1 /* 2 * linux/mm/swap.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * This file contains the default values for the operation of the 9 * Linux VM subsystem. Fine-tuning documentation can be found in 10 * Documentation/sysctl/vm.txt. 11 * Started 18.12.91 12 * Swap aging added 23.2.95, Stephen Tweedie. 13 * Buffermem limits added 12.3.98, Rik van Riel. 14 */ 15 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/swap.h> 20 #include <linux/mman.h> 21 #include <linux/pagemap.h> 22 #include <linux/pagevec.h> 23 #include <linux/init.h> 24 #include <linux/export.h> 25 #include <linux/mm_inline.h> 26 #include <linux/percpu_counter.h> 27 #include <linux/percpu.h> 28 #include <linux/cpu.h> 29 #include <linux/notifier.h> 30 #include <linux/backing-dev.h> 31 #include <linux/memcontrol.h> 32 #include <linux/gfp.h> 33 34 #include "internal.h" 35 36 /* How many pages do we try to swap or page in/out together? */ 37 int page_cluster; 38 39 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs); 40 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs); 41 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs); 42 43 /* 44 * This path almost never happens for VM activity - pages are normally 45 * freed via pagevecs. But it gets used by networking. 46 */ 47 static void __page_cache_release(struct page *page) 48 { 49 if (PageLRU(page)) { 50 struct zone *zone = page_zone(page); 51 struct lruvec *lruvec; 52 unsigned long flags; 53 54 spin_lock_irqsave(&zone->lru_lock, flags); 55 lruvec = mem_cgroup_page_lruvec(page, zone); 56 VM_BUG_ON(!PageLRU(page)); 57 __ClearPageLRU(page); 58 del_page_from_lru_list(page, lruvec, page_off_lru(page)); 59 spin_unlock_irqrestore(&zone->lru_lock, flags); 60 } 61 } 62 63 static void __put_single_page(struct page *page) 64 { 65 __page_cache_release(page); 66 free_hot_cold_page(page, 0); 67 } 68 69 static void __put_compound_page(struct page *page) 70 { 71 compound_page_dtor *dtor; 72 73 __page_cache_release(page); 74 dtor = get_compound_page_dtor(page); 75 (*dtor)(page); 76 } 77 78 static void put_compound_page(struct page *page) 79 { 80 if (unlikely(PageTail(page))) { 81 /* __split_huge_page_refcount can run under us */ 82 struct page *page_head = compound_trans_head(page); 83 84 if (likely(page != page_head && 85 get_page_unless_zero(page_head))) { 86 unsigned long flags; 87 88 /* 89 * THP can not break up slab pages so avoid taking 90 * compound_lock(). Slab performs non-atomic bit ops 91 * on page->flags for better performance. In particular 92 * slab_unlock() in slub used to be a hot path. It is 93 * still hot on arches that do not support 94 * this_cpu_cmpxchg_double(). 95 */ 96 if (PageSlab(page_head)) { 97 if (PageTail(page)) { 98 if (put_page_testzero(page_head)) 99 VM_BUG_ON(1); 100 101 atomic_dec(&page->_mapcount); 102 goto skip_lock_tail; 103 } else 104 goto skip_lock; 105 } 106 /* 107 * page_head wasn't a dangling pointer but it 108 * may not be a head page anymore by the time 109 * we obtain the lock. That is ok as long as it 110 * can't be freed from under us. 111 */ 112 flags = compound_lock_irqsave(page_head); 113 if (unlikely(!PageTail(page))) { 114 /* __split_huge_page_refcount run before us */ 115 compound_unlock_irqrestore(page_head, flags); 116 skip_lock: 117 if (put_page_testzero(page_head)) 118 __put_single_page(page_head); 119 out_put_single: 120 if (put_page_testzero(page)) 121 __put_single_page(page); 122 return; 123 } 124 VM_BUG_ON(page_head != page->first_page); 125 /* 126 * We can release the refcount taken by 127 * get_page_unless_zero() now that 128 * __split_huge_page_refcount() is blocked on 129 * the compound_lock. 130 */ 131 if (put_page_testzero(page_head)) 132 VM_BUG_ON(1); 133 /* __split_huge_page_refcount will wait now */ 134 VM_BUG_ON(page_mapcount(page) <= 0); 135 atomic_dec(&page->_mapcount); 136 VM_BUG_ON(atomic_read(&page_head->_count) <= 0); 137 