1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swap.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * This file contains the default values for the operation of the 10 * Linux VM subsystem. Fine-tuning documentation can be found in 11 * Documentation/admin-guide/sysctl/vm.rst. 12 * Started 18.12.91 13 * Swap aging added 23.2.95, Stephen Tweedie. 14 * Buffermem limits added 12.3.98, Rik van Riel. 15 */ 16 17 #include <linux/mm.h> 18 #include <linux/sched.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/mman.h> 22 #include <linux/pagemap.h> 23 #include <linux/pagevec.h> 24 #include <linux/init.h> 25 #include <linux/export.h> 26 #include <linux/mm_inline.h> 27 #include <linux/percpu_counter.h> 28 #include <linux/memremap.h> 29 #include <linux/percpu.h> 30 #include <linux/cpu.h> 31 #include <linux/notifier.h> 32 #include <linux/backing-dev.h> 33 #include <linux/memcontrol.h> 34 #include <linux/gfp.h> 35 #include <linux/uio.h> 36 #include <linux/hugetlb.h> 37 #include <linux/page_idle.h> 38 #include <linux/local_lock.h> 39 #include <linux/buffer_head.h> 40 41 #include "internal.h" 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/pagemap.h> 45 46 /* How many pages do we try to swap or page in/out together? As a power of 2 */ 47 int page_cluster; 48 const int page_cluster_max = 31; 49 50 struct cpu_fbatches { 51 /* 52 * The following folio batches are grouped together because they are protected 53 * by disabling preemption (and interrupts remain enabled). 54 */ 55 local_lock_t lock; 56 struct folio_batch lru_add; 57 struct folio_batch lru_deactivate_file; 58 struct folio_batch lru_deactivate; 59 struct folio_batch lru_lazyfree; 60 #ifdef CONFIG_SMP 61 struct folio_batch lru_activate; 62 #endif 63 /* Protecting the following batches which require disabling interrupts */ 64 local_lock_t lock_irq; 65 struct folio_batch lru_move_tail; 66 }; 67 68 static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = { 69 .lock = INIT_LOCAL_LOCK(lock), 70 .lock_irq = INIT_LOCAL_LOCK(lock_irq), 71 }; 72 73 static void __page_cache_release(struct folio *folio, struct lruvec **lruvecp, 74 unsigned long *flagsp) 75 { 76 if (folio_test_lru(folio)) { 77 folio_lruvec_relock_irqsave(folio, lruvecp, flagsp); 78 lruvec_del_folio(*lruvecp, folio); 79 __folio_clear_lru_flags(folio); 80 } 81 82 /* 83 * In rare cases, when truncation or holepunching raced with 84 * munlock after VM_LOCKED was cleared, Mlocked may still be 85 * found set here. This does not indicate a problem, unless 86 * "unevictable_pgs_cleared" appears worryingly large. 87 */ 88 if (unlikely(folio_test_mlocked(folio))) { 89 long nr_pages = folio_nr_pages(folio); 90 91 __folio_clear_mlocked(folio); 92 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages); 93 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); 94 } 95 } 96 97 /* 98 * This path almost never happens for VM activity - pages are normally freed 99 * in batches. But it gets used by networking - and for compound pages. 100 */ 101 static void page_cache_release(struct folio *folio) 102 { 103 struct lruvec *lruvec = NULL; 104 unsigned long flags; 105 106 __page_cache_release(folio, &lruvec, &flags); 107 if (lruvec) 108 unlock_page_lruvec_irqrestore(lruvec, flags); 109 } 110 111 void __folio_put(struct folio *folio) 112 { 113 if (unlikely(folio_is_zone_device(folio))) { 114 free_zone_device_folio(folio); 115 return; 116 } 117 118 if (folio_test_hugetlb(folio)) { 119 free_huge_folio(folio); 120 return; 121 } 122 123 page_cache_release(folio); 124 folio_undo_large_rmappable(folio); 125 mem_cgroup_uncharge(folio); 126 free_unref_page(&folio->page, folio_order(folio)); 127 } 128 EXPORT_SYMBOL(__folio_put); 129 130 /** 131 * put_pages_list() - release a list of pages 132 * @pages: list of pages threaded on page->lru 133 * 134 * Release a list of pages which are strung together on page.lru. 135 */ 136 void put_pages_list(struct list_head *pages) 137 { 138 struct folio_batch fbatch; 139 struct folio *folio, *next; 140 141 folio_batch_init(&fbatch); 142 list_for_each_entry_safe(folio, next, pages, lru) { 143 if (!folio_put_testzero(folio)) 144 continue; 145 if (folio_test_hugetlb(folio)) { 146 free_huge_folio(folio); 147 continue; 148 } 149 /* LRU flag must be clear because it's