xref: /linux/mm/swap.c (revision 5bb6ba448fe3598a7668838942db1f008beb581b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swap.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * This file contains the default values for the operation of the
10  * Linux VM subsystem. Fine-tuning documentation can be found in
11  * Documentation/admin-guide/sysctl/vm.rst.
12  * Started 18.12.91
13  * Swap aging added 23.2.95, Stephen Tweedie.
14  * Buffermem limits added 12.3.98, Rik van Riel.
15  */
16 
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
40 
41 #include "internal.h"
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
45 
46 /* How many pages do we try to swap or page in/out together? As a power of 2 */
47 int page_cluster;
48 const int page_cluster_max = 31;
49 
50 struct cpu_fbatches {
51 	/*
52 	 * The following folio batches are grouped together because they are protected
53 	 * by disabling preemption (and interrupts remain enabled).
54 	 */
55 	local_lock_t lock;
56 	struct folio_batch lru_add;
57 	struct folio_batch lru_deactivate_file;
58 	struct folio_batch lru_deactivate;
59 	struct folio_batch lru_lazyfree;
60 #ifdef CONFIG_SMP
61 	struct folio_batch lru_activate;
62 #endif
63 	/* Protecting the following batches which require disabling interrupts */
64 	local_lock_t lock_irq;
65 	struct folio_batch lru_move_tail;
66 };
67 
68 static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
69 	.lock = INIT_LOCAL_LOCK(lock),
70 	.lock_irq = INIT_LOCAL_LOCK(lock_irq),
71 };
72 
73 static void __page_cache_release(struct folio *folio, struct lruvec **lruvecp,
74 		unsigned long *flagsp)
75 {
76 	if (folio_test_lru(folio)) {
77 		folio_lruvec_relock_irqsave(folio, lruvecp, flagsp);
78 		lruvec_del_folio(*lruvecp, folio);
79 		__folio_clear_lru_flags(folio);
80 	}
81 }
82 
83 /*
84  * This path almost never happens for VM activity - pages are normally freed
85  * in batches.  But it gets used by networking - and for compound pages.
86  */
87 static void page_cache_release(struct folio *folio)
88 {
89 	struct lruvec *lruvec = NULL;
90 	unsigned long flags;
91 
92 	__page_cache_release(folio, &lruvec, &flags);
93 	if (lruvec)
94 		unlock_page_lruvec_irqrestore(lruvec, flags);
95 }
96 
97 void __folio_put(struct folio *folio)
98 {
99 	if (unlikely(folio_is_zone_device(folio))) {
100 		free_zone_device_folio(folio);
101 		return;
102 	}
103 
104 	if (folio_test_hugetlb(folio)) {
105 		free_huge_folio(folio);
106 		return;
107 	}
108 
109 	page_cache_release(folio);
110 	folio_unqueue_deferred_split(folio);
111 	mem_cgroup_uncharge(folio);
112 	free_unref_page(&folio->page, folio_order(folio));
113 }
114 EXPORT_SYMBOL(__folio_put);
115 
116 /**
117  * put_pages_list() - release a list of pages
118  * @pages: list of pages threaded on page->lru
119  *
120  * Release a list of pages which are strung together on page.lru.
121  */
122 void put_pages_list(struct list_head *pages)
123 {
124 	struct folio_batch fbatch;
125 	struct folio *folio, *next;
126 
127 	folio_batch_init(&fbatch);
128 	list_for_each_entry_safe(folio, next, pages, lru) {
129 		if (!folio_put_testzero(folio))
130 			continue;
131 		if (folio_test_hugetlb(folio)) {
132 			free_huge_folio(folio);
133 			continue;
134 		}
135 		/* LRU flag must be clear because it's passed using the lru */
136 		if (folio_batch_add(&fbatch, folio) > 0)
137 			continue;
138 		free_unref_folios(&fbatch);
139 	}
140 
141 	if (fbatch.nr)
142 		free_unref_folios(&fbatch);
143 	INIT_LIST_HEAD(pages);
144 }
145 EXPORT_SYMBOL(put_pages_list);
146 
147 typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
148 
149 static void lru_add(struct lruvec *lruvec, struct folio *folio)
150 {
151 	int was_unevictable = folio_test_clear_unevictable(folio);
152 	long nr_pages = folio_nr_pages(folio);
153 
154 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
155 
156 	/*
157 	 * Is an smp_mb__after_atomic() still required here, before
158 	 * folio_evictable() tests the mlocked flag, to rule out the possibility
159 	 * of stranding an evictable folio on an unevictable LRU?  I think
160 	 * not, because __munlock_folio() only clears the mlocked flag
161 	 * while the LRU lock is held.