VM_BUG_ON(atomic_read(&page->_count) != 0); 138 compound_unlock_irqrestore(page_head, flags); 139 140 skip_lock_tail: 141 if (put_page_testzero(page_head)) { 142 if (PageHead(page_head)) 143 __put_compound_page(page_head); 144 else 145 __put_single_page(page_head); 146 } 147 } else { 148 /* page_head is a dangling pointer */ 149 VM_BUG_ON(PageTail(page)); 150 goto out_put_single; 151 } 152 } else if (put_page_testzero(page)) { 153 if (PageHead(page)) 154 __put_compound_page(page); 155 else 156 __put_single_page(page); 157 } 158 } 159 160 void put_page(struct page *page) 161 { 162 if (unlikely(PageCompound(page))) 163 put_compound_page(page); 164 else if (put_page_testzero(page)) 165 __put_single_page(page); 166 } 167 EXPORT_SYMBOL(put_page); 168 169 /* 170 * This function is exported but must not be called by anything other 171 * than get_page(). It implements the slow path of get_page(). 172 */ 173 bool __get_page_tail(struct page *page) 174 { 175 /* 176 * This takes care of get_page() if run on a tail page 177 * returned by one of the get_user_pages/follow_page variants. 178 * get_user_pages/follow_page itself doesn't need the compound 179 * lock because it runs __get_page_tail_foll() under the 180 * proper PT lock that already serializes against 181 * split_huge_page(). 182 */ 183 unsigned long flags; 184 bool got = false; 185 struct page *page_head = compound_trans_head(page); 186 187 if (likely(page != page_head && get_page_unless_zero(page_head))) { 188 189 /* Ref to put_compound_page() comment. */ 190 if (PageSlab(page_head)) { 191 if (likely(PageTail(page))) { 192 __get_page_tail_foll(page, false); 193 return true; 194 } else { 195 put_page(page_head); 196 return false; 197 } 198 } 199 200 /* 201 * page_head wasn't a dangling pointer but it 202 * may not be a head page anymore by the time 203 * we obtain the lock. That is ok as long as it 204 * can't be freed from under us. 205 */ 206 flags = compound_lock_irqsave(page_head); 207 /* here __split_huge_page_refcount won't run anymore */ 208 if (likely(PageTail(page))) { 209 __get_page_tail_foll(page, false); 210 got = true; 211 } 212 compound_unlock_irqrestore(page_head, flags); 213 if (unlikely(!got)) 214 put_page(page_head); 215 } 216 return got; 217 } 218 EXPORT_SYMBOL(__get_page_tail); 219 220 /** 221 * put_pages_list() - release a list of pages 222 * @pages: list of pages threaded on page->lru 223 * 224 * Release a list of pages which are strung together on page.lru. Currently 225 * used by read_cache_pages() and related error recovery code. 226 */ 227 void put_pages_list(struct list_head *pages) 228 { 229 while (!list_empty(pages)) { 230 struct page *victim; 231 232 victim = list_entry(pages->prev, struct page, lru); 233 list_del(&victim->lru); 234 page_cache_release(victim); 235 } 236 } 237 EXPORT_SYMBOL(put_pages_list); 238 239 static void pagevec_lru_move_fn(struct pagevec *pvec, 240 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg), 241 void *arg) 242 { 243 int i; 244 struct zone *zone = NULL; 245 struct lruvec *lruvec; 246 unsigned long flags = 0; 247 248 for (i = 0; i < pagevec_count(pvec); i++) { 249 struct page *page = pvec->pages[i]; 250 struct zone *pagezone = page_zone(page); 251 252 if (pagezone != zone) { 253 if (zone) 254 spin_unlock_irqrestore(&zone->lru_lock, flags); 255 zone = pagezone; 256 spin_lock_irqsave(&zone->lru_lock, flags); 257 } 258 259 lruvec = mem_cgroup_page_lruvec(page, zone); 260 (*move_fn)(page, lruvec, arg); 261 } 262 if (zone) 263 spin_unlock_irqrestore(&zone->lru_lock, flags); 264 release_pages(pvec->pages, pvec->nr, pvec->cold); 265 pagevec_reinit(pvec); 266 } 267 268 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec, 269 void *arg) 270 { 271 int *pgmoved = arg; 272 273 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 274 enum lru_list lru = page_lru_base_type(page); 275 list_move_tail(&page->lru, &lruvec->lists[lru]); 276 (*pgmoved)++; 277 } 278 } 279 280 /* 281 * pagevec_move_tail() must be called with IRQ disabled. 