1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swap.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * This file contains the default values for the operation of the 10 * Linux VM subsystem. Fine-tuning documentation can be found in 11 * Documentation/admin-guide/sysctl/vm.rst. 12 * Started 18.12.91 13 * Swap aging added 23.2.95, Stephen Tweedie. 14 * Buffermem limits added 12.3.98, Rik van Riel. 15 */ 16 17 #include <linux/mm.h> 18 #include <linux/sched.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/mman.h> 22 #include <linux/pagemap.h> 23 #include <linux/pagevec.h> 24 #include <linux/init.h> 25 #include <linux/export.h> 26 #include <linux/mm_inline.h> 27 #include <linux/percpu_counter.h> 28 #include <linux/memremap.h> 29 #include <linux/percpu.h> 30 #include <linux/cpu.h> 31 #include <linux/notifier.h> 32 #include <linux/backing-dev.h> 33 #include <linux/memcontrol.h> 34 #include <linux/gfp.h> 35 #include <linux/uio.h> 36 #include <linux/hugetlb.h> 37 #include <linux/page_idle.h> 38 #include <linux/local_lock.h> 39 #include <linux/buffer_head.h> 40 41 #include "internal.h" 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/pagemap.h> 45 46 /* How many pages do we try to swap or page in/out together? */ 47 int page_cluster; 48 49 /* Protecting only lru_rotate.fbatch which requires disabling interrupts */ 50 struct lru_rotate { 51 local_lock_t lock; 52 struct folio_batch fbatch; 53 }; 54 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = { 55 .lock = INIT_LOCAL_LOCK(lock), 56 }; 57 58 /* 59 * The following folio batches are grouped together because they are protected 60 * by disabling preemption (and interrupts remain enabled). 61 */ 62 struct cpu_fbatches { 63 local_lock_t lock; 64 struct folio_batch lru_add; 65 struct folio_batch lru_deactivate_file; 66 struct folio_batch lru_deactivate; 67 struct folio_batch lru_lazyfree; 68 #ifdef CONFIG_SMP 69 struct folio_batch activate; 70 #endif 71 }; 72 static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = { 73 .lock = INIT_LOCAL_LOCK(lock), 74 }; 75 76 /* 77 * This path almost never happens for VM activity - pages are normally freed 78 * via pagevecs. But it gets used by networking - and for compound pages. 79 */ 80 static void __page_cache_release(struct folio *folio) 81 { 82 if (folio_test_lru(folio)) { 83 struct lruvec *lruvec; 84 unsigned long flags; 85 86 lruvec = folio_lruvec_lock_irqsave(folio, &flags); 87 lruvec_del_folio(lruvec, folio); 88 __folio_clear_lru_flags(folio); 89 unlock_page_lruvec_irqrestore(lruvec, flags); 90 } 91 /* See comment on folio_test_mlocked in release_pages() */ 92 if (unlikely(folio_test_mlocked(folio))) { 93 long nr_pages = folio_nr_pages(folio); 94 95 __folio_clear_mlocked(folio); 96 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages); 97 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); 98 } 99 } 100 101 static void __folio_put_small(struct folio *folio) 102 { 103 __page_cache_release(folio); 104 mem_cgroup_uncharge(folio); 105 free_unref_page(&folio->page, 0); 106 } 107 108 static void __folio_put_large(struct folio *folio) 109 { 110 /* 111 * __page_cache_release() is supposed to be called for thp, not for 112 * hugetlb. This is because hugetlb page does never have PageLRU set 113 * (it's never listed to any LRU lists) and no memcg routines should 114 * be called for hugetlb (it has a separate hugetlb_cgroup.) 115 */ 116 if (!folio_test_hugetlb(folio)) 117 __page_cache_release(folio); 118 destroy_large_folio(folio); 119 } 120 121 void __folio_put(struct folio *folio) 122 { 123 if (unlikely(folio_is_zone_device(folio))) 124 free_zone_device_page(&folio->page); 125 else if (unlikely(folio_test_large(folio))) 126 __folio_put_large(folio); 127 else 128 __folio_put_small(folio); 129 } 130 EXPORT_SYMBOL(__folio_put); 131 132 /** 133 * put_pages_list() - release a list of pages 134 * @pages: list of pages threaded on page->lru 135 * 136 * Release a list of pages which are strung together on page.lru. 137 */ 138 void put_pages_list(struct list_head *pages) 139 { 140 struct folio *folio, *next; 141 142 list_for_each_entry_safe(folio, next, pages, lru) { 143 if (!folio_put_testzero(folio)) { 144 list_del(&folio->lru); 145 continue; 146 } 147 if (folio_test_large(folio)) { 148 list_del(&folio->lru); 149 __folio_put_large(folio); 150 continue; 151 } 152 /* LRU flag must be clear because it's passed using the lru */ 153 } 154 155 free_unref_page_list(pages); 156 INIT_LIST_HEAD(pages); 157 } 158 EXPORT_SYMBOL(put_pages_list); 159 160 /* 161 * get_kernel_pages() - pin kernel pages in memory 162 * @kiov: An array of struct kvec structures 163 * @nr_segs: number of segments to pin 164 * @write: pinning for read/write, currently ignored 165 * @pages: array that receives pointers to the pages pinned. 