xref: /linux/mm/swap.c (revision 78f608d7aff05c245bf0aab00ce7273a7d9f04b9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swap.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * This file contains the default values for the operation of the
10  * Linux VM subsystem. Fine-tuning documentation can be found in
11  * Documentation/admin-guide/sysctl/vm.rst.
12  * Started 18.12.91
13  * Swap aging added 23.2.95, Stephen Tweedie.
14  * Buffermem limits added 12.3.98, Rik van Riel.
15  */
16 
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
40 
41 #include "internal.h"
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
45 
46 /* How many pages do we try to swap or page in/out together? As a power of 2 */
47 int page_cluster;
48 const int page_cluster_max = 31;
49 
50 /* Protecting only lru_rotate.fbatch which requires disabling interrupts */
51 struct lru_rotate {
52 	local_lock_t lock;
53 	struct folio_batch fbatch;
54 };
55 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
56 	.lock = INIT_LOCAL_LOCK(lock),
57 };
58 
59 /*
60  * The following folio batches are grouped together because they are protected
61  * by disabling preemption (and interrupts remain enabled).
62  */
63 struct cpu_fbatches {
64 	local_lock_t lock;
65 	struct folio_batch lru_add;
66 	struct folio_batch lru_deactivate_file;
67 	struct folio_batch lru_deactivate;
68 	struct folio_batch lru_lazyfree;
69 #ifdef CONFIG_SMP
70 	struct folio_batch activate;
71 #endif
72 };
73 static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
74 	.lock = INIT_LOCAL_LOCK(lock),
75 };
76 
77 static void __page_cache_release(struct folio *folio, struct lruvec **lruvecp,
78 		unsigned long *flagsp)
79 {
80 	if (folio_test_lru(folio)) {
81 		folio_lruvec_relock_irqsave(folio, lruvecp, flagsp);
82 		lruvec_del_folio(*lruvecp, folio);
83 		__folio_clear_lru_flags(folio);
84 	}
85 
86 	/*
87 	 * In rare cases, when truncation or holepunching raced with
88 	 * munlock after VM_LOCKED was cleared, Mlocked may still be
89 	 * found set here.  This does not indicate a problem, unless
90 	 * "unevictable_pgs_cleared" appears worryingly large.
91 	 */
92 	if (unlikely(folio_test_mlocked(folio))) {
93 		long nr_pages = folio_nr_pages(folio);
94 
95 		__folio_clear_mlocked(folio);
96 		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
97 		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
98 	}
99 }
100 
101 /*
102  * This path almost never happens for VM activity - pages are normally freed
103  * in batches.  But it gets used by networking - and for compound pages.
104  */
105 static void page_cache_release(struct folio *folio)
106 {
107 	struct lruvec *lruvec = NULL;
108 	unsigned long flags;
109 
110 	__page_cache_release(folio, &lruvec, &flags);
111 	if (lruvec)
112 		unlock_page_lruvec_irqrestore(lruvec, flags);
113 }
114 
115 void __folio_put(struct folio *folio)
116 {
117 	if (unlikely(folio_is_zone_device(folio))) {
118 		free_zone_device_folio(folio);
119 		return;
120 	} else if (folio_test_hugetlb(folio)) {
121 		free_huge_folio(folio);
122 		return;
123 	}
124 
125 	page_cache_release(folio);
126 	if (folio_test_large(folio) && folio_test_large_rmappable(folio))
127 		folio_undo_large_rmappable(folio);
128 	mem_cgroup_uncharge(folio);
129 	free_unref_page(&folio->page, folio_order(folio));
130 }
131 EXPORT_SYMBOL(__folio_put);
132 
133 /**
134  * put_pages_list() - release a list of pages
135  * @pages: list of pages threaded on page->lru
136  *
137  * Release a list of pages which are strung together on page.lru.
138  */
139 void put_pages_list(struct list_head *pages)
140 {
141 	struct folio_batch fbatch;
142 	struct folio *folio, *next;
143 
144 	folio_batch_init(&fbatch);
145 	list_for_each_entry_safe(folio, next, pages, lru) {
146 		if (!folio_put_testzero(folio))
147 			continue;
148 		if (folio_test_hugetlb(folio)) {
149 			free_huge_folio(folio);
150 			continue;
151 		}
152 		/* LRU flag must be clear because it's passed using the lru */
153 		if (folio_batch_add(&fbatch, folio) > 0)
154 			continue;
155 		free_unref_folios(&fbatch);
156 	}
157 
158 	if (fbatch.nr)
159 		free_unref_folios(&fbatch);
160 	INIT_LIST_HEAD(pages);
161 }
162 EXPORT_SYMBOL(put_pages_list);
163 
164 typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
165 
166 static void lru_add_fn(struct lruvec *lruvec, struct folio *folio)
167 {
168 	int was_unevictable = folio_test_clear_unevictable(folio);
169 	long nr_pages = folio_nr_pages(folio);
170 
171 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
172 
173 	/*
174 	 * Is an smp_mb__after_atomic() still required here, before
175 	 * folio_evictable() tests the mlocked flag, to rule out the possibility
176 	 * of stranding an evictable folio on an unevictable LRU?  I think
177 	 * not, because __munlock_folio() only clears the mlocked flag
178 	 * while the LRU lock is held.