282 * Otherwise this may cause nasty races. 283 */ 284 static void pagevec_move_tail(struct pagevec *pvec) 285 { 286 int pgmoved = 0; 287 288 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved); 289 __count_vm_events(PGROTATED, pgmoved); 290 } 291 292 /* 293 * Writeback is about to end against a page which has been marked for immediate 294 * reclaim. If it still appears to be reclaimable, move it to the tail of the 295 * inactive list. 296 */ 297 void rotate_reclaimable_page(struct page *page) 298 { 299 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) && 300 !PageUnevictable(page) && PageLRU(page)) { 301 struct pagevec *pvec; 302 unsigned long flags; 303 304 page_cache_get(page); 305 local_irq_save(flags); 306 pvec = &__get_cpu_var(lru_rotate_pvecs); 307 if (!pagevec_add(pvec, page)) 308 pagevec_move_tail(pvec); 309 local_irq_restore(flags); 310 } 311 } 312 313 static void update_page_reclaim_stat(struct lruvec *lruvec, 314 int file, int rotated) 315 { 316 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 317 318 reclaim_stat->recent_scanned[file]++; 319 if (rotated) 320 reclaim_stat->recent_rotated[file]++; 321 } 322 323 static void __activate_page(struct page *page, struct lruvec *lruvec, 324 void *arg) 325 { 326 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 327 int file = page_is_file_cache(page); 328 int lru = page_lru_base_type(page); 329 330 del_page_from_lru_list(page, lruvec, lru); 331 SetPageActive(page); 332 lru += LRU_ACTIVE; 333 add_page_to_lru_list(page, lruvec, lru); 334 335 __count_vm_event(PGACTIVATE); 336 update_page_reclaim_stat(lruvec, file, 1); 337 } 338 } 339 340 #ifdef CONFIG_SMP 341 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs); 342 343 static void activate_page_drain(int cpu) 344 { 345 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu); 346 347 if (pagevec_count(pvec)) 348 pagevec_lru_move_fn(pvec, __activate_page, NULL); 349 } 350 351 void activate_page(struct page *page) 352 { 353 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 354 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs); 355 356 page_cache_get(page); 357 if (!pagevec_add(pvec, page)) 358 pagevec_lru_move_fn(pvec, __activate_page, NULL); 359 put_cpu_var(activate_page_pvecs); 360 } 361 } 362 363 #else 364 static inline void activate_page_drain(int cpu) 365 { 366 } 367 368 void activate_page(struct page *page) 369 { 370 struct zone *zone = page_zone(page); 371 372 spin_lock_irq(&zone->lru_lock); 373 __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL); 374 spin_unlock_irq(&zone->lru_lock); 375 } 376 #endif 377 378 /* 379 * Mark a page as having seen activity. 380 * 381 * inactive,unreferenced -> inactive,referenced 382 * inactive,referenced -> active,unreferenced 383 * active,unreferenced -> active,referenced 384 */ 385 void mark_page_accessed(struct page *page) 386 { 387 if (!PageActive(page) && !PageUnevictable(page) && 388 PageReferenced(page) && PageLRU(page)) { 389 activate_page(page); 390 ClearPageReferenced(page); 391 } else if (!PageReferenced(page)) { 392 SetPageReferenced(page); 393 } 394 } 395 EXPORT_SYMBOL(mark_page_accessed); 396 397 void __lru_cache_add(struct page *page, enum lru_list lru) 398 { 399 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru]; 400 401 page_cache_get(page); 402 if (!pagevec_add(pvec, page)) 403 __pagevec_lru_add(pvec, lru); 404 put_cpu_var(lru_add_pvecs); 405 } 406 EXPORT_SYMBOL(__lru_cache_add); 407 408 /** 409 * lru_cache_add_lru - add a page to a page list 410 * @page: the page to be added to the LRU. 411 * @lru: the LRU list to which the page is added. 