passed using the lru */ 150 if (folio_batch_add(&fbatch, folio) > 0) 151 continue; 152 free_unref_folios(&fbatch); 153 } 154 155 if (fbatch.nr) 156 free_unref_folios(&fbatch); 157 INIT_LIST_HEAD(pages); 158 } 159 EXPORT_SYMBOL(put_pages_list); 160 161 typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio); 162 163 static void lru_add(struct lruvec *lruvec, struct folio *folio) 164 { 165 int was_unevictable = folio_test_clear_unevictable(folio); 166 long nr_pages = folio_nr_pages(folio); 167 168 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 169 170 /* 171 * Is an smp_mb__after_atomic() still required here, before 172 * folio_evictable() tests the mlocked flag, to rule out the possibility 173 * of stranding an evictable folio on an unevictable LRU? I think 174 * not, because __munlock_folio() only clears the mlocked flag 175 * while the LRU lock is held. 176 * 177 * (That is not true of __page_cache_release(), and not necessarily 178 * true of folios_put(): but those only clear the mlocked flag after 179 * folio_put_testzero() has excluded any other users of the folio.) 180 */ 181 if (folio_evictable(folio)) { 182 if (was_unevictable) 183 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages); 184 } else { 185 folio_clear_active(folio); 186 folio_set_unevictable(folio); 187 /* 188 * folio->mlock_count = !!folio_test_mlocked(folio)? 189 * But that leaves __mlock_folio() in doubt whether another 190 * actor has already counted the mlock or not. Err on the 191 * safe side, underestimate, let page reclaim fix it, rather 192 * than leaving a page on the unevictable LRU indefinitely. 193 */ 194 folio->mlock_count = 0; 195 if (!was_unevictable) 196 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages); 197 } 198 199 lruvec_add_folio(lruvec, folio); 200 trace_mm_lru_insertion(folio); 201 } 202 203 static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn) 204 { 205 int i; 206 struct lruvec *lruvec = NULL; 207 unsigned long flags = 0; 208 209 for (i = 0; i < folio_batch_count(fbatch); i++) { 210 struct folio *folio = fbatch->folios[i]; 211 212 folio_lruvec_relock_irqsave(folio, &lruvec, &flags); 213 move_fn(lruvec, folio); 214 215 folio_set_lru(folio); 216 } 217 218 if (lruvec) 219 unlock_page_lruvec_irqrestore(lruvec, flags); 220 folios_put(fbatch); 221 } 222 223 static void __folio_batch_add_and_move(struct folio_batch __percpu *fbatch, 224 struct folio *folio, move_fn_t move_fn, 225 bool on_lru, bool disable_irq) 226 { 227 unsigned long flags; 228 229 if (on_lru && !folio_test_clear_lru(folio)) 230 return; 231 232 folio_get(folio); 233 234 if (disable_irq) 235 local_lock_irqsave(&cpu_fbatches.lock_irq, flags); 236 else 237 local_lock(&cpu_fbatches.lock); 238 239 if (!folio_batch_add(this_cpu_ptr(fbatch), folio) || folio_test_large(folio) || 240 lru_cache_disabled()) 241 folio_batch_move_lru(this_cpu_ptr(fbatch), move_fn); 242 243 if (disable_irq) 244 local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags); 245 else 246 local_unlock(&cpu_fbatches.lock); 247 } 248 249 #define folio_batch_add_and_move(folio, op, on_lru) \ 250 __folio_batch_add_and_move( \ 251 &cpu_fbatches.op, \ 252 folio, \ 253 op, \ 254 on_lru, \ 255 offsetof(struct cpu_fbatches, op) >= offsetof(struct cpu_fbatches, lock_irq) \ 256 ) 257 258 static void lru_move_tail(struct lruvec *lruvec, struct folio *folio) 259 { 260 if (folio_test_unevictable(folio)) 261 return; 262 263 lruvec_del_folio(lruvec, folio); 264 folio_clear_active(folio); 265 lruvec_add_folio_tail(lruvec, folio); 266 __count_vm_events(PGROTATED, folio_nr_pages(folio)); 267 } 268 269 /* 270 * Writeback is about to end against a folio which has been marked for 271 * immediate reclaim. If it still appears to be reclaimable, move it 272 * to the tail of the inactive list. 273 * 274 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races. 