179 	 *
180 	 * (That is not true of __page_cache_release(), and not necessarily
181 	 * true of folios_put(): but those only clear the mlocked flag after
182 	 * folio_put_testzero() has excluded any other users of the folio.)
183 	 */
184 	if (folio_evictable(folio)) {
185 		if (was_unevictable)
186 			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
187 	} else {
188 		folio_clear_active(folio);
189 		folio_set_unevictable(folio);
190 		/*
191 		 * folio->mlock_count = !!folio_test_mlocked(folio)?
192 		 * But that leaves __mlock_folio() in doubt whether another
193 		 * actor has already counted the mlock or not.  Err on the
194 		 * safe side, underestimate, let page reclaim fix it, rather
195 		 * than leaving a page on the unevictable LRU indefinitely.
196 		 */
197 		folio->mlock_count = 0;
198 		if (!was_unevictable)
199 			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
200 	}
201 
202 	lruvec_add_folio(lruvec, folio);
203 	trace_mm_lru_insertion(folio);
204 }
205 
206 static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
207 {
208 	int i;
209 	struct lruvec *lruvec = NULL;
210 	unsigned long flags = 0;
211 
212 	for (i = 0; i < folio_batch_count(fbatch); i++) {
213 		struct folio *folio = fbatch->folios[i];
214 
215 		/* block memcg migration while the folio moves between lru */
216 		if (move_fn != lru_add_fn && !folio_test_clear_lru(folio))
217 			continue;
218 
219 		folio_lruvec_relock_irqsave(folio, &lruvec, &flags);
220 		move_fn(lruvec, folio);
221 
222 		folio_set_lru(folio);
223 	}
224 
225 	if (lruvec)
226 		unlock_page_lruvec_irqrestore(lruvec, flags);
227 	folios_put(fbatch);
228 }
229 
230 static void folio_batch_add_and_move(struct folio_batch *fbatch,
231 		struct folio *folio, move_fn_t move_fn)
232 {
233 	if (folio_batch_add(fbatch, folio) && !folio_test_large(folio) &&
234 	    !lru_cache_disabled())
235 		return;
236 	folio_batch_move_lru(fbatch, move_fn);
237 }
238 
239 static void lru_move_tail_fn(struct lruvec *lruvec, struct folio *folio)
240 {
241 	if (!folio_test_unevictable(folio)) {
242 		lruvec_del_folio(lruvec, folio);
243 		folio_clear_active(folio);
244 		lruvec_add_folio_tail(lruvec, folio);
245 		__count_vm_events(PGROTATED, folio_nr_pages(folio));
246 	}
247 }
248 
249 /*
250  * Writeback is about to end against a folio which has been marked for
251  * immediate reclaim.  If it still appears to be reclaimable, move it
252  * to the tail of the inactive list.
253  *
254  * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
255  */
256 void folio_rotate_reclaimable(struct folio *folio)
257 {
258 	if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
259 	    !folio_test_unevictable(folio) && folio_test_lru(folio)) {
260 		struct folio_batch *fbatch;
261 		unsigned long flags;
262 
263 		folio_get(folio);
264 		local_lock_irqsave(&lru_rotate.lock, flags);
265 		fbatch = this_cpu_ptr(&lru_rotate.fbatch);
266 		folio_batch_add_and_move(fbatch, folio, lru_move_tail_fn);
267 		local_unlock_irqrestore(&lru_rotate.lock, flags);
268 	}
269 }
270 
271 void lru_note_cost(struct lruvec *lruvec, bool file,
272 		   unsigned int nr_io, unsigned int nr_rotated)
273 {
274 	unsigned long cost;
275 
276 	/*
277 	 * Reflect the relative cost of incurring IO and spending CPU
278 	 * time on rotations. This doesn't attempt to make a precise
279 	 * comparison, it just says: if reloads are about comparable
280 	 * between the LRU lists, or rotations are overwhelmingly
281 	 * different between them, adjust scan balance for CPU work.
282 	 */
283 	cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
284 
285 	do {
286 		unsigned long lrusize;
287 
288 		/*
289 		 * Hold lruvec->lru_lock is safe here, since
290 		 * 1) The pinned lruvec in reclaim, or
291 		 * 2) From a pre-LRU page during refault (which also holds the
292 		 *    rcu lock, so would be safe even if the page was on the LRU
293 		 *    and could move simultaneously to a new lruvec).
