xref: /linux/mm/swap.c (revision 42fda66387daa53538ae13a2c858396aaf037158)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the opereation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page() */
27 #include <linux/percpu_counter.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 
32 /* How many pages do we try to swap or page in/out together? */
33 int page_cluster;
34 
35 static DEFINE_PER_CPU(struct pagevec, lru_add_pvecs) = { 0, };
36 static DEFINE_PER_CPU(struct pagevec, lru_add_active_pvecs) = { 0, };
37 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs) = { 0, };
38 
39 /*
40  * This path almost never happens for VM activity - pages are normally
41  * freed via pagevecs.  But it gets used by networking.
42  */
43 static void fastcall __page_cache_release(struct page *page)
44 {
45 	if (PageLRU(page)) {
46 		unsigned long flags;
47 		struct zone *zone = page_zone(page);
48 
49 		spin_lock_irqsave(&zone->lru_lock, flags);
50 		VM_BUG_ON(!PageLRU(page));
51 		__ClearPageLRU(page);
52 		del_page_from_lru(zone, page);
53 		spin_unlock_irqrestore(&zone->lru_lock, flags);
54 	}
55 	free_hot_page(page);
56 }
57 
58 static void put_compound_page(struct page *page)
59 {
60 	page = compound_head(page);
61 	if (put_page_testzero(page)) {
62 		compound_page_dtor *dtor;
63 
64 		dtor = get_compound_page_dtor(page);
65 		(*dtor)(page);
66 	}
67 }
68 
69 void put_page(struct page *page)
70 {
71 	if (unlikely(PageCompound(page)))
72 		put_compound_page(page);
73 	else if (put_page_testzero(page))
74 		__page_cache_release(page);
75 }
76 EXPORT_SYMBOL(put_page);
77 
78 /**
79  * put_pages_list(): release a list of pages
80  *
81  * Release a list of pages which are strung together on page.lru.  Currently
82  * used by read_cache_pages() and related error recovery code.
83  *
84  * @pages: list of pages threaded on page->lru
85  */
86 void put_pages_list(struct list_head *pages)
87 {
88 	while (!list_empty(pages)) {
89 		struct page *victim;
90 
91 		victim = list_entry(pages->prev, struct page, lru);
92 		list_del(&victim->lru);
93 		page_cache_release(victim);
94 	}
95 }
96 EXPORT_SYMBOL(put_pages_list);
97 
98 /*
99  * pagevec_move_tail() must be called with IRQ disabled.
100  * Otherwise this may cause nasty races.
101  */
102 static void pagevec_move_tail(struct pagevec *pvec)
103 {
104 	int i;
105 	int pgmoved = 0;
106 	struct zone *zone = NULL;
107 
108 	for (i = 0; i < pagevec_count(pvec); i++) {
109 		struct page *page = pvec->pages[i];
110 		struct zone *pagezone = page_zone(page);
111 
112 		if (pagezone != zone) {
113 			if (zone)
114 				spin_unlock(&zone->lru_lock);
115 			zone = pagezone;
116 			spin_lock(&zone->lru_lock);
117 		}
118 		if (PageLRU(page) && !PageActive(page)) {
119 			list_move_tail(&page->lru, &zone->inactive_list);
120 			pgmoved++;
121 		}
122 	}
123 	if (zone)
124 		spin_unlock(&zone->lru_lock);
125 	__count_vm_events(PGROTATED, pgmoved);
126 	release_pages(pvec->pages, pvec->nr, pvec->cold);
127 	pagevec_reinit(pvec);
128 }
129 
130 /*
131  * Writeback is about to end against a page which has been marked for immediate
132  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
133  * inactive list.
134  *
135  * Returns zero if it cleared PG_writeback.
136  */
137 int rotate_reclaimable_page(struct page *page)
138 {
139 	struct pagevec *pvec;
140 	unsigned long flags;
141 
142 	if (PageLocked(page))
143 		return 1;
144 	if (PageDirty(page))
145 		return 1;
146 	if (PageActive(page))
147 		return 1;
148 	if (!PageLRU(page))
149 		return 1;
150 
151 	page_cache_get(page);
152 	local_irq_save(flags);
153 	pvec = &__get_cpu_var(lru_rotate_pvecs);
154 	if (!pagevec_add(pvec, page))
155 		pagevec_move_tail(pvec);
156 	local_irq_restore(flags);
157 
158 	if (!test_clear_page_writeback(page))
159 		BUG();
160 
161 	return 0;
162 }
163 
164 /*
165  * FIXME: speed this up?
