xref: /linux/mm/swap.c (revision 5e8d780d745c1619aba81fe7166c5a4b5cad2b84)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the opereation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page() */
27 #include <linux/module.h>
28 #include <linux/percpu_counter.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/init.h>
33 
34 /* How many pages do we try to swap or page in/out together? */
35 int page_cluster;
36 
37 static void put_compound_page(struct page *page)
38 {
39 	page = (struct page *)page_private(page);
40 	if (put_page_testzero(page)) {
41 		void (*dtor)(struct page *page);
42 
43 		dtor = (void (*)(struct page *))page[1].lru.next;
44 		(*dtor)(page);
45 	}
46 }
47 
48 void put_page(struct page *page)
49 {
50 	if (unlikely(PageCompound(page)))
51 		put_compound_page(page);
52 	else if (put_page_testzero(page))
53 		__page_cache_release(page);
54 }
55 EXPORT_SYMBOL(put_page);
56 
57 /*
58  * Writeback is about to end against a page which has been marked for immediate
59  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
60  * inactive list.  The page still has PageWriteback set, which will pin it.
61  *
62  * We don't expect many pages to come through here, so don't bother batching
63  * things up.
64  *
65  * To avoid placing the page at the tail of the LRU while PG_writeback is still
66  * set, this function will clear PG_writeback before performing the page
67  * motion.  Do that inside the lru lock because once PG_writeback is cleared
68  * we may not touch the page.
69  *
70  * Returns zero if it cleared PG_writeback.
71  */
72 int rotate_reclaimable_page(struct page *page)
73 {
74 	struct zone *zone;
75 	unsigned long flags;
76 
77 	if (PageLocked(page))
78 		return 1;
79 	if (PageDirty(page))
80 		return 1;
81 	if (PageActive(page))
82 		return 1;
83 	if (!PageLRU(page))
84 		return 1;
85 
86 	zone = page_zone(page);
87 	spin_lock_irqsave(&zone->lru_lock, flags);
88 	if (PageLRU(page) && !PageActive(page)) {
89 		list_move_tail(&page->lru, &zone->inactive_list);
90 		__count_vm_event(PGROTATED);
91 	}
92 	if (!test_clear_page_writeback(page))
93 		BUG();
94 	spin_unlock_irqrestore(&zone->lru_lock, flags);
95 	return 0;
96 }
97 
98 /*
99  * FIXME: speed this up?
100  */
101 void fastcall activate_page(struct page *page)
102 {
103 	struct zone *zone = page_zone(page);
104 
105 	spin_lock_irq(&zone->lru_lock);
106 	if (PageLRU(page) && !PageActive(page)) {
107 		del_page_from_inactive_list(zone, page);
108 		SetPageActive(page);
109 		add_page_to_active_list(zone, page);
110 		__count_vm_event(PGACTIVATE);
111 	}
112 	spin_unlock_irq(&zone->lru_lock);
113 }
114 
115 /*
116  * Mark a page as having seen activity.