412 */ 413 void lru_cache_add_lru(struct page *page, enum lru_list lru) 414 { 415 if (PageActive(page)) { 416 VM_BUG_ON(PageUnevictable(page)); 417 ClearPageActive(page); 418 } else if (PageUnevictable(page)) { 419 VM_BUG_ON(PageActive(page)); 420 ClearPageUnevictable(page); 421 } 422 423 VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page)); 424 __lru_cache_add(page, lru); 425 } 426 427 /** 428 * add_page_to_unevictable_list - add a page to the unevictable list 429 * @page: the page to be added to the unevictable list 430 * 431 * Add page directly to its zone's unevictable list. To avoid races with 432 * tasks that might be making the page evictable, through eg. munlock, 433 * munmap or exit, while it's not on the lru, we want to add the page 434 * while it's locked or otherwise "invisible" to other tasks. This is 435 * difficult to do when using the pagevec cache, so bypass that. 436 */ 437 void add_page_to_unevictable_list(struct page *page) 438 { 439 struct zone *zone = page_zone(page); 440 struct lruvec *lruvec; 441 442 spin_lock_irq(&zone->lru_lock); 443 lruvec = mem_cgroup_page_lruvec(page, zone); 444 SetPageUnevictable(page); 445 SetPageLRU(page); 446 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE); 447 spin_unlock_irq(&zone->lru_lock); 448 } 449 450 /* 451 * If the page can not be invalidated, it is moved to the 452 * inactive list to speed up its reclaim. It is moved to the 453 * head of the list, rather than the tail, to give the flusher 454 * threads some time to write it out, as this is much more 455 * effective than the single-page writeout from reclaim. 456 * 457 * If the page isn't page_mapped and dirty/writeback, the page 458 * could reclaim asap using PG_reclaim. 459 * 460 * 1. active, mapped page -> none 461 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim 462 * 3. inactive, mapped page -> none 463 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim 464 * 5. inactive, clean -> inactive, tail 465 * 6. Others -> none 466 * 467 * In 4, why it moves inactive's head, the VM expects the page would 468 * be write it out by flusher threads as this is much more effective 469 * than the single-page writeout from reclaim. 470 */ 471 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec, 472 void *arg) 473 { 474 int lru, file; 475 bool active; 476 477 if (!PageLRU(page)) 478 return; 479 480 if (PageUnevictable(page)) 481 return; 482 483 /* Some processes are using the page */ 484 if (page_mapped(page)) 485 return; 486 487 active = PageActive(page); 488 file = page_is_file_cache(page); 489 lru = page_lru_base_type(page); 490 491 del_page_from_lru_list(page, lruvec, lru + active); 492 ClearPageActive(page); 493 ClearPageReferenced(page); 494 add_page_to_lru_list(page, lruvec, lru); 495 496 if (PageWriteback(page) || PageDirty(page)) { 497 /* 498 * PG_reclaim could be raced with end_page_writeback 499 * It can make readahead confusing. But race window 500 * is _really_ small and it's non-critical problem. 501 */ 502 SetPageReclaim(page); 503 } else { 504 /* 505 * The page's writeback ends up during pagevec 506 * We moves tha page into tail of inactive. 507 */ 508 list_move_tail(&page->lru, &lruvec->lists[lru]); 509 __count_vm_event(PGROTATED); 510 } 511 512 if (active) 513 __count_vm_event(PGDEACTIVATE); 514 update_page_reclaim_stat(lruvec, file, 0); 515 } 516 517 /* 518 * Drain pages out of the cpu's pagevecs. 519 * Either "cpu" is the current CPU, and preemption has already been 520 * disabled; or "cpu" is being hot-unplugged, and is already dead. 521 */ 522 void lru_add_drain_cpu(int cpu) 523 { 524 struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu); 525 struct pagevec *pvec; 526 int lru; 527 528 for_each_lru(lru) { 529 pvec = &pvecs[lru - LRU_BASE]; 530 if (pagevec_count(pvec)) 531 __pagevec_lru_add(pvec, lru); 532 } 533 534 pvec = &per_cpu(lru_rotate_pvecs, cpu); 535 if (pagevec_count(pvec)) { 536 unsigned long flags; 537 538 /* No harm done if a racing interrupt already did this */ 539 local_irq_save(flags); 540 pagevec_move_tail(pvec); 541 local_irq_restore(flags); 542 } 543 544 pvec = &per_cpu(lru_deactivate_pvecs, cpu); 545 if (pagevec_count(pvec)) 546 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); 547 548 activate_page_drain(cpu); 549 } 550 551 /** 552 * deactivate_page - forcefully deactivate a page 553 * @page: page to deactivate 554 * 555 * This function hints the VM that @page is a good reclaim candidate, 556 * for example if its invalidation fails due to the page being dirty 557 * or under writeback. 