1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swap.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * This file contains the default values for the operation of the 10 * Linux VM subsystem. Fine-tuning documentation can be found in 11 * Documentation/admin-guide/sysctl/vm.rst. 12 * Started 18.12.91 13 * Swap aging added 23.2.95, Stephen Tweedie. 14 * Buffermem limits added 12.3.98, Rik van Riel. 15 */ 16 17 #include <linux/mm.h> 18 #include <linux/sched.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/mman.h> 22 #include <linux/pagemap.h> 23 #include <linux/pagevec.h> 24 #include <linux/init.h> 25 #include <linux/export.h> 26 #include <linux/mm_inline.h> 27 #include <linux/percpu_counter.h> 28 #include <linux/memremap.h> 29 #include <linux/percpu.h> 30 #include <linux/cpu.h> 31 #include <linux/notifier.h> 32 #include <linux/backing-dev.h> 33 #include <linux/memcontrol.h> 34 #include <linux/gfp.h> 35 #include <linux/uio.h> 36 #include <linux/hugetlb.h> 37 #include <linux/page_idle.h> 38 #include <linux/local_lock.h> 39 #include <linux/buffer_head.h> 40 41 #include "internal.h" 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/pagemap.h> 45 46 /* How many pages do we try to swap or page in/out together? As a power of 2 */ 47 int page_cluster; 48 const int page_cluster_max = 31; 49 50 /* Protecting only lru_rotate.fbatch which requires disabling interrupts */ 51 struct lru_rotate { 52 local_lock_t lock; 53 struct folio_batch fbatch; 54 }; 55 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = { 56 .lock = INIT_LOCAL_LOCK(lock), 57 }; 58 59 /* 60 * The following folio batches are grouped together because they are protected 61 * by disabling preemption (and interrupts remain enabled). 62 */ 63 struct cpu_fbatches { 64 local_lock_t lock; 65 struct folio_batch lru_add; 66 struct folio_batch lru_deactivate_file; 67 struct folio_batch lru_deactivate; 68 struct folio_batch lru_lazyfree; 69 #ifdef CONFIG_SMP 70 struct folio_batch activate; 71 #endif 72 }; 73 static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = { 74 .lock = INIT_LOCAL_LOCK(lock), 75 }; 76 77 static void __page_cache_release(struct folio *folio, struct lruvec **lruvecp, 78 unsigned long *flagsp) 79 { 80 if (folio_test_lru(folio)) { 81 folio_lruvec_relock_irqsave(folio, lruvecp, flagsp); 82 lruvec_del_folio(*lruvecp, folio); 83 __folio_clear_lru_flags(folio); 84 } 85 86 /* 87 * In rare cases, when truncation or holepunching raced with 88 * munlock after VM_LOCKED was cleared, Mlocked may still be 89 * found set here. This does not indicate a problem, unless 90 * "unevictable_pgs_cleared" appears worryingly large. 91 */ 92 if (unlikely(folio_test_mlocked(folio))) { 93 long nr_pages = folio_nr_pages(folio); 94 95 __folio_clear_mlocked(folio); 96 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages); 97 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); 98 } 99 } 100 101 /* 102 * This path almost never happens for VM activity - pages are normally freed 103 * in batches. But it gets used by networking - and for compound pages. 104 */ 105 static void page_cache_release(struct folio *folio) 106 { 107 struct lruvec *lruvec = NULL; 108 unsigned long flags; 109 110 __page_cache_release(folio, &lruvec, &flags); 111 if (lruvec) 112 unlock_page_lruvec_irqrestore(lruvec, flags); 113 } 114 115 void __folio_put(struct folio *folio) 116 { 117 if (unlikely(folio_is_zone_device(folio))) { 118 free_zone_device_folio(folio); 119 return; 120 } else if (folio_test_hugetlb(folio)) { 121 free_huge_folio(folio); 122 return; 123 } 124 125 page_cache_release(folio); 126 folio_undo_large_rmappable(folio); 127 mem_cgroup_uncharge(folio); 128 free_unref_page(&folio->page, folio_order(folio)); 129 } 130 EXPORT_SYMBOL(__folio_put); 131 132 /** 133 * put_pages_list() - release a list of pages 134 * @pages: list of pages threaded on page->lru 135 * 136 * Release a list of pages which are strung together on page.lru. 137 */ 138 void put_pages_list(struct list_head *pages) 139 { 140 struct folio_batch fbatch; 141 struct folio *folio, *next; 142 143 folio_batch_init(&fbatch); 144 list_for_each_entry_safe(folio, next, pages, lru) { 145 if (!folio_put_testzero(folio)) 146 continue; 147 if (folio_test_hugetlb(folio)) { 148 free_huge_folio(folio); 149 continue; 150 } 151 /* LRU flag must be clear because it's passed using the lru */ 152 if (folio_batch_add(&fbatch, folio) > 