117  *
118  * inactive,unreferenced	->	inactive,referenced
119  * inactive,referenced		->	active,unreferenced
120  * active,unreferenced		->	active,referenced
121  */
122 void fastcall mark_page_accessed(struct page *page)
123 {
124 	if (!PageActive(page) && PageReferenced(page) && PageLRU(page)) {
125 		activate_page(page);
126 		ClearPageReferenced(page);
127 	} else if (!PageReferenced(page)) {
128 		SetPageReferenced(page);
129 	}
130 }
131 
132 EXPORT_SYMBOL(mark_page_accessed);
133 
134 /**
135  * lru_cache_add: add a page to the page lists
136  * @page: the page to add
137  */
138 static DEFINE_PER_CPU(struct pagevec, lru_add_pvecs) = { 0, };
139 static DEFINE_PER_CPU(struct pagevec, lru_add_active_pvecs) = { 0, };
140 
141 void fastcall lru_cache_add(struct page *page)
142 {
143 	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs);
144 
145 	page_cache_get(page);
146 	if (!pagevec_add(pvec, page))
147 		__pagevec_lru_add(pvec);
148 	put_cpu_var(lru_add_pvecs);
149 }
150 
151 void fastcall lru_cache_add_active(struct page *page)
152 {
153 	struct pagevec *pvec = &get_cpu_var(lru_add_active_pvecs);
154 
155 	page_cache_get(page);
156 	if (!pagevec_add(pvec, page))
157 		__pagevec_lru_add_active(pvec);
158 	put_cpu_var(lru_add_active_pvecs);
159 }
160 
161 static void __lru_add_drain(int cpu)
162 {
163 	struct pagevec *pvec = &per_cpu(lru_add_pvecs, cpu);
164 
165 	/* CPU is dead, so no locking needed. */
166 	if (pagevec_count(pvec))
167 		__pagevec_lru_add(pvec);
168 	pvec = &per_cpu(lru_add_active_pvecs, cpu);
169 	if (pagevec_count(pvec))
170 		__pagevec_lru_add_active(pvec);
171 }
172 
173 void lru_add_drain(void)
174 {
175 	__lru_add_drain(get_cpu());
176 	put_cpu();
177 }
178 
179 #ifdef CONFIG_NUMA
180 static void lru_add_drain_per_cpu(void *dummy)
181 {
182 	lru_add_drain();
183 }
184 
185 /*
186  * Returns 0 for success
187  */
188 int lru_add_drain_all(void)
189 {
190 	return schedule_on_each_cpu(lru_add_drain_per_cpu, NULL);
191 }
192 
193 #else
194 
195 /*
196  * Returns 0 for success
197  */
198 int lru_add_drain_all(void)
199 {
200 	lru_add_drain();
201 	return 0;
202 }
203 #endif
204 
205 /*
206  * This path almost never happens for VM activity - pages are normally
207  * freed via pagevecs.  But it gets used by networking.
208  */
209 void fastcall __page_cache_release(struct page *page)
210 {
211 	if (PageLRU(page)) {
212 		unsigned long flags;
213 		struct zone *zone = page_zone(page);
214 
215 		spin_lock_irqsave(&zone->lru_lock, flags);
216 		BUG_ON(!PageLRU(page));
217 		__ClearPageLRU(page);
218 		del_page_from_lru(zone, page);
219 		spin_unlock_irqrestore(&zone->lru_lock, flags);
220 	}
221 	free_hot_page(page);
222 }
223 EXPORT_SYMBOL(__page_cache_release);
224 
225 /*
226  * Batched page_cache_release().  Decrement the reference count on all the
227  * passed pages.  If it fell to zero then remove the page from the LRU and
228  * free it.
229  *
230  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
231  * for the remainder of the operation.
232  *
233  * The locking in this function is against shrink_cache(): we recheck the
234  * page count inside the lock to see whether shrink_cache grabbed the page
235  * via the LRU.  If it did, give up: shrink_cache will free it.