166 * Should be at least nr_segs long. 167 * 168 * Returns number of pages pinned. This may be fewer than the number requested. 169 * If nr_segs is 0 or negative, returns 0. If no pages were pinned, returns 0. 170 * Each page returned must be released with a put_page() call when it is 171 * finished with. 172 */ 173 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, 174 struct page **pages) 175 { 176 int seg; 177 178 for (seg = 0; seg < nr_segs; seg++) { 179 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) 180 return seg; 181 182 pages[seg] = kmap_to_page(kiov[seg].iov_base); 183 get_page(pages[seg]); 184 } 185 186 return seg; 187 } 188 EXPORT_SYMBOL_GPL(get_kernel_pages); 189 190 typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio); 191 192 static void lru_add_fn(struct lruvec *lruvec, struct folio *folio) 193 { 194 int was_unevictable = folio_test_clear_unevictable(folio); 195 long nr_pages = folio_nr_pages(folio); 196 197 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 198 199 /* 200 * Is an smp_mb__after_atomic() still required here, before 201 * folio_evictable() tests the mlocked flag, to rule out the possibility 202 * of stranding an evictable folio on an unevictable LRU? I think 203 * not, because __munlock_page() only clears the mlocked flag 204 * while the LRU lock is held. 205 * 206 * (That is not true of __page_cache_release(), and not necessarily 207 * true of release_pages(): but those only clear the mlocked flag after 208 * folio_put_testzero() has excluded any other users of the folio.) 209 */ 210 if (folio_evictable(folio)) { 211 if (was_unevictable) 212 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages); 213 } else { 214 folio_clear_active(folio); 215 folio_set_unevictable(folio); 216 /* 217 * folio->mlock_count = !!folio_test_mlocked(folio)? 218 * But that leaves __mlock_page() in doubt whether another 219 * actor has already counted the mlock or not. Err on the 220 * safe side, underestimate, let page reclaim fix it, rather 221 * than leaving a page on the unevictable LRU indefinitely. 222 */ 223 folio->mlock_count = 0; 224 if (!was_unevictable) 225 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages); 226 } 227 228 lruvec_add_folio(lruvec, folio); 229 trace_mm_lru_insertion(folio); 230 } 231 232 static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn) 233 { 234 int i; 235 struct lruvec *lruvec = NULL; 236 unsigned long flags = 0; 237 238 for (i = 0; i < folio_batch_count(fbatch); i++) { 239 struct folio *folio = fbatch->folios[i]; 240 241 /* block memcg migration while the folio moves between lru */ 242 if (move_fn != lru_add_fn && !folio_test_clear_lru(folio)) 243 continue; 244 245 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags); 246 move_fn(lruvec, folio); 247 248 folio_set_lru(folio); 249 } 250 251 if (lruvec) 252 unlock_page_lruvec_irqrestore(lruvec, flags); 253 folios_put(fbatch->folios, folio_batch_count(fbatch)); 254 folio_batch_init(fbatch); 255 } 256 257 static void folio_batch_add_and_move(struct folio_batch *fbatch, 258 struct folio *folio, move_fn_t move_fn) 259 { 260 if (folio_batch_add(fbatch, folio) && !folio_test_large(folio) && 261 !lru_cache_disabled()) 262 return; 263 folio_batch_move_lru(fbatch, move_fn); 264 } 265 266 static void lru_move_tail_fn(struct lruvec *lruvec, struct folio *folio) 267 { 268 if (!folio_test_unevictable(folio)) { 269 lruvec_del_folio(lruvec, folio); 270 folio_clear_active(folio); 271 lruvec_add_folio_tail(lruvec, folio); 272 __count_vm_events(PGROTATED, folio_nr_pages(folio)); 273 } 274 } 275 276 /* 277 * Writeback is about to end against a folio which has been marked for 278 * immediate reclaim. If it still appears to be reclaimable, move it 279 * to the tail of the inactive list. 280 * 281 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races. 