0) 153 continue; 154 free_unref_folios(&fbatch); 155 } 156 157 if (fbatch.nr) 158 free_unref_folios(&fbatch); 159 INIT_LIST_HEAD(pages); 160 } 161 EXPORT_SYMBOL(put_pages_list); 162 163 typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio); 164 165 static void lru_add_fn(struct lruvec *lruvec, struct folio *folio) 166 { 167 int was_unevictable = folio_test_clear_unevictable(folio); 168 long nr_pages = folio_nr_pages(folio); 169 170 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 171 172 /* 173 * Is an smp_mb__after_atomic() still required here, before 174 * folio_evictable() tests the mlocked flag, to rule out the possibility 175 * of stranding an evictable folio on an unevictable LRU? I think 176 * not, because __munlock_folio() only clears the mlocked flag 177 * while the LRU lock is held. 178 * 179 * (That is not true of __page_cache_release(), and not necessarily 180 * true of folios_put(): but those only clear the mlocked flag after 181 * folio_put_testzero() has excluded any other users of the folio.) 182 */ 183 if (folio_evictable(folio)) { 184 if (was_unevictable) 185 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages); 186 } else { 187 folio_clear_active(folio); 188 folio_set_unevictable(folio); 189 /* 190 * folio->mlock_count = !!folio_test_mlocked(folio)? 191 * But that leaves __mlock_folio() in doubt whether another 192 * actor has already counted the mlock or not. Err on the 193 * safe side, underestimate, let page reclaim fix it, rather 194 * than leaving a page on the unevictable LRU indefinitely. 195 */ 196 folio->mlock_count = 0; 197 if (!was_unevictable) 198 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages); 199 } 200 201 lruvec_add_folio(lruvec, folio); 202 trace_mm_lru_insertion(folio); 203 } 204 205 static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn) 206 { 207 int i; 208 struct lruvec *lruvec = NULL; 209 unsigned long flags = 0; 210 211 for (i = 0; i < folio_batch_count(fbatch); i++) { 212 struct folio *folio = fbatch->folios[i]; 213 214 folio_lruvec_relock_irqsave(folio, &lruvec, &flags); 215 move_fn(lruvec, folio); 216 217 folio_set_lru(folio); 218 } 219 220 if (lruvec) 221 unlock_page_lruvec_irqrestore(lruvec, flags); 222 folios_put(fbatch); 223 } 224 225 static void folio_batch_add_and_move(struct folio_batch *fbatch, 226 struct folio *folio, move_fn_t move_fn) 227 { 228 if (folio_batch_add(fbatch, folio) && !folio_test_large(folio) && 229 !lru_cache_disabled()) 230 return; 231 folio_batch_move_lru(fbatch, move_fn); 232 } 233 234 static void lru_move_tail_fn(struct lruvec *lruvec, struct folio *folio) 235 { 236 if (!folio_test_unevictable(folio)) { 237 lruvec_del_folio(lruvec, folio); 238 folio_clear_active(folio); 239 lruvec_add_folio_tail(lruvec, folio); 240 __count_vm_events(PGROTATED, folio_nr_pages(folio)); 241 } 242 } 243 244 /* 245 * Writeback is about to end against a folio which has been marked for 246 * immediate reclaim. If it still appears to be reclaimable, move it 247 * to the tail of the inactive list. 248 * 249 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races. 250 */ 251 void folio_rotate_reclaimable(struct folio *folio) 252 { 253 if (!folio_test_locked(folio) && !folio_test_dirty(folio) && 254 !folio_test_unevictable(folio)) { 255 struct folio_batch *fbatch; 256 unsigned long flags; 257 258 folio_get(folio); 259 if (!folio_test_clear_lru(folio)) { 260 folio_put(folio); 261 return; 262 } 263 264 local_lock_irqsave(&lru_rotate.lock, flags); 265 fbatch = this_cpu_ptr(&lru_rotate.fbatch); 266 folio_batch_add_and_move(fbatch, folio, lru_move_tail_fn); 267 local_unlock_irqrestore(&lru_rotate.lock, flags); 268 } 269 } 270 271 void lru_note_cost(struct lruvec *lruvec, bool file, 272 unsigned int nr_io, unsigned int nr_rotated) 273 { 274 unsigned long cost; 275 276 /* 277 * Reflect the relative cost of incurring IO and spending CPU 278 * time on rotations. This doesn't attempt to make a precise 279 * comparison, it just says: if reloads are about comparable 280 * between the LRU lists, or rotations are overwhelmingly 281 * different between them, adjust scan balance for CPU work. 282 */ 283 cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated; 284 285 do { 286 unsigned long lrusize; 287 288 /* 289 * Hold lruvec->lru_lock is safe here, since 290 * 1) The pinned lruvec in reclaim, or 291 * 2) From a pre-LRU page during refault (which also holds the 292 * rcu lock, so would be safe even if the page was on the LRU 293 * and could move simultaneously to a new lruvec). 