294 		 */
295 		spin_lock_irq(&lruvec->lru_lock);
296 		/* Record cost event */
297 		if (file)
298 			lruvec->file_cost += cost;
299 		else
300 			lruvec->anon_cost += cost;
301 
302 		/*
303 		 * Decay previous events
304 		 *
305 		 * Because workloads change over time (and to avoid
306 		 * overflow) we keep these statistics as a floating
307 		 * average, which ends up weighing recent refaults
308 		 * more than old ones.
309 		 */
310 		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
311 			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
312 			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
313 			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
314 
315 		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
316 			lruvec->file_cost /= 2;
317 			lruvec->anon_cost /= 2;
318 		}
319 		spin_unlock_irq(&lruvec->lru_lock);
320 	} while ((lruvec = parent_lruvec(lruvec)));
321 }
322 
323 void lru_note_cost_refault(struct folio *folio)
324 {
325 	lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
326 		      folio_nr_pages(folio), 0);
327 }
328 
329 static void folio_activate_fn(struct lruvec *lruvec, struct folio *folio)
330 {
331 	if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
332 		long nr_pages = folio_nr_pages(folio);
333 
334 		lruvec_del_folio(lruvec, folio);
335 		folio_set_active(folio);
336 		lruvec_add_folio(lruvec, folio);
337 		trace_mm_lru_activate(folio);
338 
339 		__count_vm_events(PGACTIVATE, nr_pages);
340 		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
341 				     nr_pages);
342 	}
343 }
344 
345 #ifdef CONFIG_SMP
346 static void folio_activate_drain(int cpu)
347 {
348 	struct folio_batch *fbatch = &per_cpu(cpu_fbatches.activate, cpu);
349 
350 	if (folio_batch_count(fbatch))
351 		folio_batch_move_lru(fbatch, folio_activate_fn);
352 }
353 
354 void folio_activate(struct folio *folio)
355 {
356 	if (folio_test_lru(folio) && !folio_test_active(folio) &&
357 	    !folio_test_unevictable(folio)) {
358 		struct folio_batch *fbatch;
359 
360 		folio_get(folio);
361 		local_lock(&cpu_fbatches.lock);
362 		fbatch = this_cpu_ptr(&cpu_fbatches.activate);
363 		folio_batch_add_and_move(fbatch, folio, folio_activate_fn);
364 		local_unlock(&cpu_fbatches.lock);
365 	}
366 }
367 
368 #else
369 static inline void folio_activate_drain(int cpu)
370 {
371 }
372 
373 void folio_activate(struct folio *folio)
374 {
375 	struct lruvec *lruvec;
376 
377 	if (folio_test_clear_lru(folio)) {
378 		lruvec = folio_lruvec_lock_irq(folio);
379 		folio_activate_fn(lruvec, folio);
380 		unlock_page_lruvec_irq(lruvec);
381 		folio_set_lru(folio);
382 	}
383 }
384 #endif
385 
386 static void __lru_cache_activate_folio(struct folio *folio)
387 {
388 	struct folio_batch *fbatch;
389 	int i;
390 
391 	local_lock(&cpu_fbatches.lock);
392 	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
393 
394 	/*
395 	 * Search backwards on the optimistic assumption that the folio being
396 	 * activated has just been added to this batch. Note that only
397 	 * the local batch is examined as a !LRU folio could be in the
398 	 * process of being released, reclaimed, migrated or on a remote
399 	 * batch that is currently being drained. Furthermore, marking
400 	 * a remote batch's folio active potentially hits a race where
401 	 * a folio is marked active just after it is added to the inactive
402 	 * list causing accounting errors and BUG_ON checks to trigger.
403 	 */
404 	for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
405 		struct folio *batch_folio = fbatch->folios[i];
406 
407 		if (batch_folio == folio) {
408 			folio_set_active(folio);
409 			break;
410 		}
411 	}
412 
413 	local_unlock(&cpu_fbatches.lock);
414 }
415 
416 #ifdef CONFIG_LRU_GEN
417 static void folio_inc_refs(struct folio *folio)
418 {
419 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
420 
421 	if (folio_test_unevictable(folio))
422 		return;
423 
424 	if (!folio_test_referenced(folio)) {
425 		folio_set_referenced(folio);
426 		return;
427 	}
428 
429 	if (!folio_test_workingset(folio)) {
430 		folio_set_workingset(folio);
431 		return;
432 	}
433 
434 	/* see the comment on MAX_NR_TIERS */
435 	do {
436 		new_flags = old_flags & LRU_REFS_MASK;
437 		if (new_flags == LRU_REFS_MASK)
438 			break;
439 
440 		new_flags += BIT(LRU_REFS_PGOFF);
441 		new_flags |= old_flags & ~LRU_REFS_MASK;
442 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
443 }
444 #else
445 static void folio_inc_refs(struct folio *folio)
446 {
447 }
448 #endif /* CONFIG_LRU_GEN */
449 
450 /**
451  * folio_mark_accessed - Mark a folio as having seen activity.
452  * @folio: The folio to mark.
