xref: /linux/mm/swap.c (revision 5051c94bb3998ff24bf07ae3b72dca30f85962f8)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 
34 #include "internal.h"
35 
36 /* How many pages do we try to swap or page in/out together? */
37 int page_cluster;
38 
39 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
40 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
41 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
42 
43 /*
44  * This path almost never happens for VM activity - pages are normally
45  * freed via pagevecs.  But it gets used by networking.
46  */
47 static void __page_cache_release(struct page *page)
48 {
49 	if (PageLRU(page)) {
50 		struct zone *zone = page_zone(page);
51 		struct lruvec *lruvec;
52 		unsigned long flags;
53 
54 		spin_lock_irqsave(&zone->lru_lock, flags);
55 		lruvec = mem_cgroup_page_lruvec(page, zone);
56 		VM_BUG_ON(!PageLRU(page));
57 		__ClearPageLRU(page);
58 		del_page_from_lru_list(page, lruvec, page_off_lru(page));
59 		spin_unlock_irqrestore(&zone->lru_lock, flags);
60 	}
61 }
62 
63 static void __put_single_page(struct page *page)
64 {
65 	__page_cache_release(page);
66 	free_hot_cold_page(page, 0);
67 }
68 
69 static void __put_compound_page(struct page *page)
70 {
71 	compound_page_dtor *dtor;
72 
73 	__page_cache_release(page);
74 	dtor = get_compound_page_dtor(page);
75 	(*dtor)(page);
76 }
77 
78 static void put_compound_page(struct page *page)
79 {
80 	if (unlikely(PageTail(page))) {
81 		/* __split_huge_page_refcount can run under us */
82 		struct page *page_head = compound_trans_head(page);
83 
84 		if (likely(page != page_head &&
85 			   get_page_unless_zero(page_head))) {
86 			unsigned long flags;
87 
88 			/*
89 			 * THP can not break up slab pages so avoid taking
90 			 * compound_lock().  Slab performs non-atomic bit ops
91 			 * on page->flags for better performance.  In particular
92 			 * slab_unlock() in slub used to be a hot path.  It is
93 			 * still hot on arches that do not support
94 			 * this_cpu_cmpxchg_double().
95 			 */
96 			if (PageSlab(page_head)) {
97 				if (PageTail(page)) {
98 					if (put_page_testzero(page_head))
99 						VM_BUG_ON(1);
100 
101 					atomic_dec(&page->_mapcount);
102 					goto skip_lock_tail;
103 				} else
104 					goto skip_lock;
105 			}
106 			/*
107 			 * page_head wasn't a dangling pointer but it
108 			 * may not be a head page anymore by the time
109 			 * we obtain the lock. That is ok as long as it
110 			 * can't be freed from under us.
111 			 */
112 			flags = compound_lock_irqsave(page_head);
113 			if (unlikely(!PageTail(page))) {
114 				/* __split_huge_page_refcount run before us */
115 				compound_unlock_irqrestore(page_head, flags);
116 skip_lock:
117 				if (put_page_testzero(page_head))
118 					__put_single_page(page_head);
119 out_put_single:
120 				if (put_page_testzero(page))
121 					__put_single_page(page);
122 				return;
123 			}
124 			VM_BUG_ON(page_head != page->first_page);
125 			/*
126 			 * We can release the refcount taken by
127 			 * get_page_unless_zero() now that
128 			 * __split_huge_page_refcount() is blocked on
129 			 * the compound_lock.
130 			 */
131 			if (put_page_testzero(page_head))
132 				VM_BUG_ON(1);
133 			/* __split_huge_page_refcount will wait now */
134 			VM_BUG_ON(page_mapcount(page) <= 0);
135 			atomic_dec(&page->_mapcount);
136 			VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
137 			VM_BUG_ON(atomic_read(&page->_count) != 0);
138 			compound_unlock_irqrestore(page_head, flags);
139 
140 skip_lock_tail:
141 			if (put_page_testzero(page_head)) {
142 				if (PageHead(page_head))
143 					__put_compound_page(page_head);
144 				else
145 					__put_single_page(page_head);
146 			}
147 		} else {
148 			/* page_head is a dangling pointer */
149 			VM_BUG_ON(PageTail(page));
150 			goto out_put_single;
151 		}
152 	} else if (put_page_testzero(page)) {
153 		if (PageHead(page))
154 			__put_compound_page(page);
155 		else
156 			__put_single_page(page);
157 	}
158 }
159 
160 void put_page(struct page *page)
161 {
162 	if (unlikely(PageCompound(page)))
163 		put_compound_page(page);
164 	else if (put_page_testzero(page))
165 		__put_single_page(page);
166 }
167 EXPORT_SYMBOL(put_page);
168 
169 /*
170  * This function is exported but must not be called by anything other
171  * than get_page(). It implements the slow path of get_page().