294 */ 295 spin_lock_irq(&lruvec->lru_lock); 296 /* Record cost event */ 297 if (file) 298 lruvec->file_cost += cost; 299 else 300 lruvec->anon_cost += cost; 301 302 /* 303 * Decay previous events 304 * 305 * Because workloads change over time (and to avoid 306 * overflow) we keep these statistics as a floating 307 * average, which ends up weighing recent refaults 308 * more than old ones. 309 */ 310 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) + 311 lruvec_page_state(lruvec, NR_ACTIVE_ANON) + 312 lruvec_page_state(lruvec, NR_INACTIVE_FILE) + 313 lruvec_page_state(lruvec, NR_ACTIVE_FILE); 314 315 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) { 316 lruvec->file_cost /= 2; 317 lruvec->anon_cost /= 2; 318 } 319 spin_unlock_irq(&lruvec->lru_lock); 320 } while ((lruvec = parent_lruvec(lruvec))); 321 } 322 323 void lru_note_cost_refault(struct folio *folio) 324 { 325 lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio), 326 folio_nr_pages(folio), 0); 327 } 328 329 static void folio_activate_fn(struct lruvec *lruvec, struct folio *folio) 330 { 331 if (!folio_test_active(folio) && !folio_test_unevictable(folio)) { 332 long nr_pages = folio_nr_pages(folio); 333 334 lruvec_del_folio(lruvec, folio); 335 folio_set_active(folio); 336 lruvec_add_folio(lruvec, folio); 337 trace_mm_lru_activate(folio); 338 339 __count_vm_events(PGACTIVATE, nr_pages); 340 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, 341 nr_pages); 342 } 343 } 344 345 #ifdef CONFIG_SMP 346 static void folio_activate_drain(int cpu) 347 { 348 struct folio_batch *fbatch = &per_cpu(cpu_fbatches.activate, cpu); 349 350 if (folio_batch_count(fbatch)) 351 folio_batch_move_lru(fbatch, folio_activate_fn); 352 } 353 354 void folio_activate(struct folio *folio) 355 { 356 if (!folio_test_active(folio) && !folio_test_unevictable(folio)) { 357 struct folio_batch *fbatch; 358 359 folio_get(folio); 360 if (!folio_test_clear_lru(folio)) { 361 folio_put(folio); 362 return; 363 } 364 365 local_lock(&cpu_fbatches.lock); 366 fbatch = this_cpu_ptr(&cpu_fbatches.activate); 367 folio_batch_add_and_move(fbatch, folio, folio_activate_fn); 368 local_unlock(&cpu_fbatches.lock); 369 } 370 } 371 372 #else 373 static inline void folio_activate_drain(int cpu) 374 { 375 } 376 377 void folio_activate(struct folio *folio) 378 { 379 struct lruvec *lruvec; 380 381 if (folio_test_clear_lru(folio)) { 382 lruvec = folio_lruvec_lock_irq(folio); 383 folio_activate_fn(lruvec, folio); 384 unlock_page_lruvec_irq(lruvec); 385 folio_set_lru(folio); 386 } 387 } 388 #endif 389 390 static void __lru_cache_activate_folio(struct folio *folio) 391 { 392 struct folio_batch *fbatch; 393 int i; 394 395 local_lock(&cpu_fbatches.lock); 396 fbatch = this_cpu_ptr(&cpu_fbatches.lru_add); 397 398 /* 399 * Search backwards on the optimistic assumption that the folio being 400 * activated has just been added to this batch. Note that only 401 * the local batch is examined as a !LRU folio could be in the 402 * process of being released, reclaimed, migrated or on a remote 403 * batch that is currently being drained. Furthermore, marking 404 * a remote batch's folio active potentially hits a race where 405 * a folio is marked active just after it is added to the inactive 406 * list causing accounting errors and BUG_ON checks to trigger. 407 */ 408 for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) { 409 struct folio *batch_folio = fbatch->folios[i]; 410 411 if (batch_folio == folio) { 412 folio_set_active(folio); 413 break; 414 } 415 } 416 417 local_unlock(&cpu_fbatches.lock); 418 } 419 420 #ifdef CONFIG_LRU_GEN 421 static void folio_inc_refs(struct folio *folio) 422 { 423 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 424 425 if (folio_test_unevictable(folio)) 426 return; 427 428 if (!folio_test_referenced(folio)) { 429 folio_set_referenced(folio); 430 return; 431 } 432 433 if (!folio_test_workingset(folio)) { 434 folio_set_workingset(folio); 435 return; 436 } 437 438 /* see the comment on MAX_NR_TIERS */ 439 do { 440 new_flags = old_flags & LRU_REFS_MASK; 441 if (new_flags == LRU_REFS_MASK) 442 break; 443 444 new_flags += BIT(LRU_REFS_PGOFF); 445 new_flags |= old_flags & ~LRU_REFS_MASK; 446 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 447 } 448 #else 449 static void folio_inc_refs(struct folio *folio) 450 { 451 } 452 #endif /* CONFIG_LRU_GEN */ 453 454 /** 455 * folio_mark_accessed - Mark a folio as having seen activity. 