453  *
454  * This function will perform one of the following transitions:
455  *
456  * * inactive,unreferenced	->	inactive,referenced
457  * * inactive,referenced	->	active,unreferenced
458  * * active,unreferenced	->	active,referenced
459  *
460  * When a newly allocated folio is not yet visible, so safe for non-atomic ops,
461  * __folio_set_referenced() may be substituted for folio_mark_accessed().
462  */
463 void folio_mark_accessed(struct folio *folio)
464 {
465 	if (lru_gen_enabled()) {
466 		folio_inc_refs(folio);
467 		return;
468 	}
469 
470 	if (!folio_test_referenced(folio)) {
471 		folio_set_referenced(folio);
472 	} else if (folio_test_unevictable(folio)) {
473 		/*
474 		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
475 		 * this list is never rotated or maintained, so marking an
476 		 * unevictable page accessed has no effect.
477 		 */
478 	} else if (!folio_test_active(folio)) {
479 		/*
480 		 * If the folio is on the LRU, queue it for activation via
481 		 * cpu_fbatches.activate. Otherwise, assume the folio is in a
482 		 * folio_batch, mark it active and it'll be moved to the active
483 		 * LRU on the next drain.
484 		 */
485 		if (folio_test_lru(folio))
486 			folio_activate(folio);
487 		else
488 			__lru_cache_activate_folio(folio);
489 		folio_clear_referenced(folio);
490 		workingset_activation(folio);
491 	}
492 	if (folio_test_idle(folio))
493 		folio_clear_idle(folio);
494 }
495 EXPORT_SYMBOL(folio_mark_accessed);
496 
497 /**
498  * folio_add_lru - Add a folio to an LRU list.
499  * @folio: The folio to be added to the LRU.
500  *
501  * Queue the folio for addition to the LRU. The decision on whether
502  * to add the page to the [in]active [file|anon] list is deferred until the
503  * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
504  * have the folio added to the active list using folio_mark_accessed().
505  */
506 void folio_add_lru(struct folio *folio)
507 {
508 	struct folio_batch *fbatch;
509 
510 	VM_BUG_ON_FOLIO(folio_test_active(folio) &&
511 			folio_test_unevictable(folio), folio);
512 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
513 
514 	/* see the comment in lru_gen_add_folio() */
515 	if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
516 	    lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
517 		folio_set_active(folio);
518 
519 	folio_get(folio);
520 	local_lock(&cpu_fbatches.lock);
521 	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
522 	folio_batch_add_and_move(fbatch, folio, lru_add_fn);
523 	local_unlock(&cpu_fbatches.lock);
524 }
525 EXPORT_SYMBOL(folio_add_lru);
526 
527 /**
528  * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
529  * @folio: The folio to be added to the LRU.
530  * @vma: VMA in which the folio is mapped.
531  *
532  * If the VMA is mlocked, @folio is added to the unevictable list.
533  * Otherwise, it is treated the same way as folio_add_lru().
534  */
535 void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
536 {
537 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
538 
539 	if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
540 		mlock_new_folio(folio);
541 	else
542 		folio_add_lru(folio);
543 }
544 
545 /*
546  * If the folio cannot be invalidated, it is moved to the
547  * inactive list to speed up its reclaim.  It is moved to the
548  * head of the list, rather than the tail, to give the flusher
549  * threads some time to write it out, as this is much more
550  * effective than the single-page writeout from reclaim.
551  *
552  * If the folio isn't mapped and dirty/writeback, the folio
553  * could be reclaimed asap using the reclaim flag.
554  *
555  * 1. active, mapped folio -> none
556  * 2. active, dirty/writeback folio -> inactive, head, reclaim
557  * 3. inactive, mapped folio -> none
558  * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
559  * 5. inactive, clean -> inactive, tail
560  * 6. Others -> none
561  *
562  * In 4, it moves to the head of the inactive list so the folio is
563  * written out by flusher threads as this is much more efficient
564  * than the single-page writeout from reclaim.
565  */
566 static void lru_deactivate_file_fn(struct lruvec *lruvec, struct folio *folio)
567 {
568 	bool active = folio_test_active(folio);
569 	long nr_pages = folio_nr_pages(folio);
570 
571 	if (folio_test_unevictable(folio))
572 		return;
573 
574 	/* Some processes are using the folio */
575 	if (folio_mapped(folio))
576 		return;
577 
578 	lruvec_del_folio(lruvec, folio);
579 	folio_clear_active(folio);
580 	folio_clear_referenced(folio);
581 
582 	if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
583 		/*
584 		 * Setting the reclaim flag could race with
585 		 * folio_end_writeback() and confuse readahead.  But the
586 		 * race window is _really_ small and  it's not a critical
587 		 * problem.
588 		 */
589 		lruvec_add_folio(lruvec, folio);
590 		folio_set_reclaim(folio);
591 	} else {
592 		/*
593 		 * The folio's writeback ended while it was in the batch.
594 		 * We move that folio to the tail of the inactive list.
