xref: /linux/mm/swap.c (revision 394d83c17fac2b7bcf05cb99d1e945135767bb6b)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page() */
27 #include <linux/percpu_counter.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34 
35 #include "internal.h"
36 
37 /* How many pages do we try to swap or page in/out together? */
38 int page_cluster;
39 
40 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
41 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
42 
43 /*
44  * This path almost never happens for VM activity - pages are normally
45  * freed via pagevecs.  But it gets used by networking.
46  */
47 static void __page_cache_release(struct page *page)
48 {
49 	if (PageLRU(page)) {
50 		unsigned long flags;
51 		struct zone *zone = page_zone(page);
52 
53 		spin_lock_irqsave(&zone->lru_lock, flags);
54 		VM_BUG_ON(!PageLRU(page));
55 		__ClearPageLRU(page);
56 		del_page_from_lru(zone, page);
57 		spin_unlock_irqrestore(&zone->lru_lock, flags);
58 	}
59 }
60 
61 static void __put_single_page(struct page *page)
62 {
63 	__page_cache_release(page);
64 	free_hot_cold_page(page, 0);
65 }
66 
67 static void __put_compound_page(struct page *page)
68 {
69 	compound_page_dtor *dtor;
70 
71 	__page_cache_release(page);
72 	dtor = get_compound_page_dtor(page);
73 	(*dtor)(page);
74 }
75 
76 static void put_compound_page(struct page *page)
77 {
78 	if (unlikely(PageTail(page))) {
79 		/* __split_huge_page_refcount can run under us */
80 		struct page *page_head = page->first_page;
81 		smp_rmb();
82 		/*
83 		 * If PageTail is still set after smp_rmb() we can be sure
84 		 * that the page->first_page we read wasn't a dangling pointer.
85 		 * See __split_huge_page_refcount() smp_wmb().
86 		 */
87 		if (likely(PageTail(page) && get_page_unless_zero(page_head))) {
88 			unsigned long flags;
89 			/*
90 			 * Verify that our page_head wasn't converted
91 			 * to a a regular page before we got a
92 			 * reference on it.
93 			 */
94 			if (unlikely(!PageHead(page_head))) {
95 				/* PageHead is cleared after PageTail */
96 				smp_rmb();
97 				VM_BUG_ON(PageTail(page));
98 				goto out_put_head;
99 			}
100 			/*
101 			 * Only run compound_lock on a valid PageHead,
102 			 * after having it pinned with
103 			 * get_page_unless_zero() above.
104 			 */
105 			smp_mb();
106 			/* page_head wasn't a dangling pointer */
107 			flags = compound_lock_irqsave(page_head);
108 			if (unlikely(!PageTail(page))) {
109 				/* __split_huge_page_refcount run before us */
110 				compound_unlock_irqrestore(page_head, flags);
111 				VM_BUG_ON(PageHead(page_head));
112 			out_put_head:
113 				if (put_page_testzero(page_head))
114 					__put_single_page(page_head);
115 			out_put_single:
116 				if (put_page_testzero(page))
117 					__put_single_page(page);
118 				return;
119 			}
120 			VM_BUG_ON(page_head != page->first_page);
121 			/*
122 			 * We can release the refcount taken by
123 			 * get_page_unless_zero now that
124 			 * split_huge_page_refcount is blocked on the
125 			 * compound_lock.
126 			 */
127 			if (put_page_testzero(page_head))
128 				VM_BUG_ON(1);
129 			/* __split_huge_page_refcount will wait now */
130 			VM_BUG_ON(atomic_read(&page->_count) <= 0);
131 			atomic_dec(&page->_count);
132 			VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
133 			compound_unlock_irqrestore(page_head, flags);
134 			if (put_page_testzero(page_head)) {
135 				if (PageHead(page_head))
136 					__put_compound_page(page_head);
137 				else
138 					__put_single_page(page_head);
139 			}
140 		} else {
141 			/* page_head is a dangling pointer */
142 			VM_BUG_ON(PageTail(page));
143 			goto out_put_single;
144 		}
145 	} else if (put_page_testzero(page)) {
146 		if (PageHead(page))
147 			__put_compound_page(page);
148 		else
149 			__put_single_page(page);
150 	}
151 }
152 
153 void put_page(struct page *page)
154 {
155 	if (unlikely(PageCompound(page)))
156 		put_compound_page(page);
157 	else if (put_page_testzero(page))
158 		__put_single_page(page);
159 }
160 EXPORT_SYMBOL(put_page);
161 
162 /**
163  * put_pages_list() - release a list of pages
164  * @pages: list of pages threaded on page->lru
165  *
166  * Release a list of pages which are strung together on page.lru.  Currently
167  * used by read_cache_pages() and related error recovery code.