172  */
173 bool __get_page_tail(struct page *page)
174 {
175 	/*
176 	 * This takes care of get_page() if run on a tail page
177 	 * returned by one of the get_user_pages/follow_page variants.
178 	 * get_user_pages/follow_page itself doesn't need the compound
179 	 * lock because it runs __get_page_tail_foll() under the
180 	 * proper PT lock that already serializes against
181 	 * split_huge_page().
182 	 */
183 	unsigned long flags;
184 	bool got = false;
185 	struct page *page_head = compound_trans_head(page);
186 
187 	if (likely(page != page_head && get_page_unless_zero(page_head))) {
188 
189 		/* Ref to put_compound_page() comment. */
190 		if (PageSlab(page_head)) {
191 			if (likely(PageTail(page))) {
192 				__get_page_tail_foll(page, false);
193 				return true;
194 			} else {
195 				put_page(page_head);
196 				return false;
197 			}
198 		}
199 
200 		/*
201 		 * page_head wasn't a dangling pointer but it
202 		 * may not be a head page anymore by the time
203 		 * we obtain the lock. That is ok as long as it
204 		 * can't be freed from under us.
205 		 */
206 		flags = compound_lock_irqsave(page_head);
207 		/* here __split_huge_page_refcount won't run anymore */
208 		if (likely(PageTail(page))) {
209 			__get_page_tail_foll(page, false);
210 			got = true;
211 		}
212 		compound_unlock_irqrestore(page_head, flags);
213 		if (unlikely(!got))
214 			put_page(page_head);
215 	}
216 	return got;
217 }
218 EXPORT_SYMBOL(__get_page_tail);
219 
220 /**
221  * put_pages_list() - release a list of pages
222  * @pages: list of pages threaded on page->lru
223  *
224  * Release a list of pages which are strung together on page.lru.  Currently
225  * used by read_cache_pages() and related error recovery code.
226  */
227 void put_pages_list(struct list_head *pages)
228 {
229 	while (!list_empty(pages)) {
230 		struct page *victim;
231 
232 		victim = list_entry(pages->prev, struct page, lru);
233 		list_del(&victim->lru);
234 		page_cache_release(victim);
235 	}
236 }
237 EXPORT_SYMBOL(put_pages_list);
238 
239 static void pagevec_lru_move_fn(struct pagevec *pvec,
240 	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
241 	void *arg)
242 {
243 	int i;
244 	struct zone *zone = NULL;
245 	struct lruvec *lruvec;
246 	unsigned long flags = 0;
247 
248 	for (i = 0; i < pagevec_count(pvec); i++) {
249 		struct page *page = pvec->pages[i];
250 		struct zone *pagezone = page_zone(page);
251 
252 		if (pagezone != zone) {
253 			if (zone)
254 				spin_unlock_irqrestore(&zone->lru_lock, flags);
255 			zone = pagezone;
256 			spin_lock_irqsave(&zone->lru_lock, flags);
257 		}
258 
259 		lruvec = mem_cgroup_page_lruvec(page, zone);
260 		(*move_fn)(page, lruvec, arg);
261 	}
262 	if (zone)
263 		spin_unlock_irqrestore(&zone->lru_lock, flags);
264 	release_pages(pvec->pages, pvec->nr, pvec->cold);
265 	pagevec_reinit(pvec);
266 }
267 
268 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
269 				 void *arg)
270 {
271 	int *pgmoved = arg;
272 
273 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
274 		enum lru_list lru = page_lru_base_type(page);
275 		list_move_tail(&page->lru, &lruvec->lists[lru]);
276 		(*pgmoved)++;
277 	}
278 }
279 
280 /*
281  * pagevec_move_tail() must be called with IRQ disabled.