236  */
237 void release_pages(struct page **pages, int nr, int cold)
238 {
239 	int i;
240 	struct pagevec pages_to_free;
241 	struct zone *zone = NULL;
242 
243 	pagevec_init(&pages_to_free, cold);
244 	for (i = 0; i < nr; i++) {
245 		struct page *page = pages[i];
246 
247 		if (unlikely(PageCompound(page))) {
248 			if (zone) {
249 				spin_unlock_irq(&zone->lru_lock);
250 				zone = NULL;
251 			}
252 			put_compound_page(page);
253 			continue;
254 		}
255 
256 		if (!put_page_testzero(page))
257 			continue;
258 
259 		if (PageLRU(page)) {
260 			struct zone *pagezone = page_zone(page);
261 			if (pagezone != zone) {
262 				if (zone)
263 					spin_unlock_irq(&zone->lru_lock);
264 				zone = pagezone;
265 				spin_lock_irq(&zone->lru_lock);
266 			}
267 			BUG_ON(!PageLRU(page));
268 			__ClearPageLRU(page);
269 			del_page_from_lru(zone, page);
270 		}
271 
272 		if (!pagevec_add(&pages_to_free, page)) {
273 			if (zone) {
274 				spin_unlock_irq(&zone->lru_lock);
275 				zone = NULL;
276 			}
277 			__pagevec_free(&pages_to_free);
278 			pagevec_reinit(&pages_to_free);
279   		}
280 	}
281 	if (zone)
282 		spin_unlock_irq(&zone->lru_lock);
283 
284 	pagevec_free(&pages_to_free);
285 }
286 
287 /*
288  * The pages which we're about to release may be in the deferred lru-addition
289  * queues.  That would prevent them from really being freed right now.  That's
290  * OK from a correctness point of view but is inefficient - those pages may be
291  * cache-warm and we want to give them back to the page allocator ASAP.
292  *
293  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
294  * and __pagevec_lru_add_active() call release_pages() directly to avoid
295  * mutual recursion.
296  */
297 void __pagevec_release(struct pagevec *pvec)
298 {
299 	lru_add_drain();
300 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
301 	pagevec_reinit(pvec);
302 }
303 
304 EXPORT_SYMBOL(__pagevec_release);
305 
306 /*
307  * pagevec_release() for pages which are known to not be on the LRU
308  *
309  * This function reinitialises the caller's pagevec.
310  */
311 void __pagevec_release_nonlru(struct pagevec *pvec)
312 {
313 	int i;
314 	struct pagevec pages_to_free;
315 
316 	pagevec_init(&pages_to_free, pvec->cold);
317 	for (i = 0; i < pagevec_count(pvec); i++) {
318 		struct page *page = pvec->pages[i];
319 
320 		BUG_ON(PageLRU(page));
321 		if (put_page_testzero(page))
322 			pagevec_add(&pages_to_free, page);
323 	}
324 	pagevec_free(&pages_to_free);
325 	pagevec_reinit(pvec);
326 }
327 
328 /*
329  * Add the passed pages to the LRU, then drop the caller's refcount
330  * on them.  Reinitialises the caller's pagevec.
331  */
332 void __pagevec_lru_add(struct pagevec *pvec)
333 {
334 	int i;
335 	struct zone *zone = NULL;
336 
337 	for (i = 0; i < pagevec_count(pvec); i++) {
338 		struct page *page = pvec->pages[i];
339 		struct zone *pagezone = page_zone(page);
340 
341 		if (pagezone != zone) {
342 			if (zone)
343 				spin_unlock_irq(&zone->lru_lock);
344 			zone = pagezone;
345 			spin_lock_irq(&zone->lru_lock);
346 		}
347 		BUG_ON(PageLRU(page));
348 		SetPageLRU(page);
349 		add_page_to_inactive_list(zone, page);
350 	}
351 	if (zone)
352 		spin_unlock_irq(&zone->lru_lock);
353 	release_pages(pvec->pages, pvec->nr, pvec->cold);
354 	pagevec_reinit(pvec);
355 }
356 
357 EXPORT_SYMBOL(__pagevec_lru_add);
358 
359 void __pagevec_lru_add_active(struct pagevec *pvec)
360 {
361 	int i;
362 	struct zone *zone = NULL;
363 
364 	for (i = 0; i < pagevec_count(pvec); i++) {
365 		struct page *page = pvec->pages[i];
366 		struct zone *pagezone = page_zone(page);
367 
368 		if (pagezone != zone) {
369 			if (zone)
370 				spin_unlock_irq(&zone->lru_lock);
371 			zone = pagezone;
372 			spin_lock_irq(&zone->lru_lock);
373 		}
374 		BUG_ON(PageLRU(page));
375 		SetPageLRU(page);
376 		BUG_ON(PageActive(page));
377 		SetPageActive(page);
378 		add_page_to_active_list(zone, page);
379 	}
380 	if (zone)
381 		spin_unlock_irq(&zone->lru_lock);
382 	release_pages(pvec->pages, pvec->nr, pvec->cold);
383 	pagevec_reinit(pvec);
384 }
385 
386 /*
387  * Try to drop buffers from the pages in a pagevec
388  */
389 void pagevec_strip(struct pagevec *pvec)
390 {
391 	int i;
392 
393 	for (i = 0; i < pagevec_count(pvec); i++) {
394 		struct page *page = pvec->pages[i];
395 
396 		if (PagePrivate(page) && !TestSetPageLocked(page)) {
397 			if (PagePrivate(page))
398 				try_to_release_page(page, 0);
399 			unlock_page(page);
400 		}
401 	}
402 }
403 
404 /**
405  * pagevec_lookup - gang pagecache lookup
406  * @pvec:	Where the resulting pages are placed
407  * @mapping:	The address_space to search
408  * @start:	The starting page index
409  * @nr_pages:	The maximum number of pages
410  *
411  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
412  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
413  * reference against the pages in @pvec.