168  */
169 void put_pages_list(struct list_head *pages)
170 {
171 	while (!list_empty(pages)) {
172 		struct page *victim;
173 
174 		victim = list_entry(pages->prev, struct page, lru);
175 		list_del(&victim->lru);
176 		page_cache_release(victim);
177 	}
178 }
179 EXPORT_SYMBOL(put_pages_list);
180 
181 static void pagevec_lru_move_fn(struct pagevec *pvec,
182 				void (*move_fn)(struct page *page, void *arg),
183 				void *arg)
184 {
185 	int i;
186 	struct zone *zone = NULL;
187 	unsigned long flags = 0;
188 
189 	for (i = 0; i < pagevec_count(pvec); i++) {
190 		struct page *page = pvec->pages[i];
191 		struct zone *pagezone = page_zone(page);
192 
193 		if (pagezone != zone) {
194 			if (zone)
195 				spin_unlock_irqrestore(&zone->lru_lock, flags);
196 			zone = pagezone;
197 			spin_lock_irqsave(&zone->lru_lock, flags);
198 		}
199 
200 		(*move_fn)(page, arg);
201 	}
202 	if (zone)
203 		spin_unlock_irqrestore(&zone->lru_lock, flags);
204 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
205 	pagevec_reinit(pvec);
206 }
207 
208 static void pagevec_move_tail_fn(struct page *page, void *arg)
209 {
210 	int *pgmoved = arg;
211 	struct zone *zone = page_zone(page);
212 
213 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
214 		int lru = page_lru_base_type(page);
215 		list_move_tail(&page->lru, &zone->lru[lru].list);
216 		(*pgmoved)++;
217 	}
218 }
219 
220 /*
221  * pagevec_move_tail() must be called with IRQ disabled.
222  * Otherwise this may cause nasty races.
223  */
224 static void pagevec_move_tail(struct pagevec *pvec)
225 {
226 	int pgmoved = 0;
227 
228 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
229 	__count_vm_events(PGROTATED, pgmoved);
230 }
231 
232 /*
233  * Writeback is about to end against a page which has been marked for immediate
234  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
235  * inactive list.
236  */
237 void rotate_reclaimable_page(struct page *page)
238 {
239 	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
240 	    !PageUnevictable(page) && PageLRU(page)) {
241 		struct pagevec *pvec;
242 		unsigned long flags;
243 
244 		page_cache_get(page);
245 		local_irq_save(flags);
246 		pvec = &__get_cpu_var(lru_rotate_pvecs);
247 		if (!pagevec_add(pvec, page))
248 			pagevec_move_tail(pvec);
249 		local_irq_restore(flags);
250 	}
251 }
252 
253 static void update_page_reclaim_stat(struct zone *zone, struct page *page,
254 				     int file, int rotated)
255 {
256 	struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
257 	struct zone_reclaim_stat *memcg_reclaim_stat;
258 
259 	memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
260 
261 	reclaim_stat->recent_scanned[file]++;
262 	if (rotated)
263 		reclaim_stat->recent_rotated[file]++;
264 
265 	if (!memcg_reclaim_stat)
266 		return;
267 
268 	memcg_reclaim_stat->recent_scanned[file]++;
269 	if (rotated)
270 		memcg_reclaim_stat->recent_rotated[file]++;
271 }
272 
273 /*
274  * A page will go to active list either by activate_page or putback_lru_page.
275  * In the activate_page case, the page hasn't active bit set. The page might
276  * not in LRU list because it's isolated before it gets a chance to be moved to
277  * active list. The window is small because pagevec just stores several pages.
278  * For such case, we do nothing for such page.