282  * Otherwise this may cause nasty races.
283  */
284 static void pagevec_move_tail(struct pagevec *pvec)
285 {
286 	int pgmoved = 0;
287 
288 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
289 	__count_vm_events(PGROTATED, pgmoved);
290 }
291 
292 /*
293  * Writeback is about to end against a page which has been marked for immediate
294  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
295  * inactive list.
296  */
297 void rotate_reclaimable_page(struct page *page)
298 {
299 	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
300 	    !PageUnevictable(page) && PageLRU(page)) {
301 		struct pagevec *pvec;
302 		unsigned long flags;
303 
304 		page_cache_get(page);
305 		local_irq_save(flags);
306 		pvec = &__get_cpu_var(lru_rotate_pvecs);
307 		if (!pagevec_add(pvec, page))
308 			pagevec_move_tail(pvec);
309 		local_irq_restore(flags);
310 	}
311 }
312 
313 static void update_page_reclaim_stat(struct lruvec *lruvec,
314 				     int file, int rotated)
315 {
316 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
317 
318 	reclaim_stat->recent_scanned[file]++;
319 	if (rotated)
320 		reclaim_stat->recent_rotated[file]++;
321 }
322 
323 static void __activate_page(struct page *page, struct lruvec *lruvec,
324 			    void *arg)
325 {
326 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
327 		int file = page_is_file_cache(page);
328 		int lru = page_lru_base_type(page);
329 
330 		del_page_from_lru_list(page, lruvec, lru);
331 		SetPageActive(page);
332 		lru += LRU_ACTIVE;
333 		add_page_to_lru_list(page, lruvec, lru);
334 
335 		__count_vm_event(PGACTIVATE);
336 		update_page_reclaim_stat(lruvec, file, 1);
337 	}
338 }
339 
340 #ifdef CONFIG_SMP
341 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
342 
343 static void activate_page_drain(int cpu)
344 {
345 	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
346 
347 	if (pagevec_count(pvec))
348 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
349 }
350 
351 void activate_page(struct page *page)
352 {
353 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
354 		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
355 
356 		page_cache_get(page);
357 		if (!pagevec_add(pvec, page))
358 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
359 		put_cpu_var(activate_page_pvecs);
360 	}
361 }
362 
363 #else
364 static inline void activate_page_drain(int cpu)
365 {
366 }
367 
368 void activate_page(struct page *page)
369 {
370 	struct zone *zone = page_zone(page);
371 
372 	spin_lock_irq(&zone->lru_lock);
373 	__activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
374 	spin_unlock_irq(&zone->lru_lock);
375 }
376 #endif
377 
378 /*
379  * Mark a page as having seen activity.
380  *
381  * inactive,unreferenced	->	inactive,referenced
382  * inactive,referenced		->	active,unreferenced
383  * active,unreferenced		->	active,referenced
384  */
385 void mark_page_accessed(struct page *page)
386 {
387 	if (!PageActive(page) && !PageUnevictable(page) &&
388 			PageReferenced(page) && PageLRU(page)) {
389 		activate_page(page);
390 		ClearPageReferenced(page);
391 	} else if (!PageReferenced(page)) {
392 		SetPageReferenced(page);
393 	}
394 }
395 EXPORT_SYMBOL(mark_page_accessed);
396 
397 void __lru_cache_add(struct page *page, enum lru_list lru)
398 {
399 	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
400 
401 	page_cache_get(page);
402 	if (!pagevec_add(pvec, page))
403 		__pagevec_lru_add(pvec, lru);
404 	put_cpu_var(lru_add_pvecs);
405 }
406 EXPORT_SYMBOL(__lru_cache_add);
407 
408 /**
409  * lru_cache_add_lru - add a page to a page list
410  * @page: the page to be added to the LRU.
411  * @lru: the LRU list to which the page is added.