275 */ 276 void folio_rotate_reclaimable(struct folio *folio) 277 { 278 if (folio_test_locked(folio) || folio_test_dirty(folio) || 279 folio_test_unevictable(folio)) 280 return; 281 282 folio_batch_add_and_move(folio, lru_move_tail, true); 283 } 284 285 void lru_note_cost(struct lruvec *lruvec, bool file, 286 unsigned int nr_io, unsigned int nr_rotated) 287 { 288 unsigned long cost; 289 290 /* 291 * Reflect the relative cost of incurring IO and spending CPU 292 * time on rotations. This doesn't attempt to make a precise 293 * comparison, it just says: if reloads are about comparable 294 * between the LRU lists, or rotations are overwhelmingly 295 * different between them, adjust scan balance for CPU work. 296 */ 297 cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated; 298 299 do { 300 unsigned long lrusize; 301 302 /* 303 * Hold lruvec->lru_lock is safe here, since 304 * 1) The pinned lruvec in reclaim, or 305 * 2) From a pre-LRU page during refault (which also holds the 306 * rcu lock, so would be safe even if the page was on the LRU 307 * and could move simultaneously to a new lruvec). 308 */ 309 spin_lock_irq(&lruvec->lru_lock); 310 /* Record cost event */ 311 if (file) 312 lruvec->file_cost += cost; 313 else 314 lruvec->anon_cost += cost; 315 316 /* 317 * Decay previous events 318 * 319 * Because workloads change over time (and to avoid 320 * overflow) we keep these statistics as a floating 321 * average, which ends up weighing recent refaults 322 * more than old ones. 323 */ 324 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) + 325 lruvec_page_state(lruvec, NR_ACTIVE_ANON) + 326 lruvec_page_state(lruvec, NR_INACTIVE_FILE) + 327 lruvec_page_state(lruvec, NR_ACTIVE_FILE); 328 329 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) { 330 lruvec->file_cost /= 2; 331 lruvec->anon_cost /= 2; 332 } 333 spin_unlock_irq(&lruvec->lru_lock); 334 } while ((lruvec = parent_lruvec(lruvec))); 335 } 336 337 void lru_note_cost_refault(struct folio *folio) 338 { 339 lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio), 340 folio_nr_pages(folio), 0); 341 } 342 343 static void lru_activate(struct lruvec *lruvec, struct folio *folio) 344 { 345 long nr_pages = folio_nr_pages(folio); 346 347 if (folio_test_active(folio) || folio_test_unevictable(folio)) 348 return; 349 350 351 lruvec_del_folio(lruvec, folio); 352 folio_set_active(folio); 353 lruvec_add_folio(lruvec, folio); 354 trace_mm_lru_activate(folio); 355 356 __count_vm_events(PGACTIVATE, nr_pages); 357 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, nr_pages); 358 } 359 360 #ifdef CONFIG_SMP 361 static void folio_activate_drain(int cpu) 362 { 363 struct folio_batch *fbatch = &per_cpu(cpu_fbatches.lru_activate, cpu); 364 365 if (folio_batch_count(fbatch)) 366 folio_batch_move_lru(fbatch, lru_activate); 367 } 368 369 void folio_activate(struct folio *folio) 370 { 371 if (folio_test_active(folio) || folio_test_unevictable(folio)) 372 return; 373 374 folio_batch_add_and_move(folio, lru_activate, true); 375 } 376 377 #else 378 static inline void folio_activate_drain(int cpu) 379 { 380 } 381 382 void folio_activate(struct folio *folio) 383 { 384 struct lruvec *lruvec; 385 386 if (!folio_test_clear_lru(folio)) 387 return; 388 389 lruvec = folio_lruvec_lock_irq(folio); 390 lru_activate(lruvec, folio); 391 unlock_page_lruvec_irq(lruvec); 392 folio_set_lru(folio); 393 } 394 #endif 395 396 static void __lru_cache_activate_folio(struct folio *folio) 397 { 398 struct folio_batch *fbatch; 399 int i; 400 401 local_lock(&cpu_fbatches.lock); 402 fbatch = this_cpu_ptr(&cpu_fbatches.lru_add); 403 404 /* 405 * Search backwards on the optimistic assumption that the folio being 406 * activated has just been added to this batch. Note that only 407 * the local batch is examined as a !LRU folio could be in the 408 * process of being released, reclaimed, migrated or on a remote 409 * batch that is currently being drained. Furthermore, marking 410 * a remote batch's folio active potentially hits a race where 411 * a folio is marked active just after it is added to the inactive 412 * list causing accounting errors and BUG_ON checks to trigger. 