282 */ 283 void folio_rotate_reclaimable(struct folio *folio) 284 { 285 if (!folio_test_locked(folio) && !folio_test_dirty(folio) && 286 !folio_test_unevictable(folio) && folio_test_lru(folio)) { 287 struct folio_batch *fbatch; 288 unsigned long flags; 289 290 folio_get(folio); 291 local_lock_irqsave(&lru_rotate.lock, flags); 292 fbatch = this_cpu_ptr(&lru_rotate.fbatch); 293 folio_batch_add_and_move(fbatch, folio, lru_move_tail_fn); 294 local_unlock_irqrestore(&lru_rotate.lock, flags); 295 } 296 } 297 298 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages) 299 { 300 do { 301 unsigned long lrusize; 302 303 /* 304 * Hold lruvec->lru_lock is safe here, since 305 * 1) The pinned lruvec in reclaim, or 306 * 2) From a pre-LRU page during refault (which also holds the 307 * rcu lock, so would be safe even if the page was on the LRU 308 * and could move simultaneously to a new lruvec). 309 */ 310 spin_lock_irq(&lruvec->lru_lock); 311 /* Record cost event */ 312 if (file) 313 lruvec->file_cost += nr_pages; 314 else 315 lruvec->anon_cost += nr_pages; 316 317 /* 318 * Decay previous events 319 * 320 * Because workloads change over time (and to avoid 321 * overflow) we keep these statistics as a floating 322 * average, which ends up weighing recent refaults 323 * more than old ones. 324 */ 325 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) + 326 lruvec_page_state(lruvec, NR_ACTIVE_ANON) + 327 lruvec_page_state(lruvec, NR_INACTIVE_FILE) + 328 lruvec_page_state(lruvec, NR_ACTIVE_FILE); 329 330 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) { 331 lruvec->file_cost /= 2; 332 lruvec->anon_cost /= 2; 333 } 334 spin_unlock_irq(&lruvec->lru_lock); 335 } while ((lruvec = parent_lruvec(lruvec))); 336 } 337 338 void lru_note_cost_folio(struct folio *folio) 339 { 340 lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio), 341 folio_nr_pages(folio)); 342 } 343 344 static void folio_activate_fn(struct lruvec *lruvec, struct folio *folio) 345 { 346 if (!folio_test_active(folio) && !folio_test_unevictable(folio)) { 347 long nr_pages = folio_nr_pages(folio); 348 349 lruvec_del_folio(lruvec, folio); 350 folio_set_active(folio); 351 lruvec_add_folio(lruvec, folio); 352 trace_mm_lru_activate(folio); 353 354 __count_vm_events(PGACTIVATE, nr_pages); 355 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, 356 nr_pages); 357 } 358 } 359 360 #ifdef CONFIG_SMP 361 static void folio_activate_drain(int cpu) 362 { 363 struct folio_batch *fbatch = &per_cpu(cpu_fbatches.activate, cpu); 364 365 if (folio_batch_count(fbatch)) 366 folio_batch_move_lru(fbatch, folio_activate_fn); 367 } 368 369 static void folio_activate(struct folio *folio) 370 { 371 if (folio_test_lru(folio) && !folio_test_active(folio) && 372 !folio_test_unevictable(folio)) { 373 struct folio_batch *fbatch; 374 375 folio_get(folio); 376 local_lock(&cpu_fbatches.lock); 377 fbatch = this_cpu_ptr(&cpu_fbatches.activate); 378 folio_batch_add_and_move(fbatch, folio, folio_activate_fn); 379 local_unlock(&cpu_fbatches.lock); 380 } 381 } 382 383 #else 384 static inline void folio_activate_drain(int cpu) 385 { 386 } 387 388 static void folio_activate(struct folio *folio) 389 { 390 struct lruvec *lruvec; 391 392 if (folio_test_clear_lru(folio)) { 393 lruvec = folio_lruvec_lock_irq(folio); 394 folio_activate_fn(lruvec, folio); 395 unlock_page_lruvec_irq(lruvec); 396 folio_set_lru(folio); 397 } 398 } 399 #endif 400 401 static void __lru_cache_activate_folio(struct folio *folio) 402 { 403 struct folio_batch *fbatch; 404 int i; 405 406 local_lock(&cpu_fbatches.lock); 407 fbatch = this_cpu_ptr(&cpu_fbatches.lru_add); 408 409 /* 410 * Search backwards on the optimistic assumption that the folio being 411 * activated has just been added to this batch. Note that only 412 * the local batch is examined as a !LRU folio could be in the 413 * process of being released, reclaimed, migrated or on a remote 414 * batch that is currently being drained. Furthermore, marking 415 * a remote batch's folio active potentially hits a race where 416 * a folio is marked active just after it is added to the inactive 417 * list causing accounting errors and BUG_ON checks to trigger. 