162 	 *
163 	 * (That is not true of __page_cache_release(), and not necessarily
164 	 * true of folios_put(): but those only clear the mlocked flag after
165 	 * folio_put_testzero() has excluded any other users of the folio.)
166 	 */
167 	if (folio_evictable(folio)) {
168 		if (was_unevictable)
169 			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
170 	} else {
171 		folio_clear_active(folio);
172 		folio_set_unevictable(folio);
173 		/*
174 		 * folio->mlock_count = !!folio_test_mlocked(folio)?
175 		 * But that leaves __mlock_folio() in doubt whether another
176 		 * actor has already counted the mlock or not.  Err on the
177 		 * safe side, underestimate, let page reclaim fix it, rather
178 		 * than leaving a page on the unevictable LRU indefinitely.
179 		 */
180 		folio->mlock_count = 0;
181 		if (!was_unevictable)
182 			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
183 	}
184 
185 	lruvec_add_folio(lruvec, folio);
186 	trace_mm_lru_insertion(folio);
187 }
188 
189 static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
190 {
191 	int i;
192 	struct lruvec *lruvec = NULL;
193 	unsigned long flags = 0;
194 
195 	for (i = 0; i < folio_batch_count(fbatch); i++) {
196 		struct folio *folio = fbatch->folios[i];
197 
198 		folio_lruvec_relock_irqsave(folio, &lruvec, &flags);
199 		move_fn(lruvec, folio);
200 
201 		folio_set_lru(folio);
202 	}
203 
204 	if (lruvec)
205 		unlock_page_lruvec_irqrestore(lruvec, flags);
206 	folios_put(fbatch);
207 }
208 
209 static void __folio_batch_add_and_move(struct folio_batch __percpu *fbatch,
210 		struct folio *folio, move_fn_t move_fn,
211 		bool on_lru, bool disable_irq)
212 {
213 	unsigned long flags;
214 
215 	if (on_lru && !folio_test_clear_lru(folio))
216 		return;
217 
218 	folio_get(folio);
219 
220 	if (disable_irq)
221 		local_lock_irqsave(&cpu_fbatches.lock_irq, flags);
222 	else
223 		local_lock(&cpu_fbatches.lock);
224 
225 	if (!folio_batch_add(this_cpu_ptr(fbatch), folio) || folio_test_large(folio) ||
226 	    lru_cache_disabled())
227 		folio_batch_move_lru(this_cpu_ptr(fbatch), move_fn);
228 
229 	if (disable_irq)
230 		local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags);
231 	else
232 		local_unlock(&cpu_fbatches.lock);
233 }
234 
235 #define folio_batch_add_and_move(folio, op, on_lru)						\
236 	__folio_batch_add_and_move(								\
237 		&cpu_fbatches.op,								\
238 		folio,										\
239 		op,										\
240 		on_lru,										\
241 		offsetof(struct cpu_fbatches, op) >= offsetof(struct cpu_fbatches, lock_irq)	\
242 	)
243 
244 static void lru_move_tail(struct lruvec *lruvec, struct folio *folio)
245 {
246 	if (folio_test_unevictable(folio))
247 		return;
248 
249 	lruvec_del_folio(lruvec, folio);
250 	folio_clear_active(folio);
251 	lruvec_add_folio_tail(lruvec, folio);
252 	__count_vm_events(PGROTATED, folio_nr_pages(folio));
253 }
254 
255 /*
256  * Writeback is about to end against a folio which has been marked for
257  * immediate reclaim.  If it still appears to be reclaimable, move it
258  * to the tail of the inactive list.
259  *
260  * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
261  */
262 void folio_rotate_reclaimable(struct folio *folio)
263 {
264 	if (folio_test_locked(folio) || folio_test_dirty(folio) ||
265 	    folio_test_unevictable(folio))
266 		return;
267 
268 	folio_batch_add_and_move(folio, lru_move_tail, true);
269 }
270 
271 void lru_note_cost(struct lruvec *lruvec, bool file,
272 		   unsigned int nr_io, unsigned int nr_rotated)
273 {
274 	unsigned long cost;
275 
276 	/*
277 	 * Reflect the relative cost of incurring IO and spending CPU
278 	 * time on rotations. This doesn't attempt to make a precise
279 	 * comparison, it just says: if reloads are about comparable
280 	 * between the LRU lists, or rotations are overwhelmingly
281 	 * different between them, adjust scan balance for CPU work.
282 	 */
283 	cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
284 
285 	do {
286 		unsigned long lrusize;
287 
288 		/*
289 		 * Hold lruvec->lru_lock is safe here, since
290 		 * 1) The pinned lruvec in reclaim, or
291 		 * 2) From a pre-LRU page during refault (which also holds the
292 		 *    rcu lock, so would be safe even if the page was on the LRU
293 		 *    and could move simultaneously to a new lruvec).