413 */ 414 for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) { 415 struct folio *batch_folio = fbatch->folios[i]; 416 417 if (batch_folio == folio) { 418 folio_set_active(folio); 419 break; 420 } 421 } 422 423 local_unlock(&cpu_fbatches.lock); 424 } 425 426 #ifdef CONFIG_LRU_GEN 427 static void folio_inc_refs(struct folio *folio) 428 { 429 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 430 431 if (folio_test_unevictable(folio)) 432 return; 433 434 if (!folio_test_referenced(folio)) { 435 folio_set_referenced(folio); 436 return; 437 } 438 439 if (!folio_test_workingset(folio)) { 440 folio_set_workingset(folio); 441 return; 442 } 443 444 /* see the comment on MAX_NR_TIERS */ 445 do { 446 new_flags = old_flags & LRU_REFS_MASK; 447 if (new_flags == LRU_REFS_MASK) 448 break; 449 450 new_flags += BIT(LRU_REFS_PGOFF); 451 new_flags |= old_flags & ~LRU_REFS_MASK; 452 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 453 } 454 #else 455 static void folio_inc_refs(struct folio *folio) 456 { 457 } 458 #endif /* CONFIG_LRU_GEN */ 459 460 /** 461 * folio_mark_accessed - Mark a folio as having seen activity. 462 * @folio: The folio to mark. 463 * 464 * This function will perform one of the following transitions: 465 * 466 * * inactive,unreferenced -> inactive,referenced 467 * * inactive,referenced -> active,unreferenced 468 * * active,unreferenced -> active,referenced 469 * 470 * When a newly allocated folio is not yet visible, so safe for non-atomic ops, 471 * __folio_set_referenced() may be substituted for folio_mark_accessed(). 472 */ 473 void folio_mark_accessed(struct folio *folio) 474 { 475 if (lru_gen_enabled()) { 476 folio_inc_refs(folio); 477 return; 478 } 479 480 if (!folio_test_referenced(folio)) { 481 folio_set_referenced(folio); 482 } else if (folio_test_unevictable(folio)) { 483 /* 484 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But, 485 * this list is never rotated or maintained, so marking an 486 * unevictable page accessed has no effect. 487 */ 488 } else if (!folio_test_active(folio)) { 489 /* 490 * If the folio is on the LRU, queue it for activation via 491 * cpu_fbatches.lru_activate. Otherwise, assume the folio is in a 492 * folio_batch, mark it active and it'll be moved to the active 493 * LRU on the next drain. 494 */ 495 if (folio_test_lru(folio)) 496 folio_activate(folio); 497 else 498 __lru_cache_activate_folio(folio); 499 folio_clear_referenced(folio); 500 workingset_activation(folio); 501 } 502 if (folio_test_idle(folio)) 503 folio_clear_idle(folio); 504 } 505 EXPORT_SYMBOL(folio_mark_accessed); 506 507 /** 508 * folio_add_lru - Add a folio to an LRU list. 509 * @folio: The folio to be added to the LRU. 510 * 511 * Queue the folio for addition to the LRU. The decision on whether 512 * to add the page to the [in]active [file|anon] list is deferred until the 513 * folio_batch is drained. This gives a chance for the caller of folio_add_lru() 514 * have the folio added to the active list using folio_mark_accessed(). 515 */ 516 void folio_add_lru(struct folio *folio) 517 { 518 VM_BUG_ON_FOLIO(folio_test_active(folio) && 519 folio_test_unevictable(folio), folio); 520 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 521 522 /* see the comment in lru_gen_add_folio() */ 523 if (lru_gen_enabled() && !folio_test_unevictable(folio) && 524 lru_gen_in_fault() && !(current->flags & PF_MEMALLOC)) 525 folio_set_active(folio); 526 527 folio_batch_add_and_move(folio, lru_add, false); 528 } 529 EXPORT_SYMBOL(folio_add_lru); 530 531 /** 532 * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA. 533 * @folio: The folio to be added to the LRU. 534 * @vma: VMA in which the folio is mapped. 535 * 536 * If the VMA is mlocked, @folio is added to the unevictable list. 537 * Otherwise, it is treated the same way as folio_add_lru(). 538 */ 539 void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma) 540 { 541 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 542 543 if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED)) 544 mlock_new_folio(folio); 545 else 546 folio_add_lru(folio); 547 } 548 549 /* 550 * If the folio cannot be invalidated, it is moved to the 551 * inactive list to speed up its reclaim. It is moved to the 552 * head of the list, rather than the tail, to give the flusher 553 * threads some time to write it out, as this is much more 554 * effective than the single-page writeout from reclaim. 555 * 556 * If the folio isn't mapped and dirty/writeback, the folio 557 * could be reclaimed asap using the reclaim flag. 558 * 559 * 1. active, mapped folio -> none 560 * 2. active, dirty/writeback folio -> inactive, head, reclaim 561 * 3. inactive, mapped folio -> none 562 * 4. inactive, dirty/writeback folio -> inactive, head, reclaim 563 * 5. inactive, clean -> inactive, tail 564 * 6. Others -> none 565 * 566 * In 4, it moves to the head of the inactive list so the folio is 567 * written out by flusher threads as this is much more efficient 568 * than the single-page writeout from reclaim. 