456 * @folio: The folio to mark. 457 * 458 * This function will perform one of the following transitions: 459 * 460 * * inactive,unreferenced -> inactive,referenced 461 * * inactive,referenced -> active,unreferenced 462 * * active,unreferenced -> active,referenced 463 * 464 * When a newly allocated folio is not yet visible, so safe for non-atomic ops, 465 * __folio_set_referenced() may be substituted for folio_mark_accessed(). 466 */ 467 void folio_mark_accessed(struct folio *folio) 468 { 469 if (lru_gen_enabled()) { 470 folio_inc_refs(folio); 471 return; 472 } 473 474 if (!folio_test_referenced(folio)) { 475 folio_set_referenced(folio); 476 } else if (folio_test_unevictable(folio)) { 477 /* 478 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But, 479 * this list is never rotated or maintained, so marking an 480 * unevictable page accessed has no effect. 481 */ 482 } else if (!folio_test_active(folio)) { 483 /* 484 * If the folio is on the LRU, queue it for activation via 485 * cpu_fbatches.activate. Otherwise, assume the folio is in a 486 * folio_batch, mark it active and it'll be moved to the active 487 * LRU on the next drain. 488 */ 489 if (folio_test_lru(folio)) 490 folio_activate(folio); 491 else 492 __lru_cache_activate_folio(folio); 493 folio_clear_referenced(folio); 494 workingset_activation(folio); 495 } 496 if (folio_test_idle(folio)) 497 folio_clear_idle(folio); 498 } 499 EXPORT_SYMBOL(folio_mark_accessed); 500 501 /** 502 * folio_add_lru - Add a folio to an LRU list. 503 * @folio: The folio to be added to the LRU. 504 * 505 * Queue the folio for addition to the LRU. The decision on whether 506 * to add the page to the [in]active [file|anon] list is deferred until the 507 * folio_batch is drained. This gives a chance for the caller of folio_add_lru() 508 * have the folio added to the active list using folio_mark_accessed(). 509 */ 510 void folio_add_lru(struct folio *folio) 511 { 512 struct folio_batch *fbatch; 513 514 VM_BUG_ON_FOLIO(folio_test_active(folio) && 515 folio_test_unevictable(folio), folio); 516 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 517 518 /* see the comment in lru_gen_add_folio() */ 519 if (lru_gen_enabled() && !folio_test_unevictable(folio) && 520 lru_gen_in_fault() && !(current->flags & PF_MEMALLOC)) 521 folio_set_active(folio); 522 523 folio_get(folio); 524 local_lock(&cpu_fbatches.lock); 525 fbatch = this_cpu_ptr(&cpu_fbatches.lru_add); 526 folio_batch_add_and_move(fbatch, folio, lru_add_fn); 527 local_unlock(&cpu_fbatches.lock); 528 } 529 EXPORT_SYMBOL(folio_add_lru); 530 531 /** 532 * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA. 533 * @folio: The folio to be added to the LRU. 534 * @vma: VMA in which the folio is mapped. 535 * 536 * If the VMA is mlocked, @folio is added to the unevictable list. 537 * Otherwise, it is treated the same way as folio_add_lru(). 538 */ 539 void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma) 540 { 541 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 542 543 if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED)) 544 mlock_new_folio(folio); 545 else 546 folio_add_lru(folio); 547 } 548 549 /* 550 * If the folio cannot be invalidated, it is moved to the 551 * inactive list to speed up its reclaim. It is moved to the 552 * head of the list, rather than the tail, to give the flusher 553 * threads some time to write it out, as this is much more 554 * effective than the single-page writeout from reclaim. 555 * 556 * If the folio isn't mapped and dirty/writeback, the folio 557 * could be reclaimed asap using the reclaim flag. 558 * 559 * 1. active, mapped folio -> none 560 * 2. active, dirty/writeback folio -> inactive, head, reclaim 561 * 3. inactive, mapped folio -> none 562 * 4. inactive, dirty/writeback folio -> inactive, head, reclaim 563 * 5. inactive, clean -> inactive, tail 564 * 6. Others -> none 565 * 566 * In 4, it moves to the head of the inactive list so the folio is 567 * written out by flusher threads as this is much more efficient 568 * than the single-page writeout from reclaim. 