294 		 */
295 		spin_lock_irq(&lruvec->lru_lock);
296 		/* Record cost event */
297 		if (file)
298 			lruvec->file_cost += cost;
299 		else
300 			lruvec->anon_cost += cost;
301 
302 		/*
303 		 * Decay previous events
304 		 *
305 		 * Because workloads change over time (and to avoid
306 		 * overflow) we keep these statistics as a floating
307 		 * average, which ends up weighing recent refaults
308 		 * more than old ones.
309 		 */
310 		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
311 			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
312 			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
313 			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
314 
315 		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
316 			lruvec->file_cost /= 2;
317 			lruvec->anon_cost /= 2;
318 		}
319 		spin_unlock_irq(&lruvec->lru_lock);
320 	} while ((lruvec = parent_lruvec(lruvec)));
321 }
322 
323 void lru_note_cost_refault(struct folio *folio)
324 {
325 	lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
326 		      folio_nr_pages(folio), 0);
327 }
328 
329 static void lru_activate(struct lruvec *lruvec, struct folio *folio)
330 {
331 	long nr_pages = folio_nr_pages(folio);
332 
333 	if (folio_test_active(folio) || folio_test_unevictable(folio))
334 		return;
335 
336 
337 	lruvec_del_folio(lruvec, folio);
338 	folio_set_active(folio);
339 	lruvec_add_folio(lruvec, folio);
340 	trace_mm_lru_activate(folio);
341 
342 	__count_vm_events(PGACTIVATE, nr_pages);
343 	__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, nr_pages);
344 }
345 
346 #ifdef CONFIG_SMP
347 static void folio_activate_drain(int cpu)
348 {
349 	struct folio_batch *fbatch = &per_cpu(cpu_fbatches.lru_activate, cpu);
350 
351 	if (folio_batch_count(fbatch))
352 		folio_batch_move_lru(fbatch, lru_activate);
353 }
354 
355 void folio_activate(struct folio *folio)
356 {
357 	if (folio_test_active(folio) || folio_test_unevictable(folio))
358 		return;
359 
360 	folio_batch_add_and_move(folio, lru_activate, true);
361 }
362 
363 #else
364 static inline void folio_activate_drain(int cpu)
365 {
366 }
367 
368 void folio_activate(struct folio *folio)
369 {
370 	struct lruvec *lruvec;
371 
372 	if (!folio_test_clear_lru(folio))
373 		return;
374 
375 	lruvec = folio_lruvec_lock_irq(folio);
376 	lru_activate(lruvec, folio);
377 	unlock_page_lruvec_irq(lruvec);
378 	folio_set_lru(folio);
379 }
380 #endif
381 
382 static void __lru_cache_activate_folio(struct folio *folio)
383 {
384 	struct folio_batch *fbatch;
385 	int i;
386 
387 	local_lock(&cpu_fbatches.lock);
388 	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
389 
390 	/*
391 	 * Search backwards on the optimistic assumption that the folio being
392 	 * activated has just been added to this batch. Note that only
393 	 * the local batch is examined as a !LRU folio could be in the
394 	 * process of being released, reclaimed, migrated or on a remote
395 	 * batch that is currently being drained. Furthermore, marking
396 	 * a remote batch's folio active potentially hits a race where
397 	 * a folio is marked active just after it is added to the inactive
398 	 * list causing accounting errors and BUG_ON checks to trigger.
399 	 */
400 	for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
401 		struct folio *batch_folio = fbatch->folios[i];
402 
403 		if (batch_folio == folio) {
404 			folio_set_active(folio);
405 			break;
406 		}
407 	}
408 
409 	local_unlock(&cpu_fbatches.lock);
410 }
411 
412 #ifdef CONFIG_LRU_GEN
413 static void folio_inc_refs(struct folio *folio)
414 {
415 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
416 
417 	if (folio_test_unevictable(folio))
418 		return;
419 
420 	if (!folio_test_referenced(folio)) {
421 		folio_set_referenced(folio);
422 		return;
423 	}
424 
425 	if (!folio_test_workingset(folio)) {
426 		folio_set_workingset(folio);
427 		return;
428 	}
429 
430 	/* see the comment on MAX_NR_TIERS */
431 	do {
432 		new_flags = old_flags & LRU_REFS_MASK;
433 		if (new_flags == LRU_REFS_MASK)
434 			break;
435 
436 		new_flags += BIT(LRU_REFS_PGOFF);
437 		new_flags |= old_flags & ~LRU_REFS_MASK;
438 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
439 }
440 #else
441 static void folio_inc_refs(struct folio *folio)
442 {
443 }
444 #endif /* CONFIG_LRU_GEN */
445 
446 /**
447  * folio_mark_accessed - Mark a folio as having seen activity.