412  */
413 void lru_cache_add_lru(struct page *page, enum lru_list lru)
414 {
415 	if (PageActive(page)) {
416 		VM_BUG_ON(PageUnevictable(page));
417 		ClearPageActive(page);
418 	} else if (PageUnevictable(page)) {
419 		VM_BUG_ON(PageActive(page));
420 		ClearPageUnevictable(page);
421 	}
422 
423 	VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
424 	__lru_cache_add(page, lru);
425 }
426 
427 /**
428  * add_page_to_unevictable_list - add a page to the unevictable list
429  * @page:  the page to be added to the unevictable list
430  *
431  * Add page directly to its zone's unevictable list.  To avoid races with
432  * tasks that might be making the page evictable, through eg. munlock,
433  * munmap or exit, while it's not on the lru, we want to add the page
434  * while it's locked or otherwise "invisible" to other tasks.  This is
435  * difficult to do when using the pagevec cache, so bypass that.
436  */
437 void add_page_to_unevictable_list(struct page *page)
438 {
439 	struct zone *zone = page_zone(page);
440 	struct lruvec *lruvec;
441 
442 	spin_lock_irq(&zone->lru_lock);
443 	lruvec = mem_cgroup_page_lruvec(page, zone);
444 	SetPageUnevictable(page);
445 	SetPageLRU(page);
446 	add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
447 	spin_unlock_irq(&zone->lru_lock);
448 }
449 
450 /*
451  * If the page can not be invalidated, it is moved to the
452  * inactive list to speed up its reclaim.  It is moved to the
453  * head of the list, rather than the tail, to give the flusher
454  * threads some time to write it out, as this is much more
455  * effective than the single-page writeout from reclaim.
456  *
457  * If the page isn't page_mapped and dirty/writeback, the page
458  * could reclaim asap using PG_reclaim.
459  *
460  * 1. active, mapped page -> none
461  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
462  * 3. inactive, mapped page -> none
463  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
464  * 5. inactive, clean -> inactive, tail
465  * 6. Others -> none
466  *
467  * In 4, why it moves inactive's head, the VM expects the page would
468  * be write it out by flusher threads as this is much more effective
469  * than the single-page writeout from reclaim.
470  */
471 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
472 			      void *arg)
473 {
474 	int lru, file;
475 	bool active;
476 
477 	if (!PageLRU(page))
478 		return;
479 
480 	if (PageUnevictable(page))
481 		return;
482 
483 	/* Some processes are using the page */
484 	if (page_mapped(page))
485 		return;
486 
487 	active = PageActive(page);
488 	file = page_is_file_cache(page);
489 	lru = page_lru_base_type(page);
490 
491 	del_page_from_lru_list(page, lruvec, lru + active);
492 	ClearPageActive(page);
493 	ClearPageReferenced(page);
494 	add_page_to_lru_list(page, lruvec, lru);
495 
496 	if (PageWriteback(page) || PageDirty(page)) {
497 		/*
498 		 * PG_reclaim could be raced with end_page_writeback
499 		 * It can make readahead confusing.  But race window
500 		 * is _really_ small and  it's non-critical problem.
501 		 */
502 		SetPageReclaim(page);
503 	} else {
504 		/*
505 		 * The page's writeback ends up during pagevec
506 		 * We moves tha page into tail of inactive.
507 		 */
508 		list_move_tail(&page->lru, &lruvec->lists[lru]);
509 		__count_vm_event(PGROTATED);
510 	}
511 
512 	if (active)
513 		__count_vm_event(PGDEACTIVATE);
514 	update_page_reclaim_stat(lruvec, file, 0);
515 }
516 
517 /*
518  * Drain pages out of the cpu's pagevecs.
519  * Either "cpu" is the current CPU, and preemption has already been
520  * disabled; or "cpu" is being hot-unplugged, and is already dead.
521  */
522 void lru_add_drain_cpu(int cpu)
523 {
524 	struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
525 	struct pagevec *pvec;
526 	int lru;
527 
528 	for_each_lru(lru) {
529 		pvec = &pvecs[lru - LRU_BASE];
530 		if (pagevec_count(pvec))
531 			__pagevec_lru_add(pvec, lru);
532 	}
533 
534 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
535 	if (pagevec_count(pvec)) {
536 		unsigned long flags;
537 
538 		/* No harm done if a racing interrupt already did this */
539 		local_irq_save(flags);
540 		pagevec_move_tail(pvec);
541 		local_irq_restore(flags);
542 	}
543 
544 	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
545 	if (pagevec_count(pvec))
546 		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
547 
548 	activate_page_drain(cpu);
549 }
550 
551 /**
552  * deactivate_page - forcefully deactivate a page
553  * @page: page to deactivate
554  *
555  * This function hints the VM that @page is a good reclaim candidate,
556  * for example if its invalidation fails due to the page being dirty
557  * or under writeback.
