 if (lruvec) { 955 unlock_page_lruvec_irqrestore(lruvec, flags); 956 lruvec = NULL; 957 } 958 if (put_devmap_managed_folio_refs(folio, nr_refs)) 959 continue; 960 if (folio_ref_sub_and_test(folio, nr_refs)) 961 free_zone_device_folio(folio); 962 continue; 963 } 964 965 if (!folio_ref_sub_and_test(folio, nr_refs)) 966 continue; 967 968 /* hugetlb has its own memcg */ 969 if (folio_test_hugetlb(folio)) { 970 if (lruvec) { 971 unlock_page_lruvec_irqrestore(lruvec, flags); 972 lruvec = NULL; 973 } 974 free_huge_folio(folio); 975 continue; 976 } 977 folio_unqueue_deferred_split(folio); 978 __page_cache_release(folio, &lruvec, &flags); 979 980 if (j != i) 981 folios->folios[j] = folio; 982 j++; 983 } 984 if (lruvec) 985 unlock_page_lruvec_irqrestore(lruvec, flags); 986 if (!j) { 987 folio_batch_reinit(folios); 988 return; 989 } 990 991 folios->nr = j; 992 mem_cgroup_uncharge_folios(folios); 993 free_unref_folios(folios); 994 } 995 EXPORT_SYMBOL(folios_put_refs); 996 997 /** 998 * release_pages - batched put_page() 999 * @arg: array of pages to release 1000 * @nr: number of pages 1001 * 1002 * Decrement the reference count on all the pages in @arg. If it 1003 * fell to zero, remove the page from the LRU and free it. 1004 * 1005 * Note that the argument can be an array of pages, encoded pages, 1006 * or folio pointers. We ignore any encoded bits, and turn any of 1007 * them into just a folio that gets free'd. 1008 */ 1009 void release_pages(release_pages_arg arg, int nr) 1010 { 1011 struct folio_batch fbatch; 1012 int refs[PAGEVEC_SIZE]; 1013 struct encoded_page **encoded = arg.encoded_pages; 1014 int i; 1015 1016 folio_batch_init(&fbatch); 1017 for (i = 0; i < nr; i++) { 1018 /* Turn any of the argument types into a folio */ 1019 struct folio *folio = page_folio(encoded_page_ptr(encoded[i])); 1020 1021 /* Is our next entry actually "nr_pages" -> "nr_refs" ? */ 1022 refs[fbatch.nr] = 1; 1023 if (unlikely(encoded_page_flags(encoded[i]) & 1024 ENCODED_PAGE_BIT_NR_PAGES_NEXT)) 1025 refs[fbatch.nr] = encoded_nr_pages(encoded[++i]); 1026 1027 if (folio_batch_add(&fbatch, folio) > 0) 1028 continue; 1029 folios_put_refs(&fbatch, refs); 1030 } 1031 1032 if (fbatch.nr) 1033 folios_put_refs(&fbatch, refs); 1034 } 1035 EXPORT_SYMBOL(release_pages); 1036 1037 /* 1038 * The folios which we're about to release may be in the deferred lru-addition 1039 * queues. That would prevent them from really being freed right now. That's 1040 * OK from a correctness point of view but is inefficient - those folios may be 1041 * cache-warm and we want to give them back to the page allocator ASAP. 1042 * 1043 * So __folio_batch_release() will drain those queues here. 1044 * folio_batch_move_lru() calls folios_put() directly to avoid 1045 * mutual recursion. 1046 */ 1047 void __folio_batch_release(struct folio_batch *fbatch) 1048 { 1049 if (!fbatch->percpu_pvec_drained) { 1050 lru_add_drain(); 1051 fbatch->percpu_pvec_drained = true; 1052 } 1053 folios_put(fbatch); 1054 } 1055 EXPORT_SYMBOL(__folio_batch_release); 1056 1057 /** 1058 * folio_batch_remove_exceptionals() - Prune non-folios from a batch. 1059 * @fbatch: The batch to prune 1060 * 1061 * find_get_entries() fills a batch with both folios and shadow/swap/DAX 1062 * entries. This function prunes all the non-folio entries from @fbatch 1063 * without leaving holes, so that it can be passed on to folio-only batch 1064 * operations. 1065 */ 1066 void folio_batch_remove_exceptionals(struct folio_batch *fbatch) 1067 { 1068 unsigned int i, j; 1069 1070 for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) { 1071 struct folio *folio = fbatch->folios[i]; 1072 if (!xa_is_value(folio)) 1073 fbatch->folios[j++] = folio; 1074 } 1075 fbatch->nr = j; 1076 } 1077 1078 /* 1079 * Perform any setup for the swap system 1080 */ 1081 void __init swap_setup(void) 1082 { 1083 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT); 1084 1085 /* Use a smaller cluster for small-memory machines */ 1086 if (megs < 16) 1087 page_cluster = 2; 1088 else 1089 page_cluster = 3; 1090 /* 1091 * Right now other parts of the system means that we 1092 * _really_ don't want to cluster much more 1093 */ 1094 } 1095