418 */ 419 for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) { 420 struct folio *batch_folio = fbatch->folios[i]; 421 422 if (batch_folio == folio) { 423 folio_set_active(folio); 424 break; 425 } 426 } 427 428 local_unlock(&cpu_fbatches.lock); 429 } 430 431 /* 432 * Mark a page as having seen activity. 433 * 434 * inactive,unreferenced -> inactive,referenced 435 * inactive,referenced -> active,unreferenced 436 * active,unreferenced -> active,referenced 437 * 438 * When a newly allocated page is not yet visible, so safe for non-atomic ops, 439 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page). 440 */ 441 void folio_mark_accessed(struct folio *folio) 442 { 443 if (!folio_test_referenced(folio)) { 444 folio_set_referenced(folio); 445 } else if (folio_test_unevictable(folio)) { 446 /* 447 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But, 448 * this list is never rotated or maintained, so marking an 449 * unevictable page accessed has no effect. 450 */ 451 } else if (!folio_test_active(folio)) { 452 /* 453 * If the folio is on the LRU, queue it for activation via 454 * cpu_fbatches.activate. Otherwise, assume the folio is in a 455 * folio_batch, mark it active and it'll be moved to the active 456 * LRU on the next drain. 457 */ 458 if (folio_test_lru(folio)) 459 folio_activate(folio); 460 else 461 __lru_cache_activate_folio(folio); 462 folio_clear_referenced(folio); 463 workingset_activation(folio); 464 } 465 if (folio_test_idle(folio)) 466 folio_clear_idle(folio); 467 } 468 EXPORT_SYMBOL(folio_mark_accessed); 469 470 /** 471 * folio_add_lru - Add a folio to an LRU list. 472 * @folio: The folio to be added to the LRU. 473 * 474 * Queue the folio for addition to the LRU. The decision on whether 475 * to add the page to the [in]active [file|anon] list is deferred until the 476 * folio_batch is drained. This gives a chance for the caller of folio_add_lru() 477 * have the folio added to the active list using folio_mark_accessed(). 478 */ 479 void folio_add_lru(struct folio *folio) 480 { 481 struct folio_batch *fbatch; 482 483 VM_BUG_ON_FOLIO(folio_test_active(folio) && 484 folio_test_unevictable(folio), folio); 485 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 486 487 folio_get(folio); 488 local_lock(&cpu_fbatches.lock); 489 fbatch = this_cpu_ptr(&cpu_fbatches.lru_add); 490 folio_batch_add_and_move(fbatch, folio, lru_add_fn); 491 local_unlock(&cpu_fbatches.lock); 492 } 493 EXPORT_SYMBOL(folio_add_lru); 494 495 /** 496 * lru_cache_add_inactive_or_unevictable 497 * @page: the page to be added to LRU 498 * @vma: vma in which page is mapped for determining reclaimability 499 * 500 * Place @page on the inactive or unevictable LRU list, depending on its 501 * evictability. 502 */ 503 void lru_cache_add_inactive_or_unevictable(struct page *page, 504 struct vm_area_struct *vma) 505 { 506 VM_BUG_ON_PAGE(PageLRU(page), page); 507 508 if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED)) 509 mlock_new_page(page); 510 else 511 lru_cache_add(page); 512 } 513 514 /* 515 * If the folio cannot be invalidated, it is moved to the 516 * inactive list to speed up its reclaim. It is moved to the 517 * head of the list, rather than the tail, to give the flusher 518 * threads some time to write it out, as this is much more 519 * effective than the single-page writeout from reclaim. 520 * 521 * If the folio isn't mapped and dirty/writeback, the folio 522 * could be reclaimed asap using the reclaim flag. 523 * 524 * 1. active, mapped folio -> none 525 * 2. active, dirty/writeback folio -> inactive, head, reclaim 526 * 3. inactive, mapped folio -> none 527 * 4. inactive, dirty/writeback folio -> inactive, head, reclaim 528 * 5. inactive, clean -> inactive, tail 529 * 6. Others -> none 530 * 531 * In 4, it moves to the head of the inactive list so the folio is 532 * written out by flusher threads as this is much more efficient 533 * than the single-page writeout from reclaim. 