448  * @folio: The folio to mark.
449  *
450  * This function will perform one of the following transitions:
451  *
452  * * inactive,unreferenced	->	inactive,referenced
453  * * inactive,referenced	->	active,unreferenced
454  * * active,unreferenced	->	active,referenced
455  *
456  * When a newly allocated folio is not yet visible, so safe for non-atomic ops,
457  * __folio_set_referenced() may be substituted for folio_mark_accessed().
458  */
459 void folio_mark_accessed(struct folio *folio)
460 {
461 	if (lru_gen_enabled()) {
462 		folio_inc_refs(folio);
463 		return;
464 	}
465 
466 	if (!folio_test_referenced(folio)) {
467 		folio_set_referenced(folio);
468 	} else if (folio_test_unevictable(folio)) {
469 		/*
470 		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
471 		 * this list is never rotated or maintained, so marking an
472 		 * unevictable page accessed has no effect.
473 		 */
474 	} else if (!folio_test_active(folio)) {
475 		/*
476 		 * If the folio is on the LRU, queue it for activation via
477 		 * cpu_fbatches.lru_activate. Otherwise, assume the folio is in a
478 		 * folio_batch, mark it active and it'll be moved to the active
479 		 * LRU on the next drain.
480 		 */
481 		if (folio_test_lru(folio))
482 			folio_activate(folio);
483 		else
484 			__lru_cache_activate_folio(folio);
485 		folio_clear_referenced(folio);
486 		workingset_activation(folio);
487 	}
488 	if (folio_test_idle(folio))
489 		folio_clear_idle(folio);
490 }
491 EXPORT_SYMBOL(folio_mark_accessed);
492 
493 /**
494  * folio_add_lru - Add a folio to an LRU list.
495  * @folio: The folio to be added to the LRU.
496  *
497  * Queue the folio for addition to the LRU. The decision on whether
498  * to add the page to the [in]active [file|anon] list is deferred until the
499  * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
500  * have the folio added to the active list using folio_mark_accessed().
501  */
502 void folio_add_lru(struct folio *folio)
503 {
504 	VM_BUG_ON_FOLIO(folio_test_active(folio) &&
505 			folio_test_unevictable(folio), folio);
506 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
507 
508 	/* see the comment in lru_gen_add_folio() */
509 	if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
510 	    lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
511 		folio_set_active(folio);
512 
513 	folio_batch_add_and_move(folio, lru_add, false);
514 }
515 EXPORT_SYMBOL(folio_add_lru);
516 
517 /**
518  * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
519  * @folio: The folio to be added to the LRU.
520  * @vma: VMA in which the folio is mapped.
521  *
522  * If the VMA is mlocked, @folio is added to the unevictable list.
523  * Otherwise, it is treated the same way as folio_add_lru().
524  */
525 void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
526 {
527 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
528 
529 	if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
530 		mlock_new_folio(folio);
531 	else
532 		folio_add_lru(folio);
533 }
534 
535 /*
536  * If the folio cannot be invalidated, it is moved to the
537  * inactive list to speed up its reclaim.  It is moved to the
538  * head of the list, rather than the tail, to give the flusher
539  * threads some time to write it out, as this is much more
540  * effective than the single-page writeout from reclaim.
541  *
542  * If the folio isn't mapped and dirty/writeback, the folio
543  * could be reclaimed asap using the reclaim flag.
544  *
545  * 1. active, mapped folio -> none
546  * 2. active, dirty/writeback folio -> inactive, head, reclaim
547  * 3. inactive, mapped folio -> none
548  * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
549  * 5. inactive, clean -> inactive, tail
550  * 6. Others -> none
551  *
552  * In 4, it moves to the head of the inactive list so the folio is
553  * written out by flusher threads as this is much more efficient
554  * than the single-page writeout from reclaim.
555  */
556 static void lru_deactivate_file(struct lruvec *lruvec, struct folio *folio)
557 {
558 	bool active = folio_test_active(folio);
559 	long nr_pages = folio_nr_pages(folio);
560 
561 	if (folio_test_unevictable(folio))
562 		return;
563 
564 	/* Some processes are using the folio */
565 	if (folio_mapped(folio))
566 		return;
567 
568 	lruvec_del_folio(lruvec, folio);
569 	folio_clear_active(folio);
570 	folio_clear_referenced(folio);
571 
572 	if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
573 		/*
574 		 * Setting the reclaim flag could race with
575 		 * folio_end_writeback() and confuse readahead.  But the
576 		 * race window is _really_ small and  it's not a critical
577 		 * problem.