569 */ 570 static void lru_deactivate_file(struct lruvec *lruvec, struct folio *folio) 571 { 572 bool active = folio_test_active(folio); 573 long nr_pages = folio_nr_pages(folio); 574 575 if (folio_test_unevictable(folio)) 576 return; 577 578 /* Some processes are using the folio */ 579 if (folio_mapped(folio)) 580 return; 581 582 lruvec_del_folio(lruvec, folio); 583 folio_clear_active(folio); 584 folio_clear_referenced(folio); 585 586 if (folio_test_writeback(folio) || folio_test_dirty(folio)) { 587 /* 588 * Setting the reclaim flag could race with 589 * folio_end_writeback() and confuse readahead. But the 590 * race window is _really_ small and it's not a critical 591 * problem. 592 */ 593 lruvec_add_folio(lruvec, folio); 594 folio_set_reclaim(folio); 595 } else { 596 /* 597 * The folio's writeback ended while it was in the batch. 598 * We move that folio to the tail of the inactive list. 599 */ 600 lruvec_add_folio_tail(lruvec, folio); 601 __count_vm_events(PGROTATED, nr_pages); 602 } 603 604 if (active) { 605 __count_vm_events(PGDEACTIVATE, nr_pages); 606 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 607 nr_pages); 608 } 609 } 610 611 static void lru_deactivate(struct lruvec *lruvec, struct folio *folio) 612 { 613 long nr_pages = folio_nr_pages(folio); 614 615 if (folio_test_unevictable(folio) || !(folio_test_active(folio) || lru_gen_enabled())) 616 return; 617 618 lruvec_del_folio(lruvec, folio); 619 folio_clear_active(folio); 620 folio_clear_referenced(folio); 621 lruvec_add_folio(lruvec, folio); 622 623 __count_vm_events(PGDEACTIVATE, nr_pages); 624 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_pages); 625 } 626 627 static void lru_lazyfree(struct lruvec *lruvec, struct folio *folio) 628 { 629 long nr_pages = folio_nr_pages(folio); 630 631 if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) || 632 folio_test_swapcache(folio) || folio_test_unevictable(folio)) 633 return; 634 635 lruvec_del_folio(lruvec, folio); 636 folio_clear_active(folio); 637 folio_clear_referenced(folio); 638 /* 639 * Lazyfree folios are clean anonymous folios. They have 640 * the swapbacked flag cleared, to distinguish them from normal 641 * anonymous folios 642 */ 643 folio_clear_swapbacked(folio); 644 lruvec_add_folio(lruvec, folio); 645 646 __count_vm_events(PGLAZYFREE, nr_pages); 647 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, nr_pages); 648 } 649 650 /* 651 * Drain pages out of the cpu's folio_batch. 652 * Either "cpu" is the current CPU, and preemption has already been 653 * disabled; or "cpu" is being hot-unplugged, and is already dead. 654 */ 655 void lru_add_drain_cpu(int cpu) 656 { 657 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu); 658 struct folio_batch *fbatch = &fbatches->lru_add; 659 660 if (folio_batch_count(fbatch)) 661 folio_batch_move_lru(fbatch, lru_add); 662 663 fbatch = &fbatches->lru_move_tail; 664 /* Disabling interrupts below acts as a compiler barrier. */ 665 if (data_race(folio_batch_count(fbatch))) { 666 unsigned long flags; 667 668 /* No harm done if a racing interrupt already did this */ 669 local_lock_irqsave(&cpu_fbatches.lock_irq, flags); 670 folio_batch_move_lru(fbatch, lru_move_tail); 671 local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags); 672 } 673 674 fbatch = &fbatches->lru_deactivate_file; 675 if (folio_batch_count(fbatch)) 676 folio_batch_move_lru(fbatch, lru_deactivate_file); 677 678 fbatch = &fbatches->lru_deactivate; 679 if (folio_batch_count(fbatch)) 680 folio_batch_move_lru(fbatch, lru_deactivate); 681 682 fbatch = &fbatches->lru_lazyfree; 683 if (folio_batch_count(fbatch)) 684 folio_batch_move_lru(fbatch, lru_lazyfree); 685 686 folio_activate_drain(cpu); 687 } 688 689 /** 690 * deactivate_file_folio() - Deactivate a file folio. 691 * @folio: Folio to deactivate. 692 * 693 * This function hints to the VM that @folio is a good reclaim candidate, 694 * for example if its invalidation fails due to the folio being dirty 695 * or under writeback. 696 * 697 * Context: Caller holds a reference on the folio. 