558 */ 559 void deactivate_page(struct page *page) 560 { 561 /* 562 * In a workload with many unevictable page such as mprotect, unevictable 563 * page deactivation for accelerating reclaim is pointless. 564 */ 565 if (PageUnevictable(page)) 566 return; 567 568 if (likely(get_page_unless_zero(page))) { 569 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs); 570 571 if (!pagevec_add(pvec, page)) 572 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); 573 put_cpu_var(lru_deactivate_pvecs); 574 } 575 } 576 577 void lru_add_drain(void) 578 { 579 lru_add_drain_cpu(get_cpu()); 580 put_cpu(); 581 } 582 583 static void lru_add_drain_per_cpu(struct work_struct *dummy) 584 { 585 lru_add_drain(); 586 } 587 588 /* 589 * Returns 0 for success 590 */ 591 int lru_add_drain_all(void) 592 { 593 return schedule_on_each_cpu(lru_add_drain_per_cpu); 594 } 595 596 /* 597 * Batched page_cache_release(). Decrement the reference count on all the 598 * passed pages. If it fell to zero then remove the page from the LRU and 599 * free it. 600 * 601 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it 602 * for the remainder of the operation. 603 * 604 * The locking in this function is against shrink_inactive_list(): we recheck 605 * the page count inside the lock to see whether shrink_inactive_list() 606 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list() 607 * will free it. 608 */ 609 void release_pages(struct page **pages, int nr, int cold) 610 { 611 int i; 612 LIST_HEAD(pages_to_free); 613 struct zone *zone = NULL; 614 struct lruvec *lruvec; 615 unsigned long uninitialized_var(flags); 616 617 for (i = 0; i < nr; i++) { 618 struct page *page = pages[i]; 619 620 if (unlikely(PageCompound(page))) { 621 if (zone) { 622 spin_unlock_irqrestore(&zone->lru_lock, flags); 623 zone = NULL; 624 } 625 put_compound_page(page); 626 continue; 627 } 628 629 if (!put_page_testzero(page)) 630 continue; 631 632 if (PageLRU(page)) { 633 struct zone *pagezone = page_zone(page); 634 635 if (pagezone != zone) { 636 if (zone) 637 spin_unlock_irqrestore(&zone->lru_lock, 638 flags); 639 zone = pagezone; 640 spin_lock_irqsave(&zone->lru_lock, flags); 641 } 642 643 lruvec = mem_cgroup_page_lruvec(page, zone); 644 VM_BUG_ON(!PageLRU(page)); 645 __ClearPageLRU(page); 646 del_page_from_lru_list(page, lruvec, page_off_lru(page)); 647 } 648 649 list_add(&page->lru, &pages_to_free); 650 } 651 if (zone) 652 spin_unlock_irqrestore(&zone->lru_lock, flags); 653 654 free_hot_cold_page_list(&pages_to_free, cold); 655 } 656 EXPORT_SYMBOL(release_pages); 657 658 /* 659 * The pages which we're about to release may be in the deferred lru-addition 660 * queues. That would prevent them from really being freed right now. That's 661 * OK from a correctness point of view but is inefficient - those pages may be 662 * cache-warm and we want to give them back to the page allocator ASAP. 663 * 664 * So __pagevec_release() will drain those queues here. __pagevec_lru_add() 665 * and __pagevec_lru_add_active() call release_pages() directly to avoid 666 * mutual recursion. 