578 		 */
579 		lruvec_add_folio(lruvec, folio);
580 		folio_set_reclaim(folio);
581 	} else {
582 		/*
583 		 * The folio's writeback ended while it was in the batch.
584 		 * We move that folio to the tail of the inactive list.
585 		 */
586 		lruvec_add_folio_tail(lruvec, folio);
587 		__count_vm_events(PGROTATED, nr_pages);
588 	}
589 
590 	if (active) {
591 		__count_vm_events(PGDEACTIVATE, nr_pages);
592 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
593 				     nr_pages);
594 	}
595 }
596 
597 static void lru_deactivate(struct lruvec *lruvec, struct folio *folio)
598 {
599 	long nr_pages = folio_nr_pages(folio);
600 
601 	if (folio_test_unevictable(folio) || !(folio_test_active(folio) || lru_gen_enabled()))
602 		return;
603 
604 	lruvec_del_folio(lruvec, folio);
605 	folio_clear_active(folio);
606 	folio_clear_referenced(folio);
607 	lruvec_add_folio(lruvec, folio);
608 
609 	__count_vm_events(PGDEACTIVATE, nr_pages);
610 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_pages);
611 }
612 
613 static void lru_lazyfree(struct lruvec *lruvec, struct folio *folio)
614 {
615 	long nr_pages = folio_nr_pages(folio);
616 
617 	if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) ||
618 	    folio_test_swapcache(folio) || folio_test_unevictable(folio))
619 		return;
620 
621 	lruvec_del_folio(lruvec, folio);
622 	folio_clear_active(folio);
623 	folio_clear_referenced(folio);
624 	/*
625 	 * Lazyfree folios are clean anonymous folios.  They have
626 	 * the swapbacked flag cleared, to distinguish them from normal
627 	 * anonymous folios
628 	 */
629 	folio_clear_swapbacked(folio);
630 	lruvec_add_folio(lruvec, folio);
631 
632 	__count_vm_events(PGLAZYFREE, nr_pages);
633 	__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, nr_pages);
634 }
635 
636 /*
637  * Drain pages out of the cpu's folio_batch.
638  * Either "cpu" is the current CPU, and preemption has already been
639  * disabled; or "cpu" is being hot-unplugged, and is already dead.
640  */
641 void lru_add_drain_cpu(int cpu)
642 {
643 	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
644 	struct folio_batch *fbatch = &fbatches->lru_add;
645 
646 	if (folio_batch_count(fbatch))
647 		folio_batch_move_lru(fbatch, lru_add);
648 
649 	fbatch = &fbatches->lru_move_tail;
650 	/* Disabling interrupts below acts as a compiler barrier. */
651 	if (data_race(folio_batch_count(fbatch))) {
652 		unsigned long flags;
653 
654 		/* No harm done if a racing interrupt already did this */
655 		local_lock_irqsave(&cpu_fbatches.lock_irq, flags);
656 		folio_batch_move_lru(fbatch, lru_move_tail);
657 		local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags);
658 	}
659 
660 	fbatch = &fbatches->lru_deactivate_file;
661 	if (folio_batch_count(fbatch))
662 		folio_batch_move_lru(fbatch, lru_deactivate_file);
663 
664 	fbatch = &fbatches->lru_deactivate;
665 	if (folio_batch_count(fbatch))
666 		folio_batch_move_lru(fbatch, lru_deactivate);
667 
668 	fbatch = &fbatches->lru_lazyfree;
669 	if (folio_batch_count(fbatch))
670 		folio_batch_move_lru(fbatch, lru_lazyfree);
671 
672 	folio_activate_drain(cpu);
673 }
674 
675 /**
676  * deactivate_file_folio() - Deactivate a file folio.
677  * @folio: Folio to deactivate.
678  *
679  * This function hints to the VM that @folio is a good reclaim candidate,
680  * for example if its invalidation fails due to the folio being dirty
681  * or under writeback.
682  *
683  * Context: Caller holds a reference on the folio.
684  */
685 void deactivate_file_folio(struct folio *folio)
686 {
687 	/* Deactivating an unevictable folio will not accelerate reclaim */
688 	if (folio_test_unevictable(folio))
689 		return;
690 
691 	folio_batch_add_and_move(folio, lru_deactivate_file, true);
692 }
693 
694 /*
695  * folio_deactivate - deactivate a folio
696  * @folio: folio to deactivate
697  *
698  * folio_deactivate() moves @folio to the inactive list if @folio was on the
699  * active list and was not unevictable. This is done to accelerate the
700  * reclaim of @folio.