595 		 */
596 		lruvec_add_folio_tail(lruvec, folio);
597 		__count_vm_events(PGROTATED, nr_pages);
598 	}
599 
600 	if (active) {
601 		__count_vm_events(PGDEACTIVATE, nr_pages);
602 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
603 				     nr_pages);
604 	}
605 }
606 
607 static void lru_deactivate_fn(struct lruvec *lruvec, struct folio *folio)
608 {
609 	if (!folio_test_unevictable(folio) && (folio_test_active(folio) || lru_gen_enabled())) {
610 		long nr_pages = folio_nr_pages(folio);
611 
612 		lruvec_del_folio(lruvec, folio);
613 		folio_clear_active(folio);
614 		folio_clear_referenced(folio);
615 		lruvec_add_folio(lruvec, folio);
616 
617 		__count_vm_events(PGDEACTIVATE, nr_pages);
618 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
619 				     nr_pages);
620 	}
621 }
622 
623 static void lru_lazyfree_fn(struct lruvec *lruvec, struct folio *folio)
624 {
625 	if (folio_test_anon(folio) && folio_test_swapbacked(folio) &&
626 	    !folio_test_swapcache(folio) && !folio_test_unevictable(folio)) {
627 		long nr_pages = folio_nr_pages(folio);
628 
629 		lruvec_del_folio(lruvec, folio);
630 		folio_clear_active(folio);
631 		folio_clear_referenced(folio);
632 		/*
633 		 * Lazyfree folios are clean anonymous folios.  They have
634 		 * the swapbacked flag cleared, to distinguish them from normal
635 		 * anonymous folios
636 		 */
637 		folio_clear_swapbacked(folio);
638 		lruvec_add_folio(lruvec, folio);
639 
640 		__count_vm_events(PGLAZYFREE, nr_pages);
641 		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
642 				     nr_pages);
643 	}
644 }
645 
646 /*
647  * Drain pages out of the cpu's folio_batch.
648  * Either "cpu" is the current CPU, and preemption has already been
649  * disabled; or "cpu" is being hot-unplugged, and is already dead.
650  */
651 void lru_add_drain_cpu(int cpu)
652 {
653 	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
654 	struct folio_batch *fbatch = &fbatches->lru_add;
655 
656 	if (folio_batch_count(fbatch))
657 		folio_batch_move_lru(fbatch, lru_add_fn);
658 
659 	fbatch = &per_cpu(lru_rotate.fbatch, cpu);
660 	/* Disabling interrupts below acts as a compiler barrier. */
661 	if (data_race(folio_batch_count(fbatch))) {
662 		unsigned long flags;
663 
664 		/* No harm done if a racing interrupt already did this */
665 		local_lock_irqsave(&lru_rotate.lock, flags);
666 		folio_batch_move_lru(fbatch, lru_move_tail_fn);
667 		local_unlock_irqrestore(&lru_rotate.lock, flags);
668 	}
669 
670 	fbatch = &fbatches->lru_deactivate_file;
671 	if (folio_batch_count(fbatch))
672 		folio_batch_move_lru(fbatch, lru_deactivate_file_fn);
673 
674 	fbatch = &fbatches->lru_deactivate;
675 	if (folio_batch_count(fbatch))
676 		folio_batch_move_lru(fbatch, lru_deactivate_fn);
677 
678 	fbatch = &fbatches->lru_lazyfree;
679 	if (folio_batch_count(fbatch))
680 		folio_batch_move_lru(fbatch, lru_lazyfree_fn);
681 
682 	folio_activate_drain(cpu);
683 }
684 
685 /**
686  * deactivate_file_folio() - Deactivate a file folio.
687  * @folio: Folio to deactivate.
688  *
689  * This function hints to the VM that @folio is a good reclaim candidate,
690  * for example if its invalidation fails due to the folio being dirty
691  * or under writeback.
692  *
693  * Context: Caller holds a reference on the folio.
694  */
695 void deactivate_file_folio(struct folio *folio)
696 {
697 	struct folio_batch *fbatch;
698 
699 	/* Deactivating an unevictable folio will not accelerate reclaim */
700 	if (folio_test_unevictable(folio))
701 		return;
702 
703 	folio_get(folio);
704 	local_lock(&cpu_fbatches.lock);
705 	fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate_file);
706 	folio_batch_add_and_move(fbatch, folio, lru_deactivate_file_fn);
707 	local_unlock(&cpu_fbatches.lock);
708 }
709 
710 /*
711  * folio_deactivate - deactivate a folio
712  * @folio: folio to deactivate
713  *
714  * folio_deactivate() moves @folio to the inactive list if @folio was on the
715  * active list and was not unevictable. This is done to accelerate the
716  * reclaim of @folio.