279  * In the putback_lru_page case, the page isn't in lru list but has active
280  * bit set
281  */
282 static void __activate_page(struct page *page, void *arg)
283 {
284 	struct zone *zone = page_zone(page);
285 	int file = page_is_file_cache(page);
286 	int lru = page_lru_base_type(page);
287 	bool putback = !PageLRU(page);
288 
289 	/* The page is isolated before it's moved to active list */
290 	if (!PageLRU(page) && !PageActive(page))
291 		return;
292 	if ((PageLRU(page) && PageActive(page)) || PageUnevictable(page))
293 		return;
294 
295 	if (!putback)
296 		del_page_from_lru_list(zone, page, lru);
297 	else
298 		SetPageLRU(page);
299 
300 	SetPageActive(page);
301 	lru += LRU_ACTIVE;
302 	add_page_to_lru_list(zone, page, lru);
303 
304 	if (putback)
305 		return;
306 	__count_vm_event(PGACTIVATE);
307 	update_page_reclaim_stat(zone, page, file, 1);
308 }
309 
310 #ifdef CONFIG_SMP
311 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
312 
313 static void activate_page_drain(int cpu)
314 {
315 	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
316 
317 	if (pagevec_count(pvec))
318 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
319 }
320 
321 void activate_page(struct page *page)
322 {
323 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
324 		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
325 
326 		page_cache_get(page);
327 		if (!pagevec_add(pvec, page))
328 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
329 		put_cpu_var(activate_page_pvecs);
330 	}
331 }
332 
333 /* Caller should hold zone->lru_lock */
334 int putback_active_lru_page(struct zone *zone, struct page *page)
335 {
336 	struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
337 
338 	if (!pagevec_add(pvec, page)) {
339 		spin_unlock_irq(&zone->lru_lock);
340 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
341 		spin_lock_irq(&zone->lru_lock);
342 	}
343 	put_cpu_var(activate_page_pvecs);
344 	return 1;
345 }
346 
347 #else
348 static inline void activate_page_drain(int cpu)
349 {
350 }
351 
352 void activate_page(struct page *page)
353 {
354 	struct zone *zone = page_zone(page);
355 
356 	spin_lock_irq(&zone->lru_lock);
357 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page))
358 		__activate_page(page, NULL);
359 	spin_unlock_irq(&zone->lru_lock);
360 }
361 #endif
362 
363 /*
364  * Mark a page as having seen activity.
365  *
366  * inactive,unreferenced	->	inactive,referenced
367  * inactive,referenced		->	active,unreferenced
368  * active,unreferenced		->	active,referenced
369  */
370 void mark_page_accessed(struct page *page)
371 {
372 	if (!PageActive(page) && !PageUnevictable(page) &&
373 			PageReferenced(page) && PageLRU(page)) {
374 		activate_page(page);
375 		ClearPageReferenced(page);
376 	} else if (!PageReferenced(page)) {
377 		SetPageReferenced(page);
378 	}
379 }
380 
381 EXPORT_SYMBOL(mark_page_accessed);
382 
383 void __lru_cache_add(struct page *page, enum lru_list lru)
384 {
385 	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
386 
387 	page_cache_get(page);
388 	if (!pagevec_add(pvec, page))
389 		____pagevec_lru_add(pvec, lru);
390 	put_cpu_var(lru_add_pvecs);
391 }
392 EXPORT_SYMBOL(__lru_cache_add);
393 
394 /**
395  * lru_cache_add_lru - add a page to a page list
396  * @page: the page to be added to the LRU.
397  * @lru: the LRU list to which the page is added.
398  */
399 void lru_cache_add_lru(struct page *page, enum lru_list lru)
400 {
401 	if (PageActive(page)) {
402 		VM_BUG_ON(PageUnevictable(page));
403 		ClearPageActive(page);
404 	} else if (PageUnevictable(page)) {
405 		VM_BUG_ON(PageActive(page));
406 		ClearPageUnevictable(page);
407 	}
408 
409 	VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
410 	__lru_cache_add(page, lru);
411 }
412 
413 /**
414  * add_page_to_unevictable_list - add a page to the unevictable list
415  * @page:  the page to be added to the unevictable list
416  *
417  * Add page directly to its zone's unevictable list.  To avoid races with
418  * tasks that might be making the page evictable, through eg. munlock,
419  * munmap or exit, while it's not on the lru, we want to add the page
420  * while it's locked or otherwise "invisible" to other tasks.  This is
421  * difficult to do when using the pagevec cache, so bypass that.
422  */
423 void add_page_to_unevictable_list(struct page *page)
424 {
425 	struct zone *zone = page_zone(page);
426 
427 	spin_lock_irq(&zone->lru_lock);
428 	SetPageUnevictable(page);
429 	SetPageLRU(page);
430 	add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
431 	spin_unlock_irq(&zone->lru_lock);
432 }
433 
434 /*
435  * Drain pages out of the cpu's pagevecs.