701  */
702 void folio_deactivate(struct folio *folio)
703 {
704 	if (folio_test_unevictable(folio) || !(folio_test_active(folio) || lru_gen_enabled()))
705 		return;
706 
707 	folio_batch_add_and_move(folio, lru_deactivate, true);
708 }
709 
710 /**
711  * folio_mark_lazyfree - make an anon folio lazyfree
712  * @folio: folio to deactivate
713  *
714  * folio_mark_lazyfree() moves @folio to the inactive file list.
715  * This is done to accelerate the reclaim of @folio.
716  */
717 void folio_mark_lazyfree(struct folio *folio)
718 {
719 	if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) ||
720 	    folio_test_swapcache(folio) || folio_test_unevictable(folio))
721 		return;
722 
723 	folio_batch_add_and_move(folio, lru_lazyfree, true);
724 }
725 
726 void lru_add_drain(void)
727 {
728 	local_lock(&cpu_fbatches.lock);
729 	lru_add_drain_cpu(smp_processor_id());
730 	local_unlock(&cpu_fbatches.lock);
731 	mlock_drain_local();
732 }
733 
734 /*
735  * It's called from per-cpu workqueue context in SMP case so
736  * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
737  * the same cpu. It shouldn't be a problem in !SMP case since
738  * the core is only one and the locks will disable preemption.
739  */
740 static void lru_add_and_bh_lrus_drain(void)
741 {
742 	local_lock(&cpu_fbatches.lock);
743 	lru_add_drain_cpu(smp_processor_id());
744 	local_unlock(&cpu_fbatches.lock);
745 	invalidate_bh_lrus_cpu();
746 	mlock_drain_local();
747 }
748 
749 void lru_add_drain_cpu_zone(struct zone *zone)
750 {
751 	local_lock(&cpu_fbatches.lock);
752 	lru_add_drain_cpu(smp_processor_id());
753 	drain_local_pages(zone);
754 	local_unlock(&cpu_fbatches.lock);
755 	mlock_drain_local();
756 }
757 
758 #ifdef CONFIG_SMP
759 
760 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
761 
762 static void lru_add_drain_per_cpu(struct work_struct *dummy)
763 {
764 	lru_add_and_bh_lrus_drain();
765 }
766 
767 static bool cpu_needs_drain(unsigned int cpu)
768 {
769 	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
770 
771 	/* Check these in order of likelihood that they're not zero */
772 	return folio_batch_count(&fbatches->lru_add) ||
773 		folio_batch_count(&fbatches->lru_move_tail) ||
774 		folio_batch_count(&fbatches->lru_deactivate_file) ||
775 		folio_batch_count(&fbatches->lru_deactivate) ||
776 		folio_batch_count(&fbatches->lru_lazyfree) ||
777 		folio_batch_count(&fbatches->lru_activate) ||
778 		need_mlock_drain(cpu) ||
779 		has_bh_in_lru(cpu, NULL);
780 }
781 
782 /*
783  * Doesn't need any cpu hotplug locking because we do rely on per-cpu
784  * kworkers being shut down before our page_alloc_cpu_dead callback is
785  * executed on the offlined cpu.
786  * Calling this function with cpu hotplug locks held can actually lead
787  * to obscure indirect dependencies via WQ context.
788  */
789 static inline void __lru_add_drain_all(bool force_all_cpus)
790 {
791 	/*
792 	 * lru_drain_gen - Global pages generation number
793 	 *
794 	 * (A) Definition: global lru_drain_gen = x implies that all generations
795 	 *     0 < n <= x are already *scheduled* for draining.
796 	 *
797 	 * This is an optimization for the highly-contended use case where a
798 	 * user space workload keeps constantly generating a flow of pages for
799 	 * each CPU.
800 	 */
801 	static unsigned int lru_drain_gen;
802 	static struct cpumask has_work;
803 	static DEFINE_MUTEX(lock);
804 	unsigned cpu, this_gen;
805 
806 	/*
807 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
808 	 * initialized.
809 	 */
810 	if (WARN_ON(!mm_percpu_wq))
811 		return;
812 
813 	/*
814 	 * Guarantee folio_batch counter stores visible by this CPU
815 	 * are visible to other CPUs before loading the current drain
816 	 * generation.
817 	 */
818 	smp_mb();
819 
820 	/*
821 	 * (B) Locally cache global LRU draining generation number
822 	 *
823 	 * The read barrier ensures that the counter is loaded before the mutex
824 	 * is taken. It pairs with smp_mb() inside the mutex critical section
825 	 * at (D).