558  */
559 void deactivate_page(struct page *page)
560 {
561 	/*
562 	 * In a workload with many unevictable page such as mprotect, unevictable
563 	 * page deactivation for accelerating reclaim is pointless.
564 	 */
565 	if (PageUnevictable(page))
566 		return;
567 
568 	if (likely(get_page_unless_zero(page))) {
569 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
570 
571 		if (!pagevec_add(pvec, page))
572 			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
573 		put_cpu_var(lru_deactivate_pvecs);
574 	}
575 }
576 
577 void lru_add_drain(void)
578 {
579 	lru_add_drain_cpu(get_cpu());
580 	put_cpu();
581 }
582 
583 static void lru_add_drain_per_cpu(struct work_struct *dummy)
584 {
585 	lru_add_drain();
586 }
587 
588 /*
589  * Returns 0 for success
590  */
591 int lru_add_drain_all(void)
592 {
593 	return schedule_on_each_cpu(lru_add_drain_per_cpu);
594 }
595 
596 /*
597  * Batched page_cache_release().  Decrement the reference count on all the
598  * passed pages.  If it fell to zero then remove the page from the LRU and
599  * free it.
600  *
601  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
602  * for the remainder of the operation.
603  *
604  * The locking in this function is against shrink_inactive_list(): we recheck
605  * the page count inside the lock to see whether shrink_inactive_list()
606  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
607  * will free it.
608  */
609 void release_pages(struct page **pages, int nr, int cold)
610 {
611 	int i;
612 	LIST_HEAD(pages_to_free);
613 	struct zone *zone = NULL;
614 	struct lruvec *lruvec;
615 	unsigned long uninitialized_var(flags);
616 
617 	for (i = 0; i < nr; i++) {
618 		struct page *page = pages[i];
619 
620 		if (unlikely(PageCompound(page))) {
621 			if (zone) {
622 				spin_unlock_irqrestore(&zone->lru_lock, flags);
623 				zone = NULL;
624 			}
625 			put_compound_page(page);
626 			continue;
627 		}
628 
629 		if (!put_page_testzero(page))
630 			continue;
631 
632 		if (PageLRU(page)) {
633 			struct zone *pagezone = page_zone(page);
634 
635 			if (pagezone != zone) {
636 				if (zone)
637 					spin_unlock_irqrestore(&zone->lru_lock,
638 									flags);
639 				zone = pagezone;
640 				spin_lock_irqsave(&zone->lru_lock, flags);
641 			}
642 
643 			lruvec = mem_cgroup_page_lruvec(page, zone);
644 			VM_BUG_ON(!PageLRU(page));
645 			__ClearPageLRU(page);
646 			del_page_from_lru_list(page, lruvec, page_off_lru(page));
647 		}
648 
649 		list_add(&page->lru, &pages_to_free);
650 	}
651 	if (zone)
652 		spin_unlock_irqrestore(&zone->lru_lock, flags);
653 
654 	free_hot_cold_page_list(&pages_to_free, cold);
655 }
656 EXPORT_SYMBOL(release_pages);
657 
658 /*
659  * The pages which we're about to release may be in the deferred lru-addition
660  * queues.  That would prevent them from really being freed right now.  That's
661  * OK from a correctness point of view but is inefficient - those pages may be
662  * cache-warm and we want to give them back to the page allocator ASAP.
663  *
664  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
665  * and __pagevec_lru_add_active() call release_pages() directly to avoid
666  * mutual recursion.