569 */ 570 static void lru_deactivate_file_fn(struct lruvec *lruvec, struct folio *folio) 571 { 572 bool active = folio_test_active(folio); 573 long nr_pages = folio_nr_pages(folio); 574 575 if (folio_test_unevictable(folio)) 576 return; 577 578 /* Some processes are using the folio */ 579 if (folio_mapped(folio)) 580 return; 581 582 lruvec_del_folio(lruvec, folio); 583 folio_clear_active(folio); 584 folio_clear_referenced(folio); 585 586 if (folio_test_writeback(folio) || folio_test_dirty(folio)) { 587 /* 588 * Setting the reclaim flag could race with 589 * folio_end_writeback() and confuse readahead. But the 590 * race window is _really_ small and it's not a critical 591 * problem. 592 */ 593 lruvec_add_folio(lruvec, folio); 594 folio_set_reclaim(folio); 595 } else { 596 /* 597 * The folio's writeback ended while it was in the batch. 598 * We move that folio to the tail of the inactive list. 599 */ 600 lruvec_add_folio_tail(lruvec, folio); 601 __count_vm_events(PGROTATED, nr_pages); 602 } 603 604 if (active) { 605 __count_vm_events(PGDEACTIVATE, nr_pages); 606 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 607 nr_pages); 608 } 609 } 610 611 static void lru_deactivate_fn(struct lruvec *lruvec, struct folio *folio) 612 { 613 if (!folio_test_unevictable(folio) && (folio_test_active(folio) || lru_gen_enabled())) { 614 long nr_pages = folio_nr_pages(folio); 615 616 lruvec_del_folio(lruvec, folio); 617 folio_clear_active(folio); 618 folio_clear_referenced(folio); 619 lruvec_add_folio(lruvec, folio); 620 621 __count_vm_events(PGDEACTIVATE, nr_pages); 622 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 623 nr_pages); 624 } 625 } 626 627 static void lru_lazyfree_fn(struct lruvec *lruvec, struct folio *folio) 628 { 629 if (folio_test_anon(folio) && folio_test_swapbacked(folio) && 630 !folio_test_swapcache(folio) && !folio_test_unevictable(folio)) { 631 long nr_pages = folio_nr_pages(folio); 632 633 lruvec_del_folio(lruvec, folio); 634 folio_clear_active(folio); 635 folio_clear_referenced(folio); 636 /* 637 * Lazyfree folios are clean anonymous folios. They have 638 * the swapbacked flag cleared, to distinguish them from normal 639 * anonymous folios 640 */ 641 folio_clear_swapbacked(folio); 642 lruvec_add_folio(lruvec, folio); 643 644 __count_vm_events(PGLAZYFREE, nr_pages); 645 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, 646 nr_pages); 647 } 648 } 649 650 /* 651 * Drain pages out of the cpu's folio_batch. 652 * Either "cpu" is the current CPU, and preemption has already been 653 * disabled; or "cpu" is being hot-unplugged, and is already dead. 654 */ 655 void lru_add_drain_cpu(int cpu) 656 { 657 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu); 658 struct folio_batch *fbatch = &fbatches->lru_add; 659 660 if (folio_batch_count(fbatch)) 661 folio_batch_move_lru(fbatch, lru_add_fn); 662 663 fbatch = &per_cpu(lru_rotate.fbatch, cpu); 664 /* Disabling interrupts below acts as a compiler barrier. */ 665 if (data_race(folio_batch_count(fbatch))) { 666 unsigned long flags; 667 668 /* No harm done if a racing interrupt already did this */ 669 local_lock_irqsave(&lru_rotate.lock, flags); 670 folio_batch_move_lru(fbatch, lru_move_tail_fn); 671 local_unlock_irqrestore(&lru_rotate.lock, flags); 672 } 673 674 fbatch = &fbatches->lru_deactivate_file; 675 if (folio_batch_count(fbatch)) 676 folio_batch_move_lru(fbatch, lru_deactivate_file_fn); 677 678 fbatch = &fbatches->lru_deactivate; 679 if (folio_batch_count(fbatch)) 680 folio_batch_move_lru(fbatch, lru_deactivate_fn); 681 682 fbatch = &fbatches->lru_lazyfree; 683 if (folio_batch_count(fbatch)) 684 folio_batch_move_lru(fbatch, lru_lazyfree_fn); 685 686 folio_activate_drain(cpu); 687 } 688 689 /** 690 * deactivate_file_folio() - Deactivate a file folio. 691 * @folio: Folio to deactivate. 692 * 693 * This function hints to the VM that @folio is a good reclaim candidate, 694 * for example if its invalidation fails due to the folio being dirty 695 * or under writeback. 696 * 697 * Context: Caller holds a reference on the folio. 698 */ 699 void deactivate_file_folio(struct folio *folio) 700 { 701 struct folio_batch *fbatch; 702 703 /* Deactivating an unevictable folio will not accelerate reclaim */ 704 if (folio_test_unevictable(folio)) 705 return; 706 707 folio_get(folio); 708 if (!folio_test_clear_lru(folio)) { 709 folio_put(folio); 710 return; 711 } 712 713 local_lock(&cpu_fbatches.lock); 714 fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate_file); 715 folio_batch_add_and_move(fbatch, folio, lru_deactivate_file_fn); 716 local_unlock(&cpu_fbatches.lock); 717 } 718 719 /* 720 * folio_deactivate - deactivate a folio 721 * @folio: folio to deactivate 722 * 723 * folio_deactivate() moves @folio to the inactive list if @folio was on the 724 * active list and was not unevictable. This is done to accelerate the 725 * reclaim of @folio. 