698 */ 699 void deactivate_file_folio(struct folio *folio) 700 { 701 /* Deactivating an unevictable folio will not accelerate reclaim */ 702 if (folio_test_unevictable(folio)) 703 return; 704 705 folio_batch_add_and_move(folio, lru_deactivate_file, true); 706 } 707 708 /* 709 * folio_deactivate - deactivate a folio 710 * @folio: folio to deactivate 711 * 712 * folio_deactivate() moves @folio to the inactive list if @folio was on the 713 * active list and was not unevictable. This is done to accelerate the 714 * reclaim of @folio. 715 */ 716 void folio_deactivate(struct folio *folio) 717 { 718 if (folio_test_unevictable(folio) || !(folio_test_active(folio) || lru_gen_enabled())) 719 return; 720 721 folio_batch_add_and_move(folio, lru_deactivate, true); 722 } 723 724 /** 725 * folio_mark_lazyfree - make an anon folio lazyfree 726 * @folio: folio to deactivate 727 * 728 * folio_mark_lazyfree() moves @folio to the inactive file list. 729 * This is done to accelerate the reclaim of @folio. 730 */ 731 void folio_mark_lazyfree(struct folio *folio) 732 { 733 if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) || 734 folio_test_swapcache(folio) || folio_test_unevictable(folio)) 735 return; 736 737 folio_batch_add_and_move(folio, lru_lazyfree, true); 738 } 739 740 void lru_add_drain(void) 741 { 742 local_lock(&cpu_fbatches.lock); 743 lru_add_drain_cpu(smp_processor_id()); 744 local_unlock(&cpu_fbatches.lock); 745 mlock_drain_local(); 746 } 747 748 /* 749 * It's called from per-cpu workqueue context in SMP case so 750 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on 751 * the same cpu. It shouldn't be a problem in !SMP case since 752 * the core is only one and the locks will disable preemption. 753 */ 754 static void lru_add_and_bh_lrus_drain(void) 755 { 756 local_lock(&cpu_fbatches.lock); 757 lru_add_drain_cpu(smp_processor_id()); 758 local_unlock(&cpu_fbatches.lock); 759 invalidate_bh_lrus_cpu(); 760 mlock_drain_local(); 761 } 762 763 void lru_add_drain_cpu_zone(struct zone *zone) 764 { 765 local_lock(&cpu_fbatches.lock); 766 lru_add_drain_cpu(smp_processor_id()); 767 drain_local_pages(zone); 768 local_unlock(&cpu_fbatches.lock); 769 mlock_drain_local(); 770 } 771 772 #ifdef CONFIG_SMP 773 774 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); 775 776 static void lru_add_drain_per_cpu(struct work_struct *dummy) 777 { 778 lru_add_and_bh_lrus_drain(); 779 } 780 781 static bool cpu_needs_drain(unsigned int cpu) 782 { 783 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu); 784 785 /* Check these in order of likelihood that they're not zero */ 786 return folio_batch_count(&fbatches->lru_add) || 787 folio_batch_count(&fbatches->lru_move_tail) || 788 folio_batch_count(&fbatches->lru_deactivate_file) || 789 folio_batch_count(&fbatches->lru_deactivate) || 790 folio_batch_count(&fbatches->lru_lazyfree) || 791 folio_batch_count(&fbatches->lru_activate) || 792 need_mlock_drain(cpu) || 793 has_bh_in_lru(cpu, NULL); 794 } 795 796 /* 797 * Doesn't need any cpu hotplug locking because we do rely on per-cpu 798 * kworkers being shut down before our page_alloc_cpu_dead callback is 799 * executed on the offlined cpu. 800 * Calling this function with cpu hotplug locks held can actually lead 801 * to obscure indirect dependencies via WQ context. 802 */ 803 static inline void __lru_add_drain_all(bool force_all_cpus) 804 { 805 /* 806 * lru_drain_gen - Global pages generation number 807 * 808 * (A) Definition: global lru_drain_gen = x implies that all generations 809 * 0 < n <= x are already *scheduled* for draining. 810 * 811 * This is an optimization for the highly-contended use case where a 812 * user space workload keeps constantly generating a flow of pages for 813 * each CPU. 814 */ 815 static unsigned int lru_drain_gen; 816 static struct cpumask has_work; 817 static DEFINE_MUTEX(lock); 818 unsigned cpu, this_gen; 819 820 /* 821 * Make sure nobody triggers this path before mm_percpu_wq is fully 822 * initialized. 823 */ 824 if (WARN_ON(!mm_percpu_wq)) 825 return; 826 827 /* 828 * Guarantee folio_batch counter stores visible by this CPU 829 * are visible to other CPUs before loading the current drain 830 * generation. 