667  */
668 void __pagevec_release(struct pagevec *pvec)
669 {
670 	lru_add_drain();
671 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
672 	pagevec_reinit(pvec);
673 }
674 EXPORT_SYMBOL(__pagevec_release);
675 
676 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
677 /* used by __split_huge_page_refcount() */
678 void lru_add_page_tail(struct page *page, struct page *page_tail,
679 		       struct lruvec *lruvec)
680 {
681 	int uninitialized_var(active);
682 	enum lru_list lru;
683 	const int file = 0;
684 
685 	VM_BUG_ON(!PageHead(page));
686 	VM_BUG_ON(PageCompound(page_tail));
687 	VM_BUG_ON(PageLRU(page_tail));
688 	VM_BUG_ON(NR_CPUS != 1 &&
689 		  !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
690 
691 	SetPageLRU(page_tail);
692 
693 	if (page_evictable(page_tail, NULL)) {
694 		if (PageActive(page)) {
695 			SetPageActive(page_tail);
696 			active = 1;
697 			lru = LRU_ACTIVE_ANON;
698 		} else {
699 			active = 0;
700 			lru = LRU_INACTIVE_ANON;
701 		}
702 	} else {
703 		SetPageUnevictable(page_tail);
704 		lru = LRU_UNEVICTABLE;
705 	}
706 
707 	if (likely(PageLRU(page)))
708 		list_add_tail(&page_tail->lru, &page->lru);
709 	else {
710 		struct list_head *list_head;
711 		/*
712 		 * Head page has not yet been counted, as an hpage,
713 		 * so we must account for each subpage individually.
714 		 *
715 		 * Use the standard add function to put page_tail on the list,
716 		 * but then correct its position so they all end up in order.
717 		 */
718 		add_page_to_lru_list(page_tail, lruvec, lru);
719 		list_head = page_tail->lru.prev;
720 		list_move_tail(&page_tail->lru, list_head);
721 	}
722 
723 	if (!PageUnevictable(page))
724 		update_page_reclaim_stat(lruvec, file, active);
725 }
726 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
727 
728 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
729 				 void *arg)
730 {
731 	enum lru_list lru = (enum lru_list)arg;
732 	int file = is_file_lru(lru);
733 	int active = is_active_lru(lru);
734 
735 	VM_BUG_ON(PageActive(page));
736 	VM_BUG_ON(PageUnevictable(page));
737 	VM_BUG_ON(PageLRU(page));
738 
739 	SetPageLRU(page);
740 	if (active)
741 		SetPageActive(page);
742 	add_page_to_lru_list(page, lruvec, lru);
743 	update_page_reclaim_stat(lruvec, file, active);
744 }
745 
746 /*
747  * Add the passed pages to the LRU, then drop the caller's refcount
748  * on them.  Reinitialises the caller's pagevec.
749  */
750 void __pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
751 {
752 	VM_BUG_ON(is_unevictable_lru(lru));
753 
754 	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, (void *)lru);
755 }
756 EXPORT_SYMBOL(__pagevec_lru_add);
757 
758 /**
759  * pagevec_lookup - gang pagecache lookup
760  * @pvec:	Where the resulting pages are placed
761  * @mapping:	The address_space to search
762  * @start:	The starting page index
763  * @nr_pages:	The maximum number of pages
764  *
765  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
766  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
767  * reference against the pages in @pvec.
768  *
769  * The search returns a group of mapping-contiguous pages with ascending
770  * indexes.  There may be holes in the indices due to not-present pages.
771  *
772  * pagevec_lookup() returns the number of pages which were found.
773  */
774 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
775 		pgoff_t start, unsigned nr_pages)
776 {
777 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
778 	return pagevec_count(pvec);
779 }
780 EXPORT_SYMBOL(pagevec_lookup);
781 
782 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
783 		pgoff_t *index, int tag, unsigned nr_pages)
784 {
785 	pvec->nr = find_get_pages_tag(mapping, index, tag,
786 					nr_pages, pvec->pages);
787 	return pagevec_count(pvec);
788 }
789 EXPORT_SYMBOL(pagevec_lookup_tag);
790 
791 /*
792  * Perform any setup for the swap system
793  */
794 void __init swap_setup(void)
795 {
796 	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
797 
798 #ifdef CONFIG_SWAP
799 	bdi_init(swapper_space.backing_dev_info);
800 #endif
801 
802 	/* Use a smaller cluster for small-memory machines */
803 	if (megs < 16)
804 		page_cluster = 2;
805 	else
806 		page_cluster = 3;
807 	/*
808 	 * Right now other parts of the system means that we
809 	 * _really_ don't want to cluster much more
810 	 */
811 }
812