726 */ 727 void folio_deactivate(struct folio *folio) 728 { 729 if (!folio_test_unevictable(folio) && (folio_test_active(folio) || 730 lru_gen_enabled())) { 731 struct folio_batch *fbatch; 732 733 folio_get(folio); 734 if (!folio_test_clear_lru(folio)) { 735 folio_put(folio); 736 return; 737 } 738 739 local_lock(&cpu_fbatches.lock); 740 fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate); 741 folio_batch_add_and_move(fbatch, folio, lru_deactivate_fn); 742 local_unlock(&cpu_fbatches.lock); 743 } 744 } 745 746 /** 747 * folio_mark_lazyfree - make an anon folio lazyfree 748 * @folio: folio to deactivate 749 * 750 * folio_mark_lazyfree() moves @folio to the inactive file list. 751 * This is done to accelerate the reclaim of @folio. 752 */ 753 void folio_mark_lazyfree(struct folio *folio) 754 { 755 if (folio_test_anon(folio) && folio_test_swapbacked(folio) && 756 !folio_test_swapcache(folio) && !folio_test_unevictable(folio)) { 757 struct folio_batch *fbatch; 758 759 folio_get(folio); 760 if (!folio_test_clear_lru(folio)) { 761 folio_put(folio); 762 return; 763 } 764 765 local_lock(&cpu_fbatches.lock); 766 fbatch = this_cpu_ptr(&cpu_fbatches.lru_lazyfree); 767 folio_batch_add_and_move(fbatch, folio, lru_lazyfree_fn); 768 local_unlock(&cpu_fbatches.lock); 769 } 770 } 771 772 void lru_add_drain(void) 773 { 774 local_lock(&cpu_fbatches.lock); 775 lru_add_drain_cpu(smp_processor_id()); 776 local_unlock(&cpu_fbatches.lock); 777 mlock_drain_local(); 778 } 779 780 /* 781 * It's called from per-cpu workqueue context in SMP case so 782 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on 783 * the same cpu. It shouldn't be a problem in !SMP case since 784 * the core is only one and the locks will disable preemption. 785 */ 786 static void lru_add_and_bh_lrus_drain(void) 787 { 788 local_lock(&cpu_fbatches.lock); 789 lru_add_drain_cpu(smp_processor_id()); 790 local_unlock(&cpu_fbatches.lock); 791 invalidate_bh_lrus_cpu(); 792 mlock_drain_local(); 793 } 794 795 void lru_add_drain_cpu_zone(struct zone *zone) 796 { 797 local_lock(&cpu_fbatches.lock); 798 lru_add_drain_cpu(smp_processor_id()); 799 drain_local_pages(zone); 800 local_unlock(&cpu_fbatches.lock); 801 mlock_drain_local(); 802 } 803 804 #ifdef CONFIG_SMP 805 806 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); 807 808 static void lru_add_drain_per_cpu(struct work_struct *dummy) 809 { 810 lru_add_and_bh_lrus_drain(); 811 } 812 813 static bool cpu_needs_drain(unsigned int cpu) 814 { 815 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu); 816 817 /* Check these in order of likelihood that they're not zero */ 818 return folio_batch_count(&fbatches->lru_add) || 819 data_race(folio_batch_count(&per_cpu(lru_rotate.fbatch, cpu))) || 820 folio_batch_count(&fbatches->lru_deactivate_file) || 821 folio_batch_count(&fbatches->lru_deactivate) || 822 folio_batch_count(&fbatches->lru_lazyfree) || 823 folio_batch_count(&fbatches->activate) || 824 need_mlock_drain(cpu) || 825 has_bh_in_lru(cpu, NULL); 826 } 827 828 /* 829 * Doesn't need any cpu hotplug locking because we do rely on per-cpu 830 * kworkers being shut down before our page_alloc_cpu_dead callback is 831 * executed on the offlined cpu. 832 * Calling this function with cpu hotplug locks held can actually lead 833 * to obscure indirect dependencies via WQ context. 834 */ 835 static inline void __lru_add_drain_all(bool force_all_cpus) 836 { 837 /* 838 * lru_drain_gen - Global pages generation number 839 * 840 * (A) Definition: global lru_drain_gen = x implies that all generations 841 * 0 < n <= x are already *scheduled* for draining. 842 * 843 * This is an optimization for the highly-contended use case where a 844 * user space workload keeps constantly generating a flow of pages for 845 * each CPU. 846 */ 847 static unsigned int lru_drain_gen; 848 static struct cpumask has_work; 849 static DEFINE_MUTEX(lock); 850 unsigned cpu, this_gen; 851 852 /* 853 * Make sure nobody triggers this path before mm_percpu_wq is fully 854 * initialized. 