717  */
718 void folio_deactivate(struct folio *folio)
719 {
720 	if (folio_test_lru(folio) && !folio_test_unevictable(folio) &&
721 	    (folio_test_active(folio) || lru_gen_enabled())) {
722 		struct folio_batch *fbatch;
723 
724 		folio_get(folio);
725 		local_lock(&cpu_fbatches.lock);
726 		fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate);
727 		folio_batch_add_and_move(fbatch, folio, lru_deactivate_fn);
728 		local_unlock(&cpu_fbatches.lock);
729 	}
730 }
731 
732 /**
733  * folio_mark_lazyfree - make an anon folio lazyfree
734  * @folio: folio to deactivate
735  *
736  * folio_mark_lazyfree() moves @folio to the inactive file list.
737  * This is done to accelerate the reclaim of @folio.
738  */
739 void folio_mark_lazyfree(struct folio *folio)
740 {
741 	if (folio_test_lru(folio) && folio_test_anon(folio) &&
742 	    folio_test_swapbacked(folio) && !folio_test_swapcache(folio) &&
743 	    !folio_test_unevictable(folio)) {
744 		struct folio_batch *fbatch;
745 
746 		folio_get(folio);
747 		local_lock(&cpu_fbatches.lock);
748 		fbatch = this_cpu_ptr(&cpu_fbatches.lru_lazyfree);
749 		folio_batch_add_and_move(fbatch, folio, lru_lazyfree_fn);
750 		local_unlock(&cpu_fbatches.lock);
751 	}
752 }
753 
754 void lru_add_drain(void)
755 {
756 	local_lock(&cpu_fbatches.lock);
757 	lru_add_drain_cpu(smp_processor_id());
758 	local_unlock(&cpu_fbatches.lock);
759 	mlock_drain_local();
760 }
761 
762 /*
763  * It's called from per-cpu workqueue context in SMP case so
764  * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
765  * the same cpu. It shouldn't be a problem in !SMP case since
766  * the core is only one and the locks will disable preemption.
767  */
768 static void lru_add_and_bh_lrus_drain(void)
769 {
770 	local_lock(&cpu_fbatches.lock);
771 	lru_add_drain_cpu(smp_processor_id());
772 	local_unlock(&cpu_fbatches.lock);
773 	invalidate_bh_lrus_cpu();
774 	mlock_drain_local();
775 }
776 
777 void lru_add_drain_cpu_zone(struct zone *zone)
778 {
779 	local_lock(&cpu_fbatches.lock);
780 	lru_add_drain_cpu(smp_processor_id());
781 	drain_local_pages(zone);
782 	local_unlock(&cpu_fbatches.lock);
783 	mlock_drain_local();
784 }
785 
786 #ifdef CONFIG_SMP
787 
788 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
789 
790 static void lru_add_drain_per_cpu(struct work_struct *dummy)
791 {
792 	lru_add_and_bh_lrus_drain();
793 }
794 
795 static bool cpu_needs_drain(unsigned int cpu)
796 {
797 	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
798 
799 	/* Check these in order of likelihood that they're not zero */
800 	return folio_batch_count(&fbatches->lru_add) ||
801 		data_race(folio_batch_count(&per_cpu(lru_rotate.fbatch, cpu))) ||
802 		folio_batch_count(&fbatches->lru_deactivate_file) ||
803 		folio_batch_count(&fbatches->lru_deactivate) ||
804 		folio_batch_count(&fbatches->lru_lazyfree) ||
805 		folio_batch_count(&fbatches->activate) ||
806 		need_mlock_drain(cpu) ||
807 		has_bh_in_lru(cpu, NULL);
808 }
809 
810 /*
811  * Doesn't need any cpu hotplug locking because we do rely on per-cpu
812  * kworkers being shut down before our page_alloc_cpu_dead callback is
813  * executed on the offlined cpu.
814  * Calling this function with cpu hotplug locks held can actually lead
815  * to obscure indirect dependencies via WQ context.
816  */
817 static inline void __lru_add_drain_all(bool force_all_cpus)
818 {
819 	/*
820 	 * lru_drain_gen - Global pages generation number
821 	 *
822 	 * (A) Definition: global lru_drain_gen = x implies that all generations
823 	 *     0 < n <= x are already *scheduled* for draining.
824 	 *
825 	 * This is an optimization for the highly-contended use case where a
826 	 * user space workload keeps constantly generating a flow of pages for
827 	 * each CPU.
828 	 */
829 	static unsigned int lru_drain_gen;
830 	static struct cpumask has_work;
831 	static DEFINE_MUTEX(lock);
832 	unsigned cpu, this_gen;
833 
834 	/*
835 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
836 	 * initialized.
837 	 */
838 	if (WARN_ON(!mm_percpu_wq))
839 		return;
840 
841 	/*
842 	 * Guarantee folio_batch counter stores visible by this CPU
843 	 * are visible to other CPUs before loading the current drain
844 	 * generation.
845 	 */
846 	smp_mb();
847 
848 	/*
849 	 * (B) Locally cache global LRU draining generation number
850 	 *
851 	 * The read barrier ensures that the counter is loaded before the mutex
852 	 * is taken. It pairs with smp_mb() inside the mutex critical section
853 	 * at (D).