534 */ 535 static void lru_deactivate_file_fn(struct lruvec *lruvec, struct folio *folio) 536 { 537 bool active = folio_test_active(folio); 538 long nr_pages = folio_nr_pages(folio); 539 540 if (folio_test_unevictable(folio)) 541 return; 542 543 /* Some processes are using the folio */ 544 if (folio_mapped(folio)) 545 return; 546 547 lruvec_del_folio(lruvec, folio); 548 folio_clear_active(folio); 549 folio_clear_referenced(folio); 550 551 if (folio_test_writeback(folio) || folio_test_dirty(folio)) { 552 /* 553 * Setting the reclaim flag could race with 554 * folio_end_writeback() and confuse readahead. But the 555 * race window is _really_ small and it's not a critical 556 * problem. 557 */ 558 lruvec_add_folio(lruvec, folio); 559 folio_set_reclaim(folio); 560 } else { 561 /* 562 * The folio's writeback ended while it was in the batch. 563 * We move that folio to the tail of the inactive list. 564 */ 565 lruvec_add_folio_tail(lruvec, folio); 566 __count_vm_events(PGROTATED, nr_pages); 567 } 568 569 if (active) { 570 __count_vm_events(PGDEACTIVATE, nr_pages); 571 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 572 nr_pages); 573 } 574 } 575 576 static void lru_deactivate_fn(struct lruvec *lruvec, struct folio *folio) 577 { 578 if (folio_test_active(folio) && !folio_test_unevictable(folio)) { 579 long nr_pages = folio_nr_pages(folio); 580 581 lruvec_del_folio(lruvec, folio); 582 folio_clear_active(folio); 583 folio_clear_referenced(folio); 584 lruvec_add_folio(lruvec, folio); 585 586 __count_vm_events(PGDEACTIVATE, nr_pages); 587 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 588 nr_pages); 589 } 590 } 591 592 static void lru_lazyfree_fn(struct lruvec *lruvec, struct folio *folio) 593 { 594 if (folio_test_anon(folio) && folio_test_swapbacked(folio) && 595 !folio_test_swapcache(folio) && !folio_test_unevictable(folio)) { 596 long nr_pages = folio_nr_pages(folio); 597 598 lruvec_del_folio(lruvec, folio); 599 folio_clear_active(folio); 600 folio_clear_referenced(folio); 601 /* 602 * Lazyfree folios are clean anonymous folios. They have 603 * the swapbacked flag cleared, to distinguish them from normal 604 * anonymous folios 605 */ 606 folio_clear_swapbacked(folio); 607 lruvec_add_folio(lruvec, folio); 608 609 __count_vm_events(PGLAZYFREE, nr_pages); 610 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, 611 nr_pages); 612 } 613 } 614 615 /* 616 * Drain pages out of the cpu's folio_batch. 617 * Either "cpu" is the current CPU, and preemption has already been 618 * disabled; or "cpu" is being hot-unplugged, and is already dead. 619 */ 620 void lru_add_drain_cpu(int cpu) 621 { 622 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu); 623 struct folio_batch *fbatch = &fbatches->lru_add; 624 625 if (folio_batch_count(fbatch)) 626 folio_batch_move_lru(fbatch, lru_add_fn); 627 628 fbatch = &per_cpu(lru_rotate.fbatch, cpu); 629 /* Disabling interrupts below acts as a compiler barrier. */ 630 if (data_race(folio_batch_count(fbatch))) { 631 unsigned long flags; 632 633 /* No harm done if a racing interrupt already did this */ 634 local_lock_irqsave(&lru_rotate.lock, flags); 635 folio_batch_move_lru(fbatch, lru_move_tail_fn); 636 local_unlock_irqrestore(&lru_rotate.lock, flags); 637 } 638 639 fbatch = &fbatches->lru_deactivate_file; 640 if (folio_batch_count(fbatch)) 641 folio_batch_move_lru(fbatch, lru_deactivate_file_fn); 642 643 fbatch = &fbatches->lru_deactivate; 644 if (folio_batch_count(fbatch)) 645 folio_batch_move_lru(fbatch, lru_deactivate_fn); 646 647 fbatch = &fbatches->lru_lazyfree; 648 if (folio_batch_count(fbatch)) 649 folio_batch_move_lru(fbatch, lru_lazyfree_fn); 650 651 folio_activate_drain(cpu); 652 } 653 654 /** 655 * deactivate_file_folio() - Deactivate a file folio. 656 * @folio: Folio to deactivate. 657 * 658 * This function hints to the VM that @folio is a good reclaim candidate, 659 * for example if its invalidation fails due to the folio being dirty 660 * or under writeback. 661 * 662 * Context: Caller holds a reference on the folio. 