831 */ 832 smp_mb(); 833 834 /* 835 * (B) Locally cache global LRU draining generation number 836 * 837 * The read barrier ensures that the counter is loaded before the mutex 838 * is taken. It pairs with smp_mb() inside the mutex critical section 839 * at (D). 840 */ 841 this_gen = smp_load_acquire(&lru_drain_gen); 842 843 mutex_lock(&lock); 844 845 /* 846 * (C) Exit the draining operation if a newer generation, from another 847 * lru_add_drain_all(), was already scheduled for draining. Check (A). 848 */ 849 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus)) 850 goto done; 851 852 /* 853 * (D) Increment global generation number 854 * 855 * Pairs with smp_load_acquire() at (B), outside of the critical 856 * section. Use a full memory barrier to guarantee that the 857 * new global drain generation number is stored before loading 858 * folio_batch counters. 859 * 860 * This pairing must be done here, before the for_each_online_cpu loop 861 * below which drains the page vectors. 862 * 863 * Let x, y, and z represent some system CPU numbers, where x < y < z. 864 * Assume CPU #z is in the middle of the for_each_online_cpu loop 865 * below and has already reached CPU #y's per-cpu data. CPU #x comes 866 * along, adds some pages to its per-cpu vectors, then calls 867 * lru_add_drain_all(). 868 * 869 * If the paired barrier is done at any later step, e.g. after the 870 * loop, CPU #x will just exit at (C) and miss flushing out all of its 871 * added pages. 872 */ 873 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1); 874 smp_mb(); 875 876 cpumask_clear(&has_work); 877 for_each_online_cpu(cpu) { 878 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); 879 880 if (cpu_needs_drain(cpu)) { 881 INIT_WORK(work, lru_add_drain_per_cpu); 882 queue_work_on(cpu, mm_percpu_wq, work); 883 __cpumask_set_cpu(cpu, &has_work); 884 } 885 } 886 887 for_each_cpu(cpu, &has_work) 888 flush_work(&per_cpu(lru_add_drain_work, cpu)); 889 890 done: 891 mutex_unlock(&lock); 892 } 893 894 void lru_add_drain_all(void) 895 { 896 __lru_add_drain_all(false); 897 } 898 #else 899 void lru_add_drain_all(void) 900 { 901 lru_add_drain(); 902 } 903 #endif /* CONFIG_SMP */ 904 905 atomic_t lru_disable_count = ATOMIC_INIT(0); 906 907 /* 908 * lru_cache_disable() needs to be called before we start compiling 909 * a list of folios to be migrated using folio_isolate_lru(). 910 * It drains folios on LRU cache and then disable on all cpus until 911 * lru_cache_enable is called. 912 * 913 * Must be paired with a call to lru_cache_enable(). 914 */ 915 void lru_cache_disable(void) 916 { 917 atomic_inc(&lru_disable_count); 918 /* 919 * Readers of lru_disable_count are protected by either disabling 920 * preemption or rcu_read_lock: 921 * 922 * preempt_disable, local_irq_disable [bh_lru_lock()] 923 * rcu_read_lock [rt_spin_lock CONFIG_PREEMPT_RT] 924 * preempt_disable [local_lock !CONFIG_PREEMPT_RT] 925 * 926 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on 927 * preempt_disable() regions of code. So any CPU which sees 928 * lru_disable_count = 0 will have exited the critical 929 * section when synchronize_rcu() returns. 930 */ 931 synchronize_rcu_expedited(); 932 #ifdef CONFIG_SMP 933 __lru_add_drain_all(true); 934 #else 935 lru_add_and_bh_lrus_drain(); 936 #endif 937 } 938 939 /** 940 * folios_put_refs - Reduce the reference count on a batch of folios. 941 * @folios: The folios. 942 * @refs: The number of refs to subtract from each folio. 943 * 944 * Like folio_put(), but for a batch of folios. This is more efficient 945 * than writing the loop yourself as it will optimise the locks which need 946 * to be taken if the folios are freed. The folios batch is returned 947 * empty and ready to be reused for another batch; there is no need 948 * to reinitialise it. If @refs is NULL, we subtract one from each 949 * folio refcount. 950 * 951 * Context: May be called in process or interrupt context, but not in NMI 952 * context. May be called while holding a spinlock. 