854 	 */
855 	this_gen = smp_load_acquire(&lru_drain_gen);
856 
857 	mutex_lock(&lock);
858 
859 	/*
860 	 * (C) Exit the draining operation if a newer generation, from another
861 	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
862 	 */
863 	if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
864 		goto done;
865 
866 	/*
867 	 * (D) Increment global generation number
868 	 *
869 	 * Pairs with smp_load_acquire() at (B), outside of the critical
870 	 * section. Use a full memory barrier to guarantee that the
871 	 * new global drain generation number is stored before loading
872 	 * folio_batch counters.
873 	 *
874 	 * This pairing must be done here, before the for_each_online_cpu loop
875 	 * below which drains the page vectors.
876 	 *
877 	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
878 	 * Assume CPU #z is in the middle of the for_each_online_cpu loop
879 	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
880 	 * along, adds some pages to its per-cpu vectors, then calls
881 	 * lru_add_drain_all().
882 	 *
883 	 * If the paired barrier is done at any later step, e.g. after the
884 	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
885 	 * added pages.
886 	 */
887 	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
888 	smp_mb();
889 
890 	cpumask_clear(&has_work);
891 	for_each_online_cpu(cpu) {
892 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
893 
894 		if (cpu_needs_drain(cpu)) {
895 			INIT_WORK(work, lru_add_drain_per_cpu);
896 			queue_work_on(cpu, mm_percpu_wq, work);
897 			__cpumask_set_cpu(cpu, &has_work);
898 		}
899 	}
900 
901 	for_each_cpu(cpu, &has_work)
902 		flush_work(&per_cpu(lru_add_drain_work, cpu));
903 
904 done:
905 	mutex_unlock(&lock);
906 }
907 
908 void lru_add_drain_all(void)
909 {
910 	__lru_add_drain_all(false);
911 }
912 #else
913 void lru_add_drain_all(void)
914 {
915 	lru_add_drain();
916 }
917 #endif /* CONFIG_SMP */
918 
919 atomic_t lru_disable_count = ATOMIC_INIT(0);
920 
921 /*
922  * lru_cache_disable() needs to be called before we start compiling
923  * a list of pages to be migrated using isolate_lru_page().
924  * It drains pages on LRU cache and then disable on all cpus until
925  * lru_cache_enable is called.
926  *
927  * Must be paired with a call to lru_cache_enable().
928  */
929 void lru_cache_disable(void)
930 {
931 	atomic_inc(&lru_disable_count);
932 	/*
933 	 * Readers of lru_disable_count are protected by either disabling
934 	 * preemption or rcu_read_lock:
935 	 *
936 	 * preempt_disable, local_irq_disable  [bh_lru_lock()]
937 	 * rcu_read_lock		       [rt_spin_lock CONFIG_PREEMPT_RT]
938 	 * preempt_disable		       [local_lock !CONFIG_PREEMPT_RT]
939 	 *
940 	 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
941 	 * preempt_disable() regions of code. So any CPU which sees
942 	 * lru_disable_count = 0 will have exited the critical
943 	 * section when synchronize_rcu() returns.
944 	 */
945 	synchronize_rcu_expedited();
946 #ifdef CONFIG_SMP
947 	__lru_add_drain_all(true);
948 #else
949 	lru_add_and_bh_lrus_drain();
950 #endif
951 }
952 
953 /**
954  * folios_put_refs - Reduce the reference count on a batch of folios.
955  * @folios: The folios.
956  * @refs: The number of refs to subtract from each folio.
957  *
958  * Like folio_put(), but for a batch of folios.  This is more efficient
959  * than writing the loop yourself as it will optimise the locks which need
960  * to be taken if the folios are freed.  The folios batch is returned
961  * empty and ready to be reused for another batch; there is no need
962  * to reinitialise it.  If @refs is NULL, we subtract one from each
963  * folio refcount.
964  *
965  * Context: May be called in process or interrupt context, but not in NMI
966  * context.  May be called while holding a spinlock.