414  *
415  * The search returns a group of mapping-contiguous pages with ascending
416  * indexes.  There may be holes in the indices due to not-present pages.
417  *
418  * pagevec_lookup() returns the number of pages which were found.
419  */
420 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
421 		pgoff_t start, unsigned nr_pages)
422 {
423 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
424 	return pagevec_count(pvec);
425 }
426 
427 EXPORT_SYMBOL(pagevec_lookup);
428 
429 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
430 		pgoff_t *index, int tag, unsigned nr_pages)
431 {
432 	pvec->nr = find_get_pages_tag(mapping, index, tag,
433 					nr_pages, pvec->pages);
434 	return pagevec_count(pvec);
435 }
436 
437 EXPORT_SYMBOL(pagevec_lookup_tag);
438 
439 #ifdef CONFIG_SMP
440 /*
441  * We tolerate a little inaccuracy to avoid ping-ponging the counter between
442  * CPUs
443  */
444 #define ACCT_THRESHOLD	max(16, NR_CPUS * 2)
445 
446 static DEFINE_PER_CPU(long, committed_space) = 0;
447 
448 void vm_acct_memory(long pages)
449 {
450 	long *local;
451 
452 	preempt_disable();
453 	local = &__get_cpu_var(committed_space);
454 	*local += pages;
455 	if (*local > ACCT_THRESHOLD || *local < -ACCT_THRESHOLD) {
456 		atomic_add(*local, &vm_committed_space);
457 		*local = 0;
458 	}
459 	preempt_enable();
460 }
461 
462 #ifdef CONFIG_HOTPLUG_CPU
463 
464 /* Drop the CPU's cached committed space back into the central pool. */
465 static int cpu_swap_callback(struct notifier_block *nfb,
466 			     unsigned long action,
467 			     void *hcpu)
468 {
469 	long *committed;
470 
471 	committed = &per_cpu(committed_space, (long)hcpu);
472 	if (action == CPU_DEAD) {
473 		atomic_add(*committed, &vm_committed_space);
474 		*committed = 0;
475 		__lru_add_drain((long)hcpu);
476 	}
477 	return NOTIFY_OK;
478 }
479 #endif /* CONFIG_HOTPLUG_CPU */
480 #endif /* CONFIG_SMP */
481 
482 /*
483  * Perform any setup for the swap system
484  */
485 void __init swap_setup(void)
486 {
487 	unsigned long megs = num_physpages >> (20 - PAGE_SHIFT);
488 
489 	/* Use a smaller cluster for small-memory machines */
490 	if (megs < 16)
491 		page_cluster = 2;
492 	else
493 		page_cluster = 3;
494 	/*
495 	 * Right now other parts of the system means that we
496 	 * _really_ don't want to cluster much more
497 	 */
498 	hotcpu_notifier(cpu_swap_callback, 0);
499 }
500