826 	 */
827 	this_gen = smp_load_acquire(&lru_drain_gen);
828 
829 	mutex_lock(&lock);
830 
831 	/*
832 	 * (C) Exit the draining operation if a newer generation, from another
833 	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
834 	 */
835 	if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
836 		goto done;
837 
838 	/*
839 	 * (D) Increment global generation number
840 	 *
841 	 * Pairs with smp_load_acquire() at (B), outside of the critical
842 	 * section. Use a full memory barrier to guarantee that the
843 	 * new global drain generation number is stored before loading
844 	 * folio_batch counters.
845 	 *
846 	 * This pairing must be done here, before the for_each_online_cpu loop
847 	 * below which drains the page vectors.
848 	 *
849 	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
850 	 * Assume CPU #z is in the middle of the for_each_online_cpu loop
851 	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
852 	 * along, adds some pages to its per-cpu vectors, then calls
853 	 * lru_add_drain_all().
854 	 *
855 	 * If the paired barrier is done at any later step, e.g. after the
856 	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
857 	 * added pages.
858 	 */
859 	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
860 	smp_mb();
861 
862 	cpumask_clear(&has_work);
863 	for_each_online_cpu(cpu) {
864 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
865 
866 		if (cpu_needs_drain(cpu)) {
867 			INIT_WORK(work, lru_add_drain_per_cpu);
868 			queue_work_on(cpu, mm_percpu_wq, work);
869 			__cpumask_set_cpu(cpu, &has_work);
870 		}
871 	}
872 
873 	for_each_cpu(cpu, &has_work)
874 		flush_work(&per_cpu(lru_add_drain_work, cpu));
875 
876 done:
877 	mutex_unlock(&lock);
878 }
879 
880 void lru_add_drain_all(void)
881 {
882 	__lru_add_drain_all(false);
883 }
884 #else
885 void lru_add_drain_all(void)
886 {
887 	lru_add_drain();
888 }
889 #endif /* CONFIG_SMP */
890 
891 atomic_t lru_disable_count = ATOMIC_INIT(0);
892 
893 /*
894  * lru_cache_disable() needs to be called before we start compiling
895  * a list of folios to be migrated using folio_isolate_lru().
896  * It drains folios on LRU cache and then disable on all cpus until
897  * lru_cache_enable is called.
898  *
899  * Must be paired with a call to lru_cache_enable().
900  */
901 void lru_cache_disable(void)
902 {
903 	atomic_inc(&lru_disable_count);
904 	/*
905 	 * Readers of lru_disable_count are protected by either disabling
906 	 * preemption or rcu_read_lock:
907 	 *
908 	 * preempt_disable, local_irq_disable  [bh_lru_lock()]
909 	 * rcu_read_lock		       [rt_spin_lock CONFIG_PREEMPT_RT]
910 	 * preempt_disable		       [local_lock !CONFIG_PREEMPT_RT]
911 	 *
912 	 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
913 	 * preempt_disable() regions of code. So any CPU which sees
914 	 * lru_disable_count = 0 will have exited the critical
915 	 * section when synchronize_rcu() returns.
916 	 */
917 	synchronize_rcu_expedited();
918 #ifdef CONFIG_SMP
919 	__lru_add_drain_all(true);
920 #else
921 	lru_add_and_bh_lrus_drain();
922 #endif
923 }
924 
925 /**
926  * folios_put_refs - Reduce the reference count on a batch of folios.
927  * @folios: The folios.
928  * @refs: The number of refs to subtract from each folio.
929  *
930  * Like folio_put(), but for a batch of folios.  This is more efficient
931  * than writing the loop yourself as it will optimise the locks which need
932  * to be taken if the folios are freed.  The folios batch is returned
933  * empty and ready to be reused for another batch; there is no need
934  * to reinitialise it.  If @refs is NULL, we subtract one from each
935  * folio refcount.
936  *
937  * Context: May be called in process or interrupt context, but not in NMI
938  * context.  May be called while holding a spinlock.