967  */
968 void folios_put_refs(struct folio_batch *folios, unsigned int *refs)
969 {
970 	int i, j;
971 	struct lruvec *lruvec = NULL;
972 	unsigned long flags = 0;
973 
974 	for (i = 0, j = 0; i < folios->nr; i++) {
975 		struct folio *folio = folios->folios[i];
976 		unsigned int nr_refs = refs ? refs[i] : 1;
977 
978 		if (is_huge_zero_folio(folio))
979 			continue;
980 
981 		if (folio_is_zone_device(folio)) {
982 			if (lruvec) {
983 				unlock_page_lruvec_irqrestore(lruvec, flags);
984 				lruvec = NULL;
985 			}
986 			if (put_devmap_managed_folio_refs(folio, nr_refs))
987 				continue;
988 			if (folio_ref_sub_and_test(folio, nr_refs))
989 				free_zone_device_folio(folio);
990 			continue;
991 		}
992 
993 		if (!folio_ref_sub_and_test(folio, nr_refs))
994 			continue;
995 
996 		/* hugetlb has its own memcg */
997 		if (folio_test_hugetlb(folio)) {
998 			if (lruvec) {
999 				unlock_page_lruvec_irqrestore(lruvec, flags);
1000 				lruvec = NULL;
1001 			}
1002 			free_huge_folio(folio);
1003 			continue;
1004 		}
1005 		if (folio_test_large(folio) &&
1006 		    folio_test_large_rmappable(folio))
1007 			folio_undo_large_rmappable(folio);
1008 
1009 		__page_cache_release(folio, &lruvec, &flags);
1010 
1011 		if (j != i)
1012 			folios->folios[j] = folio;
1013 		j++;
1014 	}
1015 	if (lruvec)
1016 		unlock_page_lruvec_irqrestore(lruvec, flags);
1017 	if (!j) {
1018 		folio_batch_reinit(folios);
1019 		return;
1020 	}
1021 
1022 	folios->nr = j;
1023 	mem_cgroup_uncharge_folios(folios);
1024 	free_unref_folios(folios);
1025 }
1026 EXPORT_SYMBOL(folios_put_refs);
1027 
1028 /**
1029  * release_pages - batched put_page()
1030  * @arg: array of pages to release
1031  * @nr: number of pages
1032  *
1033  * Decrement the reference count on all the pages in @arg.  If it
1034  * fell to zero, remove the page from the LRU and free it.
1035  *
1036  * Note that the argument can be an array of pages, encoded pages,
1037  * or folio pointers. We ignore any encoded bits, and turn any of
1038  * them into just a folio that gets free'd.
1039  */
1040 void release_pages(release_pages_arg arg, int nr)
1041 {
1042 	struct folio_batch fbatch;
1043 	int refs[PAGEVEC_SIZE];
1044 	struct encoded_page **encoded = arg.encoded_pages;
1045 	int i;
1046 
1047 	folio_batch_init(&fbatch);
1048 	for (i = 0; i < nr; i++) {
1049 		/* Turn any of the argument types into a folio */
1050 		struct folio *folio = page_folio(encoded_page_ptr(encoded[i]));
1051 
1052 		/* Is our next entry actually "nr_pages" -> "nr_refs" ? */
1053 		refs[fbatch.nr] = 1;
1054 		if (unlikely(encoded_page_flags(encoded[i]) &
1055 			     ENCODED_PAGE_BIT_NR_PAGES_NEXT))
1056 			refs[fbatch.nr] = encoded_nr_pages(encoded[++i]);
1057 
1058 		if (folio_batch_add(&fbatch, folio) > 0)
1059 			continue;
1060 		folios_put_refs(&fbatch, refs);
1061 	}
1062 
1063 	if (fbatch.nr)
1064 		folios_put_refs(&fbatch, refs);
1065 }
1066 EXPORT_SYMBOL(release_pages);
1067 
1068 /*
1069  * The folios which we're about to release may be in the deferred lru-addition
1070  * queues.  That would prevent them from really being freed right now.  That's
1071  * OK from a correctness point of view but is inefficient - those folios may be
1072  * cache-warm and we want to give them back to the page allocator ASAP.
1073  *
1074  * So __folio_batch_release() will drain those queues here.
1075  * folio_batch_move_lru() calls folios_put() directly to avoid
1076  * mutual recursion.
1077  */
1078 void __folio_batch_release(struct folio_batch *fbatch)
1079 {
1080 	if (!fbatch->percpu_pvec_drained) {
1081 		lru_add_drain();
1082 		fbatch->percpu_pvec_drained = true;
1083 	}
1084 	folios_put(fbatch);
1085 }
1086 EXPORT_SYMBOL(__folio_batch_release);
1087 
1088 /**
1089  * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1090  * @fbatch: The batch to prune
1091  *
1092  * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1093  * entries.  This function prunes all the non-folio entries from @fbatch
1094  * without leaving holes, so that it can be passed on to folio-only batch
1095  * operations.
1096  */
1097 void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1098 {
1099 	unsigned int i, j;
1100 
1101 	for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1102 		struct folio *folio = fbatch->folios[i];
1103 		if (!xa_is_value(folio))
1104 			fbatch->folios[j++] = folio;
1105 	}
1106 	fbatch->nr = j;
1107 }
1108 
1109 /*
1110  * Perform any setup for the swap system
1111  */
1112 void __init swap_setup(void)
1113 {
1114 	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1115 
1116 	/* Use a smaller cluster for small-memory machines */
1117 	if (megs < 16)
1118 		page_cluster = 2;
1119 	else
1120 		page_cluster = 3;
1121 	/*
1122 	 * Right now other parts of the system means that we
1123 	 * _really_ don't want to cluster much more
1124 	 */
1125 }
1126