166  */
167 void fastcall activate_page(struct page *page)
168 {
169 	struct zone *zone = page_zone(page);
170 
171 	spin_lock_irq(&zone->lru_lock);
172 	if (PageLRU(page) && !PageActive(page)) {
173 		del_page_from_inactive_list(zone, page);
174 		SetPageActive(page);
175 		add_page_to_active_list(zone, page);
176 		__count_vm_event(PGACTIVATE);
177 	}
178 	spin_unlock_irq(&zone->lru_lock);
179 }
180 
181 /*
182  * Mark a page as having seen activity.
183  *
184  * inactive,unreferenced	->	inactive,referenced
185  * inactive,referenced		->	active,unreferenced
186  * active,unreferenced		->	active,referenced
187  */
188 void fastcall mark_page_accessed(struct page *page)
189 {
190 	if (!PageActive(page) && PageReferenced(page) && PageLRU(page)) {
191 		activate_page(page);
192 		ClearPageReferenced(page);
193 	} else if (!PageReferenced(page)) {
194 		SetPageReferenced(page);
195 	}
196 }
197 
198 EXPORT_SYMBOL(mark_page_accessed);
199 
200 /**
201  * lru_cache_add: add a page to the page lists
202  * @page: the page to add
203  */
204 void fastcall lru_cache_add(struct page *page)
205 {
206 	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs);
207 
208 	page_cache_get(page);
209 	if (!pagevec_add(pvec, page))
210 		__pagevec_lru_add(pvec);
211 	put_cpu_var(lru_add_pvecs);
212 }
213 
214 void fastcall lru_cache_add_active(struct page *page)
215 {
216 	struct pagevec *pvec = &get_cpu_var(lru_add_active_pvecs);
217 
218 	page_cache_get(page);
219 	if (!pagevec_add(pvec, page))
220 		__pagevec_lru_add_active(pvec);
221 	put_cpu_var(lru_add_active_pvecs);
222 }
223 
224 /*
225  * Drain pages out of the cpu's pagevecs.
226  * Either "cpu" is the current CPU, and preemption has already been
227  * disabled; or "cpu" is being hot-unplugged, and is already dead.
228  */
229 static void drain_cpu_pagevecs(int cpu)
230 {
231 	struct pagevec *pvec;
232 
233 	pvec = &per_cpu(lru_add_pvecs, cpu);
234 	if (pagevec_count(pvec))
235 		__pagevec_lru_add(pvec);
236 
237 	pvec = &per_cpu(lru_add_active_pvecs, cpu);
238 	if (pagevec_count(pvec))
239 		__pagevec_lru_add_active(pvec);
240 
241 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
242 	if (pagevec_count(pvec)) {
243 		unsigned long flags;
244 
245 		/* No harm done if a racing interrupt already did this */
246 		local_irq_save(flags);
247 		pagevec_move_tail(pvec);
248 		local_irq_restore(flags);
249 	}
250 }
251 
252 void lru_add_drain(void)
253 {
254 	drain_cpu_pagevecs(get_cpu());
255 	put_cpu();
256 }
257 
258 #ifdef CONFIG_NUMA
259 static void lru_add_drain_per_cpu(struct work_struct *dummy)
260 {
261 	lru_add_drain();
262 }
263 
264 /*
265  * Returns 0 for success
266  */
267 int lru_add_drain_all(void)
268 {
269 	return schedule_on_each_cpu(lru_add_drain_per_cpu);
270 }
271 
272 #else
273 
274 /*
275  * Returns 0 for success
276  */
277 int lru_add_drain_all(void)
278 {
279 	lru_add_drain();
280 	return 0;
281 }
282 #endif
283 
284 /*
285  * Batched page_cache_release().  Decrement the reference count on all the
286  * passed pages.  If it fell to zero then remove the page from the LRU and
287  * free it.
288  *
289  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
290  * for the remainder of the operation.
291  *
292  * The locking in this function is against shrink_cache(): we recheck the
293  * page count inside the lock to see whether shrink_cache grabbed the page
294  * via the LRU.  If it did, give up: shrink_cache will free it.