855 */ 856 if (WARN_ON(!mm_percpu_wq)) 857 return; 858 859 /* 860 * Guarantee folio_batch counter stores visible by this CPU 861 * are visible to other CPUs before loading the current drain 862 * generation. 863 */ 864 smp_mb(); 865 866 /* 867 * (B) Locally cache global LRU draining generation number 868 * 869 * The read barrier ensures that the counter is loaded before the mutex 870 * is taken. It pairs with smp_mb() inside the mutex critical section 871 * at (D). 872 */ 873 this_gen = smp_load_acquire(&lru_drain_gen); 874 875 mutex_lock(&lock); 876 877 /* 878 * (C) Exit the draining operation if a newer generation, from another 879 * lru_add_drain_all(), was already scheduled for draining. Check (A). 880 */ 881 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus)) 882 goto done; 883 884 /* 885 * (D) Increment global generation number 886 * 887 * Pairs with smp_load_acquire() at (B), outside of the critical 888 * section. Use a full memory barrier to guarantee that the 889 * new global drain generation number is stored before loading 890 * folio_batch counters. 891 * 892 * This pairing must be done here, before the for_each_online_cpu loop 893 * below which drains the page vectors. 894 * 895 * Let x, y, and z represent some system CPU numbers, where x < y < z. 896 * Assume CPU #z is in the middle of the for_each_online_cpu loop 897 * below and has already reached CPU #y's per-cpu data. CPU #x comes 898 * along, adds some pages to its per-cpu vectors, then calls 899 * lru_add_drain_all(). 900 * 901 * If the paired barrier is done at any later step, e.g. after the 902 * loop, CPU #x will just exit at (C) and miss flushing out all of its 903 * added pages. 904 */ 905 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1); 906 smp_mb(); 907 908 cpumask_clear(&has_work); 909 for_each_online_cpu(cpu) { 910 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); 911 912 if (cpu_needs_drain(cpu)) { 913 INIT_WORK(work, lru_add_drain_per_cpu); 914 queue_work_on(cpu, mm_percpu_wq, work); 915 __cpumask_set_cpu(cpu, &has_work); 916 } 917 } 918 919 for_each_cpu(cpu, &has_work) 920 flush_work(&per_cpu(lru_add_drain_work, cpu)); 921 922 done: 923 mutex_unlock(&lock); 924 } 925 926 void lru_add_drain_all(void) 927 { 928 __lru_add_drain_all(false); 929 } 930 #else 931 void lru_add_drain_all(void) 932 { 933 lru_add_drain(); 934 } 935 #endif /* CONFIG_SMP */ 936 937 atomic_t lru_disable_count = ATOMIC_INIT(0); 938 939 /* 940 * lru_cache_disable() needs to be called before we start compiling 941 * a list of pages to be migrated using isolate_lru_page(). 942 * It drains pages on LRU cache and then disable on all cpus until 943 * lru_cache_enable is called. 944 * 945 * Must be paired with a call to lru_cache_enable(). 946 */ 947 void lru_cache_disable(void) 948 { 949 atomic_inc(&lru_disable_count); 950 /* 951 * Readers of lru_disable_count are protected by either disabling 952 * preemption or rcu_read_lock: 953 * 954 * preempt_disable, local_irq_disable [bh_lru_lock()] 955 * rcu_read_lock [rt_spin_lock CONFIG_PREEMPT_RT] 956 * preempt_disable [local_lock !CONFIG_PREEMPT_RT] 957 * 958 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on 959 * preempt_disable() regions of code. So any CPU which sees 960 * lru_disable_count = 0 will have exited the critical 961 * section when synchronize_rcu() returns. 962 */ 963 synchronize_rcu_expedited(); 964 #ifdef CONFIG_SMP 965 __lru_add_drain_all(true); 966 #else 967 lru_add_and_bh_lrus_drain(); 968 #endif 969 } 970 971 /** 972 * folios_put_refs - Reduce the reference count on a batch of folios. 973 * @folios: The folios. 974 * @refs: The number of refs to subtract from each folio. 975 * 976 * Like folio_put(), but for a batch of folios. This is more efficient 977 * than writing the loop yourself as it will optimise the locks which need 978 * to be taken if the folios are freed. The folios batch is returned 979 * empty and ready to be reused for another batch; there is no need 980 * to reinitialise it. If @refs is NULL, we subtract one from each 981 * folio refcount. 982 * 983 * Context: May be called in process or interrupt context, but not in NMI 984 * context. May be called while holding a spinlock. 