939  */
940 void folios_put_refs(struct folio_batch *folios, unsigned int *refs)
941 {
942 	int i, j;
943 	struct lruvec *lruvec = NULL;
944 	unsigned long flags = 0;
945 
946 	for (i = 0, j = 0; i < folios->nr; i++) {
947 		struct folio *folio = folios->folios[i];
948 		unsigned int nr_refs = refs ? refs[i] : 1;
949 
950 		if (is_huge_zero_folio(folio))
951 			continue;
952 
953 		if (folio_is_zone_device(folio)) {
954 			if (lruvec) {
955 				unlock_page_lruvec_irqrestore(lruvec, flags);
956 				lruvec = NULL;
957 			}
958 			if (put_devmap_managed_folio_refs(folio, nr_refs))
959 				continue;
960 			if (folio_ref_sub_and_test(folio, nr_refs))
961 				free_zone_device_folio(folio);
962 			continue;
963 		}
964 
965 		if (!folio_ref_sub_and_test(folio, nr_refs))
966 			continue;
967 
968 		/* hugetlb has its own memcg */
969 		if (folio_test_hugetlb(folio)) {
970 			if (lruvec) {
971 				unlock_page_lruvec_irqrestore(lruvec, flags);
972 				lruvec = NULL;
973 			}
974 			free_huge_folio(folio);
975 			continue;
976 		}
977 		folio_unqueue_deferred_split(folio);
978 		__page_cache_release(folio, &lruvec, &flags);
979 
980 		if (j != i)
981 			folios->folios[j] = folio;
982 		j++;
983 	}
984 	if (lruvec)
985 		unlock_page_lruvec_irqrestore(lruvec, flags);
986 	if (!j) {
987 		folio_batch_reinit(folios);
988 		return;
989 	}
990 
991 	folios->nr = j;
992 	mem_cgroup_uncharge_folios(folios);
993 	free_unref_folios(folios);
994 }
995 EXPORT_SYMBOL(folios_put_refs);
996 
997 /**
998  * release_pages - batched put_page()
999  * @arg: array of pages to release
1000  * @nr: number of pages
1001  *
1002  * Decrement the reference count on all the pages in @arg.  If it
1003  * fell to zero, remove the page from the LRU and free it.
1004  *
1005  * Note that the argument can be an array of pages, encoded pages,
1006  * or folio pointers. We ignore any encoded bits, and turn any of
1007  * them into just a folio that gets free'd.
1008  */
1009 void release_pages(release_pages_arg arg, int nr)
1010 {
1011 	struct folio_batch fbatch;
1012 	int refs[PAGEVEC_SIZE];
1013 	struct encoded_page **encoded = arg.encoded_pages;
1014 	int i;
1015 
1016 	folio_batch_init(&fbatch);
1017 	for (i = 0; i < nr; i++) {
1018 		/* Turn any of the argument types into a folio */
1019 		struct folio *folio = page_folio(encoded_page_ptr(encoded[i]));
1020 
1021 		/* Is our next entry actually "nr_pages" -> "nr_refs" ? */
1022 		refs[fbatch.nr] = 1;
1023 		if (unlikely(encoded_page_flags(encoded[i]) &
1024 			     ENCODED_PAGE_BIT_NR_PAGES_NEXT))
1025 			refs[fbatch.nr] = encoded_nr_pages(encoded[++i]);
1026 
1027 		if (folio_batch_add(&fbatch, folio) > 0)
1028 			continue;
1029 		folios_put_refs(&fbatch, refs);
1030 	}
1031 
1032 	if (fbatch.nr)
1033 		folios_put_refs(&fbatch, refs);
1034 }
1035 EXPORT_SYMBOL(release_pages);
1036 
1037 /*
1038  * The folios which we're about to release may be in the deferred lru-addition
1039  * queues.  That would prevent them from really being freed right now.  That's
1040  * OK from a correctness point of view but is inefficient - those folios may be
1041  * cache-warm and we want to give them back to the page allocator ASAP.
1042  *
1043  * So __folio_batch_release() will drain those queues here.
1044  * folio_batch_move_lru() calls folios_put() directly to avoid
1045  * mutual recursion.
1046  */
1047 void __folio_batch_release(struct folio_batch *fbatch)
1048 {
1049 	if (!fbatch->percpu_pvec_drained) {
1050 		lru_add_drain();
1051 		fbatch->percpu_pvec_drained = true;
1052 	}
1053 	folios_put(fbatch);
1054 }
1055 EXPORT_SYMBOL(__folio_batch_release);
1056 
1057 /**
1058  * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1059  * @fbatch: The batch to prune
1060  *
1061  * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1062  * entries.  This function prunes all the non-folio entries from @fbatch
1063  * without leaving holes, so that it can be passed on to folio-only batch
1064  * operations.
1065  */
1066 void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1067 {
1068 	unsigned int i, j;
1069 
1070 	for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1071 		struct folio *folio = fbatch->folios[i];
1072 		if (!xa_is_value(folio))
1073 			fbatch->folios[j++] = folio;
1074 	}
1075 	fbatch->nr = j;
1076 }
1077 
1078 /*
1079  * Perform any setup for the swap system
1080  */
1081 void __init swap_setup(void)
1082 {
1083 	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1084 
1085 	/* Use a smaller cluster for small-memory machines */
1086 	if (megs < 16)
1087 		page_cluster = 2;
1088 	else
1089 		page_cluster = 3;
1090 	/*
1091 	 * Right now other parts of the system means that we
1092 	 * _really_ don't want to cluster much more
1093 	 */
1094 }
1095