667 */ 668 void __pagevec_release(struct pagevec *pvec) 669 { 670 lru_add_drain(); 671 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold); 672 pagevec_reinit(pvec); 673 } 674 EXPORT_SYMBOL(__pagevec_release); 675 676 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 677 /* used by __split_huge_page_refcount() */ 678 void lru_add_page_tail(struct page *page, struct page *page_tail, 679 struct lruvec *lruvec) 680 { 681 int uninitialized_var(active); 682 enum lru_list lru; 683 const int file = 0; 684 685 VM_BUG_ON(!PageHead(page)); 686 VM_BUG_ON(PageCompound(page_tail)); 687 VM_BUG_ON(PageLRU(page_tail)); 688 VM_BUG_ON(NR_CPUS != 1 && 689 !spin_is_locked(&lruvec_zone(lruvec)->lru_lock)); 690 691 SetPageLRU(page_tail); 692 693 if (page_evictable(page_tail, NULL)) { 694 if (PageActive(page)) { 695 SetPageActive(page_tail); 696 active = 1; 697 lru = LRU_ACTIVE_ANON; 698 } else { 699 active = 0; 700 lru = LRU_INACTIVE_ANON; 701 } 702 } else { 703 SetPageUnevictable(page_tail); 704 lru = LRU_UNEVICTABLE; 705 } 706 707 if (likely(PageLRU(page))) 708 list_add_tail(&page_tail->lru, &page->lru); 709 else { 710 struct list_head *list_head; 711 /* 712 * Head page has not yet been counted, as an hpage, 713 * so we must account for each subpage individually. 714 * 715 * Use the standard add function to put page_tail on the list, 716 * but then correct its position so they all end up in order. 717 */ 718 add_page_to_lru_list(page_tail, lruvec, lru); 719 list_head = page_tail->lru.prev; 720 list_move_tail(&page_tail->lru, list_head); 721 } 722 723 if (!PageUnevictable(page)) 724 update_page_reclaim_stat(lruvec, file, active); 725 } 726 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 727 728 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec, 729 void *arg) 730 { 731 enum lru_list lru = (enum lru_list)arg; 732 int file = is_file_lru(lru); 733 int active = is_active_lru(lru); 734 735 VM_BUG_ON(PageActive(page)); 736 VM_BUG_ON(PageUnevictable(page)); 737 VM_BUG_ON(PageLRU(page)); 738 739 SetPageLRU(page); 740 if (active) 741 SetPageActive(page); 742 add_page_to_lru_list(page, lruvec, lru); 743 update_page_reclaim_stat(lruvec, file, active); 744 } 745 746 /* 747 * Add the passed pages to the LRU, then drop the caller's refcount 748 * on them. Reinitialises the caller's pagevec. 749 */ 750 void __pagevec_lru_add(struct pagevec *pvec, enum lru_list lru) 751 { 752 VM_BUG_ON(is_unevictable_lru(lru)); 753 754 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, (void *)lru); 755 } 756 EXPORT_SYMBOL(__pagevec_lru_add); 757 758 /** 759 * pagevec_lookup - gang pagecache lookup 760 * @pvec: Where the resulting pages are placed 761 * @mapping: The address_space to search 762 * @start: The starting page index 763 * @nr_pages: The maximum number of pages 764 * 765 * pagevec_lookup() will search for and return a group of up to @nr_pages pages 766 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a 767 * reference against the pages in @pvec. 768 * 769 * The search returns a group of mapping-contiguous pages with ascending 770 * indexes. There may be holes in the indices due to not-present pages. 771 * 772 * pagevec_lookup() returns the number of pages which were found. 773 */ 774 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping, 775 pgoff_t start, unsigned nr_pages) 776 { 777 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages); 778 return pagevec_count(pvec); 779 } 780 EXPORT_SYMBOL(pagevec_lookup); 781 782 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping, 783 pgoff_t *index, int tag, unsigned nr_pages) 784 { 785 pvec->nr = find_get_pages_tag(mapping, index, tag, 786 nr_pages, pvec->pages); 787 return pagevec_count(pvec); 788 } 789 EXPORT_SYMBOL(pagevec_lookup_tag); 790 791 /* 792 * Perform any setup for the swap system 793 */ 794 void __init swap_setup(void) 795 { 796 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT); 797 798 #ifdef CONFIG_SWAP 799 bdi_init(swapper_space.backing_dev_info); 800 #endif 801 802 /* Use a smaller cluster for small-memory machines */ 803 if (megs < 16) 804 page_cluster = 2; 805 else 806 page_cluster = 3; 807 /* 808 * Right now other parts of the system means that we 809 * _really_ don't want to cluster much more 810 */ 811 } 812