436  * Either "cpu" is the current CPU, and preemption has already been
437  * disabled; or "cpu" is being hot-unplugged, and is already dead.
438  */
439 static void drain_cpu_pagevecs(int cpu)
440 {
441 	struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
442 	struct pagevec *pvec;
443 	int lru;
444 
445 	for_each_lru(lru) {
446 		pvec = &pvecs[lru - LRU_BASE];
447 		if (pagevec_count(pvec))
448 			____pagevec_lru_add(pvec, lru);
449 	}
450 
451 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
452 	if (pagevec_count(pvec)) {
453 		unsigned long flags;
454 
455 		/* No harm done if a racing interrupt already did this */
456 		local_irq_save(flags);
457 		pagevec_move_tail(pvec);
458 		local_irq_restore(flags);
459 	}
460 	activate_page_drain(cpu);
461 }
462 
463 void lru_add_drain(void)
464 {
465 	drain_cpu_pagevecs(get_cpu());
466 	put_cpu();
467 }
468 
469 static void lru_add_drain_per_cpu(struct work_struct *dummy)
470 {
471 	lru_add_drain();
472 }
473 
474 /*
475  * Returns 0 for success
476  */
477 int lru_add_drain_all(void)
478 {
479 	return schedule_on_each_cpu(lru_add_drain_per_cpu);
480 }
481 
482 /*
483  * Batched page_cache_release().  Decrement the reference count on all the
484  * passed pages.  If it fell to zero then remove the page from the LRU and
485  * free it.
486  *
487  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
488  * for the remainder of the operation.
489  *
490  * The locking in this function is against shrink_inactive_list(): we recheck
491  * the page count inside the lock to see whether shrink_inactive_list()
492  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
493  * will free it.
494  */
495 void release_pages(struct page **pages, int nr, int cold)
496 {
497 	int i;
498 	struct pagevec pages_to_free;
499 	struct zone *zone = NULL;
500 	unsigned long uninitialized_var(flags);
501 
502 	pagevec_init(&pages_to_free, cold);
503 	for (i = 0; i < nr; i++) {
504 		struct page *page = pages[i];
505 
506 		if (unlikely(PageCompound(page))) {
507 			if (zone) {
508 				spin_unlock_irqrestore(&zone->lru_lock, flags);
509 				zone = NULL;
510 			}
511 			put_compound_page(page);
512 			continue;
513 		}
514 
515 		if (!put_page_testzero(page))
516 			continue;
517 
518 		if (PageLRU(page)) {
519 			struct zone *pagezone = page_zone(page);
520 
521 			if (pagezone != zone) {
522 				if (zone)
523 					spin_unlock_irqrestore(&zone->lru_lock,
524 									flags);
525 				zone = pagezone;
526 				spin_lock_irqsave(&zone->lru_lock, flags);
527 			}
528 			VM_BUG_ON(!PageLRU(page));
529 			__ClearPageLRU(page);
530 			del_page_from_lru(zone, page);
531 		}
532 
533 		if (!pagevec_add(&pages_to_free, page)) {
534 			if (zone) {
535 				spin_unlock_irqrestore(&zone->lru_lock, flags);
536 				zone = NULL;
537 			}
538 			__pagevec_free(&pages_to_free);
539 			pagevec_reinit(&pages_to_free);
540   		}
541 	}
542 	if (zone)
543 		spin_unlock_irqrestore(&zone->lru_lock, flags);
544 
545 	pagevec_free(&pages_to_free);
546 }
547 EXPORT_SYMBOL(release_pages);
548 
549 /*
550  * The pages which we're about to release may be in the deferred lru-addition
551  * queues.  That would prevent them from really being freed right now.  That's
552  * OK from a correctness point of view but is inefficient - those pages may be
553  * cache-warm and we want to give them back to the page allocator ASAP.
554  *
555  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
556  * and __pagevec_lru_add_active() call release_pages() directly to avoid
557  * mutual recursion.