985 */ 986 void folios_put_refs(struct folio_batch *folios, unsigned int *refs) 987 { 988 int i, j; 989 struct lruvec *lruvec = NULL; 990 unsigned long flags = 0; 991 992 for (i = 0, j = 0; i < folios->nr; i++) { 993 struct folio *folio = folios->folios[i]; 994 unsigned int nr_refs = refs ? refs[i] : 1; 995 996 if (is_huge_zero_folio(folio)) 997 continue; 998 999 if (folio_is_zone_device(folio)) { 1000 if (lruvec) { 1001 unlock_page_lruvec_irqrestore(lruvec, flags); 1002 lruvec = NULL; 1003 } 1004 if (put_devmap_managed_folio_refs(folio, nr_refs)) 1005 continue; 1006 if (folio_ref_sub_and_test(folio, nr_refs)) 1007 free_zone_device_folio(folio); 1008 continue; 1009 } 1010 1011 if (!folio_ref_sub_and_test(folio, nr_refs)) 1012 continue; 1013 1014 /* hugetlb has its own memcg */ 1015 if (folio_test_hugetlb(folio)) { 1016 if (lruvec) { 1017 unlock_page_lruvec_irqrestore(lruvec, flags); 1018 lruvec = NULL; 1019 } 1020 free_huge_folio(folio); 1021 continue; 1022 } 1023 folio_undo_large_rmappable(folio); 1024 __page_cache_release(folio, &lruvec, &flags); 1025 1026 if (j != i) 1027 folios->folios[j] = folio; 1028 j++; 1029 } 1030 if (lruvec) 1031 unlock_page_lruvec_irqrestore(lruvec, flags); 1032 if (!j) { 1033 folio_batch_reinit(folios); 1034 return; 1035 } 1036 1037 folios->nr = j; 1038 mem_cgroup_uncharge_folios(folios); 1039 free_unref_folios(folios); 1040 } 1041 EXPORT_SYMBOL(folios_put_refs); 1042 1043 /** 1044 * release_pages - batched put_page() 1045 * @arg: array of pages to release 1046 * @nr: number of pages 1047 * 1048 * Decrement the reference count on all the pages in @arg. If it 1049 * fell to zero, remove the page from the LRU and free it. 1050 * 1051 * Note that the argument can be an array of pages, encoded pages, 1052 * or folio pointers. We ignore any encoded bits, and turn any of 1053 * them into just a folio that gets free'd. 1054 */ 1055 void release_pages(release_pages_arg arg, int nr) 1056 { 1057 struct folio_batch fbatch; 1058 int refs[PAGEVEC_SIZE]; 1059 struct encoded_page **encoded = arg.encoded_pages; 1060 int i; 1061 1062 folio_batch_init(&fbatch); 1063 for (i = 0; i < nr; i++) { 1064 /* Turn any of the argument types into a folio */ 1065 struct folio *folio = page_folio(encoded_page_ptr(encoded[i])); 1066 1067 /* Is our next entry actually "nr_pages" -> "nr_refs" ? */ 1068 refs[fbatch.nr] = 1; 1069 if (unlikely(encoded_page_flags(encoded[i]) & 1070 ENCODED_PAGE_BIT_NR_PAGES_NEXT)) 1071 refs[fbatch.nr] = encoded_nr_pages(encoded[++i]); 1072 1073 if (folio_batch_add(&fbatch, folio) > 0) 1074 continue; 1075 folios_put_refs(&fbatch, refs); 1076 } 1077 1078 if (fbatch.nr) 1079 folios_put_refs(&fbatch, refs); 1080 } 1081 EXPORT_SYMBOL(release_pages); 1082 1083 /* 1084 * The folios which we're about to release may be in the deferred lru-addition 1085 * queues. That would prevent them from really being freed right now. That's 1086 * OK from a correctness point of view but is inefficient - those folios may be 1087 * cache-warm and we want to give them back to the page allocator ASAP. 1088 * 1089 * So __folio_batch_release() will drain those queues here. 1090 * folio_batch_move_lru() calls folios_put() directly to avoid 1091 * mutual recursion. 1092 */ 1093 void __folio_batch_release(struct folio_batch *fbatch) 1094 { 1095 if (!fbatch->percpu_pvec_drained) { 1096 lru_add_drain(); 1097 fbatch->percpu_pvec_drained = true; 1098 } 1099 folios_put(fbatch); 1100 } 1101 EXPORT_SYMBOL(__folio_batch_release); 1102 1103 /** 1104 * folio_batch_remove_exceptionals() - Prune non-folios from a batch. 1105 * @fbatch: The batch to prune 1106 * 1107 * find_get_entries() fills a batch with both folios and shadow/swap/DAX 1108 * entries. This function prunes all the non-folio entries from @fbatch 1109 * without leaving holes, so that it can be passed on to folio-only batch 1110 * operations. 1111 */ 1112 void folio_batch_remove_exceptionals(struct folio_batch *fbatch) 1113 { 1114 unsigned int i, j; 1115 1116 for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) { 1117 struct folio *folio = fbatch->folios[i]; 1118 if (!xa_is_value(folio)) 1119 fbatch->folios[j++] = folio; 1120 } 1121 fbatch->nr = j; 1122 } 1123 1124 /* 1125 * Perform any setup for the swap system 1126 */ 1127 void __init swap_setup(void) 1128 { 1129 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT); 1130 1131 /* Use a smaller cluster for small-memory machines */ 1132 if (megs < 16) 1133 page_cluster = 2; 1134 else 1135 page_cluster = 3; 1136 /* 1137 * Right now other parts of the system means that we 1138 * _really_ don't want to cluster much more 1139 */ 1140 } 1141