295  */
296 void release_pages(struct page **pages, int nr, int cold)
297 {
298 	int i;
299 	struct pagevec pages_to_free;
300 	struct zone *zone = NULL;
301 	unsigned long uninitialized_var(flags);
302 
303 	pagevec_init(&pages_to_free, cold);
304 	for (i = 0; i < nr; i++) {
305 		struct page *page = pages[i];
306 
307 		if (unlikely(PageCompound(page))) {
308 			if (zone) {
309 				spin_unlock_irqrestore(&zone->lru_lock, flags);
310 				zone = NULL;
311 			}
312 			put_compound_page(page);
313 			continue;
314 		}
315 
316 		if (!put_page_testzero(page))
317 			continue;
318 
319 		if (PageLRU(page)) {
320 			struct zone *pagezone = page_zone(page);
321 			if (pagezone != zone) {
322 				if (zone)
323 					spin_unlock_irqrestore(&zone->lru_lock,
324 									flags);
325 				zone = pagezone;
326 				spin_lock_irqsave(&zone->lru_lock, flags);
327 			}
328 			VM_BUG_ON(!PageLRU(page));
329 			__ClearPageLRU(page);
330 			del_page_from_lru(zone, page);
331 		}
332 
333 		if (!pagevec_add(&pages_to_free, page)) {
334 			if (zone) {
335 				spin_unlock_irqrestore(&zone->lru_lock, flags);
336 				zone = NULL;
337 			}
338 			__pagevec_free(&pages_to_free);
339 			pagevec_reinit(&pages_to_free);
340   		}
341 	}
342 	if (zone)
343 		spin_unlock_irqrestore(&zone->lru_lock, flags);
344 
345 	pagevec_free(&pages_to_free);
346 }
347 
348 /*
349  * The pages which we're about to release may be in the deferred lru-addition
350  * queues.  That would prevent them from really being freed right now.  That's
351  * OK from a correctness point of view but is inefficient - those pages may be
352  * cache-warm and we want to give them back to the page allocator ASAP.
353  *
354  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
355  * and __pagevec_lru_add_active() call release_pages() directly to avoid
356  * mutual recursion.
357  */
358 void __pagevec_release(struct pagevec *pvec)
359 {
360 	lru_add_drain();
361 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
362 	pagevec_reinit(pvec);
363 }
364 
365 EXPORT_SYMBOL(__pagevec_release);
366 
367 /*
368  * pagevec_release() for pages which are known to not be on the LRU
369  *
370  * This function reinitialises the caller's pagevec.
371  */
372 void __pagevec_release_nonlru(struct pagevec *pvec)
373 {
374 	int i;
375 	struct pagevec pages_to_free;
376 
377 	pagevec_init(&pages_to_free, pvec->cold);
378 	for (i = 0; i < pagevec_count(pvec); i++) {
379 		struct page *page = pvec->pages[i];
380 
381 		VM_BUG_ON(PageLRU(page));
382 		if (put_page_testzero(page))
383 			pagevec_add(&pages_to_free, page);
384 	}
385 	pagevec_free(&pages_to_free);
386 	pagevec_reinit(pvec);
387 }
388 
389 /*
390  * Add the passed pages to the LRU, then drop the caller's refcount
391  * on them.  Reinitialises the caller's pagevec.
392  */
393 void __pagevec_lru_add(struct pagevec *pvec)
394 {
395 	int i;
396 	struct zone *zone = NULL;
397 
398 	for (i = 0; i < pagevec_count(pvec); i++) {
399 		struct page *page = pvec->pages[i];
400 		struct zone *pagezone = page_zone(page);
401 
402 		if (pagezone != zone) {
403 			if (zone)
404 				spin_unlock_irq(&zone->lru_lock);
405 			zone = pagezone;
406 			spin_lock_irq(&zone->lru_lock);
407 		}
408 		VM_BUG_ON(PageLRU(page));
409 		SetPageLRU(page);
410 		add_page_to_inactive_list(zone, page);
411 	}
412 	if (zone)
413 		spin_unlock_irq(&zone->lru_lock);
414 	release_pages(pvec->pages, pvec->nr, pvec->cold);
415 	pagevec_reinit(pvec);
416 }
417 
418 EXPORT_SYMBOL(__pagevec_lru_add);
419 
420 void __pagevec_lru_add_active(struct pagevec *pvec)
421 {
422 	int i;
423 	struct zone *zone = NULL;
424 
425 	for (i = 0; i < pagevec_count(pvec); i++) {
426 		struct page *page = pvec->pages[i];
427 		struct zone *pagezone = page_zone(page);
428 