663 */ 664 void deactivate_file_folio(struct folio *folio) 665 { 666 struct folio_batch *fbatch; 667 668 /* Deactivating an unevictable folio will not accelerate reclaim */ 669 if (folio_test_unevictable(folio)) 670 return; 671 672 folio_get(folio); 673 local_lock(&cpu_fbatches.lock); 674 fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate_file); 675 folio_batch_add_and_move(fbatch, folio, lru_deactivate_file_fn); 676 local_unlock(&cpu_fbatches.lock); 677 } 678 679 /* 680 * deactivate_page - deactivate a page 681 * @page: page to deactivate 682 * 683 * deactivate_page() moves @page to the inactive list if @page was on the active 684 * list and was not an unevictable page. This is done to accelerate the reclaim 685 * of @page. 686 */ 687 void deactivate_page(struct page *page) 688 { 689 struct folio *folio = page_folio(page); 690 691 if (folio_test_lru(folio) && folio_test_active(folio) && 692 !folio_test_unevictable(folio)) { 693 struct folio_batch *fbatch; 694 695 folio_get(folio); 696 local_lock(&cpu_fbatches.lock); 697 fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate); 698 folio_batch_add_and_move(fbatch, folio, lru_deactivate_fn); 699 local_unlock(&cpu_fbatches.lock); 700 } 701 } 702 703 /** 704 * mark_page_lazyfree - make an anon page lazyfree 705 * @page: page to deactivate 706 * 707 * mark_page_lazyfree() moves @page to the inactive file list. 708 * This is done to accelerate the reclaim of @page. 709 */ 710 void mark_page_lazyfree(struct page *page) 711 { 712 struct folio *folio = page_folio(page); 713 714 if (folio_test_lru(folio) && folio_test_anon(folio) && 715 folio_test_swapbacked(folio) && !folio_test_swapcache(folio) && 716 !folio_test_unevictable(folio)) { 717 struct folio_batch *fbatch; 718 719 folio_get(folio); 720 local_lock(&cpu_fbatches.lock); 721 fbatch = this_cpu_ptr(&cpu_fbatches.lru_lazyfree); 722 folio_batch_add_and_move(fbatch, folio, lru_lazyfree_fn); 723 local_unlock(&cpu_fbatches.lock); 724 } 725 } 726 727 void lru_add_drain(void) 728 { 729 local_lock(&cpu_fbatches.lock); 730 lru_add_drain_cpu(smp_processor_id()); 731 local_unlock(&cpu_fbatches.lock); 732 mlock_page_drain_local(); 733 } 734 735 /* 736 * It's called from per-cpu workqueue context in SMP case so 737 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on 738 * the same cpu. It shouldn't be a problem in !SMP case since 739 * the core is only one and the locks will disable preemption. 740 */ 741 static void lru_add_and_bh_lrus_drain(void) 742 { 743 local_lock(&cpu_fbatches.lock); 744 lru_add_drain_cpu(smp_processor_id()); 745 local_unlock(&cpu_fbatches.lock); 746 invalidate_bh_lrus_cpu(); 747 mlock_page_drain_local(); 748 } 749 750 void lru_add_drain_cpu_zone(struct zone *zone) 751 { 752 local_lock(&cpu_fbatches.lock); 753 lru_add_drain_cpu(smp_processor_id()); 754 drain_local_pages(zone); 755 local_unlock(&cpu_fbatches.lock); 756 mlock_page_drain_local(); 757 } 758 759 #ifdef CONFIG_SMP 760 761 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); 762 763 static void lru_add_drain_per_cpu(struct work_struct *dummy) 764 { 765 lru_add_and_bh_lrus_drain(); 766 } 767 768 static bool cpu_needs_drain(unsigned int cpu) 769 { 770 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu); 771 772 /* Check these in order of likelihood that they're not zero */ 773 return folio_batch_count(&fbatches->lru_add) || 774 data_race(folio_batch_count(&per_cpu(lru_rotate.fbatch, cpu))) || 775 folio_batch_count(&fbatches->lru_deactivate_file) || 776 folio_batch_count(&fbatches->lru_deactivate) || 777 folio_batch_count(&fbatches->lru_lazyfree) || 778 folio_batch_count(&fbatches->activate) || 779 need_mlock_page_drain(cpu) || 780 has_bh_in_lru(cpu, NULL); 781 } 782 783 /* 784 * Doesn't need any cpu hotplug locking because we do rely on per-cpu 785 * kworkers being shut down before our page_alloc_cpu_dead callback is 786 * executed on the offlined cpu. 787 * Calling this function with cpu hotplug locks held can actually lead 788 * to obscure indirect dependencies via WQ context. 789 */ 790 static inline void __lru_add_drain_all(bool force_all_cpus) 791 { 792 /* 793 * lru_drain_gen - Global pages generation number 794 * 795 * (A) Definition: global lru_drain_gen = x implies that all generations 796 * 0 < n <= x are already *scheduled* for draining. 