953 */ 954 void folios_put_refs(struct folio_batch *folios, unsigned int *refs) 955 { 956 int i, j; 957 struct lruvec *lruvec = NULL; 958 unsigned long flags = 0; 959 960 for (i = 0, j = 0; i < folios->nr; i++) { 961 struct folio *folio = folios->folios[i]; 962 unsigned int nr_refs = refs ? refs[i] : 1; 963 964 if (is_huge_zero_folio(folio)) 965 continue; 966 967 if (folio_is_zone_device(folio)) { 968 if (lruvec) { 969 unlock_page_lruvec_irqrestore(lruvec, flags); 970 lruvec = NULL; 971 } 972 if (put_devmap_managed_folio_refs(folio, nr_refs)) 973 continue; 974 if (folio_ref_sub_and_test(folio, nr_refs)) 975 free_zone_device_folio(folio); 976 continue; 977 } 978 979 if (!folio_ref_sub_and_test(folio, nr_refs)) 980 continue; 981 982 /* hugetlb has its own memcg */ 983 if (folio_test_hugetlb(folio)) { 984 if (lruvec) { 985 unlock_page_lruvec_irqrestore(lruvec, flags); 986 lruvec = NULL; 987 } 988 free_huge_folio(folio); 989 continue; 990 } 991 folio_undo_large_rmappable(folio); 992 __page_cache_release(folio, &lruvec, &flags); 993 994 if (j != i) 995 folios->folios[j] = folio; 996 j++; 997 } 998 if (lruvec) 999 unlock_page_lruvec_irqrestore(lruvec, flags); 1000 if (!j) { 1001 folio_batch_reinit(folios); 1002 return; 1003 } 1004 1005 folios->nr = j; 1006 mem_cgroup_uncharge_folios(folios); 1007 free_unref_folios(folios); 1008 } 1009 EXPORT_SYMBOL(folios_put_refs); 1010 1011 /** 1012 * release_pages - batched put_page() 1013 * @arg: array of pages to release 1014 * @nr: number of pages 1015 * 1016 * Decrement the reference count on all the pages in @arg. If it 1017 * fell to zero, remove the page from the LRU and free it. 1018 * 1019 * Note that the argument can be an array of pages, encoded pages, 1020 * or folio pointers. We ignore any encoded bits, and turn any of 1021 * them into just a folio that gets free'd. 1022 */ 1023 void release_pages(release_pages_arg arg, int nr) 1024 { 1025 struct folio_batch fbatch; 1026 int refs[PAGEVEC_SIZE]; 1027 struct encoded_page **encoded = arg.encoded_pages; 1028 int i; 1029 1030 folio_batch_init(&fbatch); 1031 for (i = 0; i < nr; i++) { 1032 /* Turn any of the argument types into a folio */ 1033 struct folio *folio = page_folio(encoded_page_ptr(encoded[i])); 1034 1035 /* Is our next entry actually "nr_pages" -> "nr_refs" ? */ 1036 refs[fbatch.nr] = 1; 1037 if (unlikely(encoded_page_flags(encoded[i]) & 1038 ENCODED_PAGE_BIT_NR_PAGES_NEXT)) 1039 refs[fbatch.nr] = encoded_nr_pages(encoded[++i]); 1040 1041 if (folio_batch_add(&fbatch, folio) > 0) 1042 continue; 1043 folios_put_refs(&fbatch, refs); 1044 } 1045 1046 if (fbatch.nr) 1047 folios_put_refs(&fbatch, refs); 1048 } 1049 EXPORT_SYMBOL(release_pages); 1050 1051 /* 1052 * The folios which we're about to release may be in the deferred lru-addition 1053 * queues. That would prevent them from really being freed right now. That's 1054 * OK from a correctness point of view but is inefficient - those folios may be 1055 * cache-warm and we want to give them back to the page allocator ASAP. 1056 * 1057 * So __folio_batch_release() will drain those queues here. 1058 * folio_batch_move_lru() calls folios_put() directly to avoid 1059 * mutual recursion. 1060 */ 1061 void __folio_batch_release(struct folio_batch *fbatch) 1062 { 1063 if (!fbatch->percpu_pvec_drained) { 1064 lru_add_drain(); 1065 fbatch->percpu_pvec_drained = true; 1066 } 1067 folios_put(fbatch); 1068 } 1069 EXPORT_SYMBOL(__folio_batch_release); 1070 1071 /** 1072 * folio_batch_remove_exceptionals() - Prune non-folios from a batch. 1073 * @fbatch: The batch to prune 1074 * 1075 * find_get_entries() fills a batch with both folios and shadow/swap/DAX 1076 * entries. This function prunes all the non-folio entries from @fbatch 1077 * without leaving holes, so that it can be passed on to folio-only batch 1078 * operations. 1079 */ 1080 void folio_batch_remove_exceptionals(struct folio_batch *fbatch) 1081 { 1082 unsigned int i, j; 1083 1084 for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) { 1085 struct folio *folio = fbatch->folios[i]; 1086 if (!xa_is_value(folio)) 1087 fbatch->folios[j++] = folio; 1088 } 1089 fbatch->nr = j; 1090 } 1091 1092 /* 1093 * Perform any setup for the swap system 1094 */ 1095 void __init swap_setup(void) 1096 { 1097 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT); 1098 1099 /* Use a smaller cluster for small-memory machines */ 1100 if (megs < 16) 1101 page_cluster = 2; 1102 else 1103 page_cluster = 3; 1104 /* 1105 * Right now other parts of the system means that we 1106 * _really_ don't want to cluster much more 1107 */ 1108 } 1109