558  */
559 void __pagevec_release(struct pagevec *pvec)
560 {
561 	lru_add_drain();
562 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
563 	pagevec_reinit(pvec);
564 }
565 
566 EXPORT_SYMBOL(__pagevec_release);
567 
568 /* used by __split_huge_page_refcount() */
569 void lru_add_page_tail(struct zone* zone,
570 		       struct page *page, struct page *page_tail)
571 {
572 	int active;
573 	enum lru_list lru;
574 	const int file = 0;
575 	struct list_head *head;
576 
577 	VM_BUG_ON(!PageHead(page));
578 	VM_BUG_ON(PageCompound(page_tail));
579 	VM_BUG_ON(PageLRU(page_tail));
580 	VM_BUG_ON(!spin_is_locked(&zone->lru_lock));
581 
582 	SetPageLRU(page_tail);
583 
584 	if (page_evictable(page_tail, NULL)) {
585 		if (PageActive(page)) {
586 			SetPageActive(page_tail);
587 			active = 1;
588 			lru = LRU_ACTIVE_ANON;
589 		} else {
590 			active = 0;
591 			lru = LRU_INACTIVE_ANON;
592 		}
593 		update_page_reclaim_stat(zone, page_tail, file, active);
594 		if (likely(PageLRU(page)))
595 			head = page->lru.prev;
596 		else
597 			head = &zone->lru[lru].list;
598 		__add_page_to_lru_list(zone, page_tail, lru, head);
599 	} else {
600 		SetPageUnevictable(page_tail);
601 		add_page_to_lru_list(zone, page_tail, LRU_UNEVICTABLE);
602 	}
603 }
604 
605 static void ____pagevec_lru_add_fn(struct page *page, void *arg)
606 {
607 	enum lru_list lru = (enum lru_list)arg;
608 	struct zone *zone = page_zone(page);
609 	int file = is_file_lru(lru);
610 	int active = is_active_lru(lru);
611 
612 	VM_BUG_ON(PageActive(page));
613 	VM_BUG_ON(PageUnevictable(page));
614 	VM_BUG_ON(PageLRU(page));
615 
616 	SetPageLRU(page);
617 	if (active)
618 		SetPageActive(page);
619 	update_page_reclaim_stat(zone, page, file, active);
620 	add_page_to_lru_list(zone, page, lru);
621 }
622 
623 /*
624  * Add the passed pages to the LRU, then drop the caller's refcount
625  * on them.  Reinitialises the caller's pagevec.
626  */
627 void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
628 {
629 	VM_BUG_ON(is_unevictable_lru(lru));
630 
631 	pagevec_lru_move_fn(pvec, ____pagevec_lru_add_fn, (void *)lru);
632 }
633 
634 EXPORT_SYMBOL(____pagevec_lru_add);
635 
636 /*
637  * Try to drop buffers from the pages in a pagevec
638  */
639 void pagevec_strip(struct pagevec *pvec)
640 {
641 	int i;
642 
643 	for (i = 0; i < pagevec_count(pvec); i++) {
644 		struct page *page = pvec->pages[i];
645 
646 		if (page_has_private(page) && trylock_page(page)) {
647 			if (page_has_private(page))
648 				try_to_release_page(page, 0);
649 			unlock_page(page);
650 		}
651 	}
652 }
653 
654 /**
655  * pagevec_lookup - gang pagecache lookup
656  * @pvec:	Where the resulting pages are placed
657  * @mapping:	The address_space to search
658  * @start:	The starting page index
659  * @nr_pages:	The maximum number of pages
660  *
661  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
662  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
663  * reference against the pages in @pvec.
664  *
665  * The search returns a group of mapping-contiguous pages with ascending
666  * indexes.  There may be holes in the indices due to not-present pages.
667  *
668  * pagevec_lookup() returns the number of pages which were found.
669  */
670 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
671 		pgoff_t start, unsigned nr_pages)
672 {
673 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
674 	return pagevec_count(pvec);
675 }
676 
677 EXPORT_SYMBOL(pagevec_lookup);
678 
679 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
680 		pgoff_t *index, int tag, unsigned nr_pages)
681 {
682 	pvec->nr = find_get_pages_tag(mapping, index, tag,
683 					nr_pages, pvec->pages);
684 	return pagevec_count(pvec);
685 }
686 
687 EXPORT_SYMBOL(pagevec_lookup_tag);
688 
689 /*
690  * Perform any setup for the swap system
691  */
692 void __init swap_setup(void)
693 {
694 	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
695 
696 #ifdef CONFIG_SWAP
697 	bdi_init(swapper_space.backing_dev_info);
698 #endif
699 
700 	/* Use a smaller cluster for small-memory machines */
701 	if (megs < 16)
702 		page_cluster = 2;
703 	else
704 		page_cluster = 3;
705 	/*
706 	 * Right now other parts of the system means that we
707 	 * _really_ don't want to cluster much more
708 	 */
709 }
710