797 * 798 * This is an optimization for the highly-contended use case where a 799 * user space workload keeps constantly generating a flow of pages for 800 * each CPU. 801 */ 802 static unsigned int lru_drain_gen; 803 static struct cpumask has_work; 804 static DEFINE_MUTEX(lock); 805 unsigned cpu, this_gen; 806 807 /* 808 * Make sure nobody triggers this path before mm_percpu_wq is fully 809 * initialized. 810 */ 811 if (WARN_ON(!mm_percpu_wq)) 812 return; 813 814 /* 815 * Guarantee folio_batch counter stores visible by this CPU 816 * are visible to other CPUs before loading the current drain 817 * generation. 818 */ 819 smp_mb(); 820 821 /* 822 * (B) Locally cache global LRU draining generation number 823 * 824 * The read barrier ensures that the counter is loaded before the mutex 825 * is taken. It pairs with smp_mb() inside the mutex critical section 826 * at (D). 827 */ 828 this_gen = smp_load_acquire(&lru_drain_gen); 829 830 mutex_lock(&lock); 831 832 /* 833 * (C) Exit the draining operation if a newer generation, from another 834 * lru_add_drain_all(), was already scheduled for draining. Check (A). 835 */ 836 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus)) 837 goto done; 838 839 /* 840 * (D) Increment global generation number 841 * 842 * Pairs with smp_load_acquire() at (B), outside of the critical 843 * section. Use a full memory barrier to guarantee that the 844 * new global drain generation number is stored before loading 845 * folio_batch counters. 846 * 847 * This pairing must be done here, before the for_each_online_cpu loop 848 * below which drains the page vectors. 849 * 850 * Let x, y, and z represent some system CPU numbers, where x < y < z. 851 * Assume CPU #z is in the middle of the for_each_online_cpu loop 852 * below and has already reached CPU #y's per-cpu data. CPU #x comes 853 * along, adds some pages to its per-cpu vectors, then calls 854 * lru_add_drain_all(). 855 * 856 * If the paired barrier is done at any later step, e.g. after the 857 * loop, CPU #x will just exit at (C) and miss flushing out all of its 858 * added pages. 859 */ 860 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1); 861 smp_mb(); 862 863 cpumask_clear(&has_work); 864 for_each_online_cpu(cpu) { 865 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); 866 867 if (cpu_needs_drain(cpu)) { 868 INIT_WORK(work, lru_add_drain_per_cpu); 869 queue_work_on(cpu, mm_percpu_wq, work); 870 __cpumask_set_cpu(cpu, &has_work); 871 } 872 } 873 874 for_each_cpu(cpu, &has_work) 875 flush_work(&per_cpu(lru_add_drain_work, cpu)); 876 877 done: 878 mutex_unlock(&lock); 879 } 880 881 void lru_add_drain_all(void) 882 { 883 __lru_add_drain_all(false); 884 } 885 #else 886 void lru_add_drain_all(void) 887 { 888 lru_add_drain(); 889 } 890 #endif /* CONFIG_SMP */ 891 892 atomic_t lru_disable_count = ATOMIC_INIT(0); 893 894 /* 895 * lru_cache_disable() needs to be called before we start compiling 896 * a list of pages to be migrated using isolate_lru_page(). 897 * It drains pages on LRU cache and then disable on all cpus until 898 * lru_cache_enable is called. 899 * 900 * Must be paired with a call to lru_cache_enable(). 901 */ 902 void lru_cache_disable(void) 903 { 904 atomic_inc(&lru_disable_count); 905 /* 906 * Readers of lru_disable_count are protected by either disabling 907 * preemption or rcu_read_lock: 908 * 909 * preempt_disable, local_irq_disable [bh_lru_lock()] 910 * rcu_read_lock [rt_spin_lock CONFIG_PREEMPT_RT] 911 * preempt_disable [local_lock !CONFIG_PREEMPT_RT] 912 * 913 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on 914 * preempt_disable() regions of code. So any CPU which sees 915 * lru_disable_count = 0 will have exited the critical 916 * section when synchronize_rcu() returns. 917 */ 918 synchronize_rcu_expedited(); 919 #ifdef CONFIG_SMP 920 __lru_add_drain_all(true); 921 #else 922 lru_add_and_bh_lrus_drain(); 923 #endif 924 } 925 926 /** 927 * release_pages - batched put_page() 928 * @pages: array of pages to release 929 * @nr: number of pages 930 * 931 * Decrement the reference count on all the pages in @pages. If it 932 * fell to zero, remove the page from the LRU and free it. 933 */ 934 void release_pages(struct page **pages, int nr) 935 { 936 int i; 937 LIST_HEAD(pages_to_free); 938 struct lruvec *lruvec = NULL; 939 unsigned long flags = 0; 940 unsigned int lock_batch; 941 942 for (i = 0; i < nr; i++) { 943 struct folio *folio = page_folio(pages[i]); 944 945 /* 946 * Make sure the IRQ-safe lock-holding time does not get 947 * excessive with a continuous string of pages from the 948 * same lruvec. The lock is held only if lruvec != NULL. 949 */ 950 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) { 951 unlock_page_lruvec_irqrestore(lruvec, flags); 952 lruvec = NULL; 953 } 954 955 if (is_huge_zero_page(&folio->page)) 956 continue; 957 958 if (folio_is_zone_device(folio)) { 959 if (lruvec) { 960 unlock_page_lruvec_irqrestore(lruvec, flags); 961 lruvec = NULL; 962 } 963 if (put_devmap_managed_page(&folio->page)) 964 continue; 965 if (folio_put_testzero(folio)) 966 free_zone_device_page(&folio->page); 967 continue; 968 } 969 970 if (!folio_put_testzero(folio)) 971 continue; 972 973 if (folio_test_large(folio)) { 974 if (lruvec) { 975 unlock_page_lruvec_irqrestore(lruvec, flags); 976 lruvec = NULL; 977 } 978 __folio_put_large(folio); 979 continue; 980 } 981 982 if (folio_test_lru(folio)) { 983 struct lruvec *prev_lruvec = lruvec; 984 985 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, 986 &flags); 987 if (prev_lruvec != lruvec) 988 lock_batch = 0; 989 990 lruvec_del_folio(lruvec, folio); 991 __folio_clear_lru_flags(folio); 992 } 993 994 /* 995 * In rare cases, when truncation or holepunching raced with 996 * munlock after VM_LOCKED was cleared, Mlocked may still be 997 * found set here. This does not indicate a problem, unless 998 * "unevictable_pgs_cleared" appears worryingly large. 999 */ 1000 if (unlikely(folio_test_mlocked(folio))) { 1001 __folio_clear_mlocked(folio); 1002 zone_stat_sub_folio(folio, NR_MLOCK); 1003 count_vm_event(UNEVICTABLE_PGCLEARED); 1004 } 1005 1006 list_add(&folio->lru, &pages_to_free); 1007 } 1008 if (lruvec) 1009 unlock_page_lruvec_irqrestore(lruvec, flags); 1010 1011 mem_cgroup_uncharge_list(&pages_to_free); 1012 free_unref_page_list(&pages_to_free); 1013 } 1014 EXPORT_SYMBOL(release_pages); 1015 1016 /* 1017 * The pages which we're about to release may be in the deferred lru-addition 1018 * queues. That would prevent them from really being freed right now. That's 1019 * OK from a correctness point of view but is inefficient - those pages may be 1020 * cache-warm and we want to give them back to the page allocator ASAP. 1021 * 1022 * So __pagevec_release() will drain those queues here. 1023 * folio_batch_move_lru() calls folios_put() directly to avoid 1024 * mutual recursion. 1025 */ 1026 void __pagevec_release(struct pagevec *pvec) 1027 { 1028 if (!pvec->percpu_pvec_drained) { 1029 lru_add_drain(); 1030 pvec->percpu_pvec_drained = true; 1031 } 1032 release_pages(pvec->pages, pagevec_count(pvec)); 1033 pagevec_reinit(pvec); 1034 } 1035 EXPORT_SYMBOL(__pagevec_release); 1036 1037 /** 1038 * folio_batch_remove_exceptionals() - Prune non-folios from a batch. 1039 * @fbatch: The batch to prune 1040 * 1041 * find_get_entries() fills a batch with both folios and shadow/swap/DAX 1042 * entries. This function prunes all the non-folio entries from @fbatch 1043 * without leaving holes, so that it can be passed on to folio-only batch 1044 * operations. 1045 */ 1046 void folio_batch_remove_exceptionals(struct folio_batch *fbatch) 1047 { 1048 unsigned int i, j; 1049 1050 for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) { 1051 struct folio *folio = fbatch->folios[i]; 1052 if (!xa_is_value(folio)) 1053 fbatch->folios[j++] = folio; 1054 } 1055 fbatch->nr = j; 1056 } 1057 1058 unsigned pagevec_lookup_range_tag(struct pagevec *pvec, 1059 struct address_space *mapping, pgoff_t *index, pgoff_t end, 1060 xa_mark_t tag) 1061 { 1062 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag, 1063 PAGEVEC_SIZE, pvec->pages); 1064 return pagevec_count(pvec); 1065 } 1066 EXPORT_SYMBOL(pagevec_lookup_range_tag); 1067 1068 /* 1069 * Perform any setup for the swap system 1070 */ 1071 void __init swap_setup(void) 1072 { 1073 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT); 1074 1075 /* Use a smaller cluster for small-memory machines */ 1076 if (megs < 16) 1077 page_cluster = 2; 1078 else 1079 page_cluster = 3; 1080 /* 1081 * Right now other parts of the system means that we 1082 * _really_ don't want to cluster much more 1083 */ 1084 } 1085