429 		if (pagezone != zone) {
430 			if (zone)
431 				spin_unlock_irq(&zone->lru_lock);
432 			zone = pagezone;
433 			spin_lock_irq(&zone->lru_lock);
434 		}
435 		VM_BUG_ON(PageLRU(page));
436 		SetPageLRU(page);
437 		VM_BUG_ON(PageActive(page));
438 		SetPageActive(page);
439 		add_page_to_active_list(zone, page);
440 	}
441 	if (zone)
442 		spin_unlock_irq(&zone->lru_lock);
443 	release_pages(pvec->pages, pvec->nr, pvec->cold);
444 	pagevec_reinit(pvec);
445 }
446 
447 /*
448  * Try to drop buffers from the pages in a pagevec
449  */
450 void pagevec_strip(struct pagevec *pvec)
451 {
452 	int i;
453 
454 	for (i = 0; i < pagevec_count(pvec); i++) {
455 		struct page *page = pvec->pages[i];
456 
457 		if (PagePrivate(page) && !TestSetPageLocked(page)) {
458 			if (PagePrivate(page))
459 				try_to_release_page(page, 0);
460 			unlock_page(page);
461 		}
462 	}
463 }
464 
465 /**
466  * pagevec_lookup - gang pagecache lookup
467  * @pvec:	Where the resulting pages are placed
468  * @mapping:	The address_space to search
469  * @start:	The starting page index
470  * @nr_pages:	The maximum number of pages
471  *
472  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
473  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
474  * reference against the pages in @pvec.
475  *
476  * The search returns a group of mapping-contiguous pages with ascending
477  * indexes.  There may be holes in the indices due to not-present pages.
478  *
479  * pagevec_lookup() returns the number of pages which were found.
480  */
481 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
482 		pgoff_t start, unsigned nr_pages)
483 {
484 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
485 	return pagevec_count(pvec);
486 }
487 
488 EXPORT_SYMBOL(pagevec_lookup);
489 
490 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
491 		pgoff_t *index, int tag, unsigned nr_pages)
492 {
493 	pvec->nr = find_get_pages_tag(mapping, index, tag,
494 					nr_pages, pvec->pages);
495 	return pagevec_count(pvec);
496 }
497 
498 EXPORT_SYMBOL(pagevec_lookup_tag);
499 
500 #ifdef CONFIG_SMP
501 /*
502  * We tolerate a little inaccuracy to avoid ping-ponging the counter between
503  * CPUs
504  */
505 #define ACCT_THRESHOLD	max(16, NR_CPUS * 2)
506 
507 static DEFINE_PER_CPU(long, committed_space) = 0;
508 
509 void vm_acct_memory(long pages)
510 {
511 	long *local;
512 
513 	preempt_disable();
514 	local = &__get_cpu_var(committed_space);
515 	*local += pages;
516 	if (*local > ACCT_THRESHOLD || *local < -ACCT_THRESHOLD) {
517 		atomic_add(*local, &vm_committed_space);
518 		*local = 0;
519 	}
520 	preempt_enable();
521 }
522 
523 #ifdef CONFIG_HOTPLUG_CPU
524 
525 /* Drop the CPU's cached committed space back into the central pool. */
526 static int cpu_swap_callback(struct notifier_block *nfb,
527 			     unsigned long action,
528 			     void *hcpu)
529 {
530 	long *committed;
531 
532 	committed = &per_cpu(committed_space, (long)hcpu);
533 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
534 		atomic_add(*committed, &vm_committed_space);
535 		*committed = 0;
536 		drain_cpu_pagevecs((long)hcpu);
537 	}
538 	return NOTIFY_OK;
539 }
540 #endif /* CONFIG_HOTPLUG_CPU */
541 #endif /* CONFIG_SMP */
542 
543 /*
544  * Perform any setup for the swap system
545  */
546 void __init swap_setup(void)
547 {
548 	unsigned long megs = num_physpages >> (20 - PAGE_SHIFT);
549 
550 	/* Use a smaller cluster for small-memory machines */
551 	if (megs < 16)
552 		page_cluster = 2;
553 	else
554 		page_cluster = 3;
555 	/*
556 	 * Right now other parts of the system means that we
557 	 * _really_ don't want to cluster much more
558 	 */
559 #ifdef CONFIG_HOTPLUG_CPU
560 	hotcpu_notifier(cpu_swap_callback, 0);
561 #endif
562 }
563