xref: /linux/mm/swap.c (revision 2bc46b3ad3c15165f91459b07ff8682478683194)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/memremap.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34 #include <linux/uio.h>
35 #include <linux/hugetlb.h>
36 #include <linux/page_idle.h>
37 
38 #include "internal.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/pagemap.h>
42 
43 /* How many pages do we try to swap or page in/out together? */
44 int page_cluster;
45 
46 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
47 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
48 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
49 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
50 #ifdef CONFIG_SMP
51 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
52 #endif
53 
54 /*
55  * This path almost never happens for VM activity - pages are normally
56  * freed via pagevecs.  But it gets used by networking.
57  */
58 static void __page_cache_release(struct page *page)
59 {
60 	if (PageLRU(page)) {
61 		struct zone *zone = page_zone(page);
62 		struct lruvec *lruvec;
63 		unsigned long flags;
64 
65 		spin_lock_irqsave(&zone->lru_lock, flags);
66 		lruvec = mem_cgroup_page_lruvec(page, zone);
67 		VM_BUG_ON_PAGE(!PageLRU(page), page);
68 		__ClearPageLRU(page);
69 		del_page_from_lru_list(page, lruvec, page_off_lru(page));
70 		spin_unlock_irqrestore(&zone->lru_lock, flags);
71 	}
72 	mem_cgroup_uncharge(page);
73 }
74 
75 static void __put_single_page(struct page *page)
76 {
77 	__page_cache_release(page);
78 	free_hot_cold_page(page, false);
79 }
80 
81 static void __put_compound_page(struct page *page)
82 {
83 	compound_page_dtor *dtor;
84 
85 	/*
86 	 * __page_cache_release() is supposed to be called for thp, not for
87 	 * hugetlb. This is because hugetlb page does never have PageLRU set
88 	 * (it's never listed to any LRU lists) and no memcg routines should
89 	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
90 	 */
91 	if (!PageHuge(page))
92 		__page_cache_release(page);
93 	dtor = get_compound_page_dtor(page);
94 	(*dtor)(page);
95 }
96 
97 void __put_page(struct page *page)
98 {
99 	if (unlikely(PageCompound(page)))
100 		__put_compound_page(page);
101 	else
102 		__put_single_page(page);
103 }
104 EXPORT_SYMBOL(__put_page);
105 
106 /**
107  * put_pages_list() - release a list of pages
108  * @pages: list of pages threaded on page->lru
109  *
110  * Release a list of pages which are strung together on page.lru.  Currently
111  * used by read_cache_pages() and related error recovery code.
112  */
113 void put_pages_list(struct list_head *pages)
114 {
115 	while (!list_empty(pages)) {
116 		struct page *victim;
117 
118 		victim = list_entry(pages->prev, struct page, lru);
119 		list_del(&victim->lru);
120 		put_page(victim);
121 	}
122 }
123 EXPORT_SYMBOL(put_pages_list);
124 
125 /*
126  * get_kernel_pages() - pin kernel pages in memory
127  * @kiov:	An array of struct kvec structures
128  * @nr_segs:	number of segments to pin
129  * @write:	pinning for read/write, currently ignored
130  * @pages:	array that receives pointers to the pages pinned.
131  *		Should be at least nr_segs long.
132  *
133  * Returns number of pages pinned. This may be fewer than the number
134  * requested. If nr_pages is 0 or negative, returns 0. If no pages
135  * were pinned, returns -errno. Each page returned must be released
136  * with a put_page() call when it is finished with.
137  */
138 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
139 		struct page **pages)
140 {
141 	int seg;
142 
143 	for (seg = 0; seg < nr_segs; seg++) {
144 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
145 			return seg;
146 
147 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
148 		get_page(pages[seg]);
149 	}
150 
151 	return seg;
152 }
153 EXPORT_SYMBOL_GPL(get_kernel_pages);
154 
155 /*
156  * get_kernel_page() - pin a kernel page in memory
157  * @start:	starting kernel address
158  * @write:	pinning for read/write, currently ignored
159  * @pages:	array that receives pointer to the page pinned.
160  *		Must be at least nr_segs long.
161  *
162  * Returns 1 if page is pinned. If the page was not pinned, returns
163  * -errno. The page returned must be released with a put_page() call
164  * when it is finished with.
165  */
166 int get_kernel_page(unsigned long start, int write, struct page **pages)
167 {
168 	const struct kvec kiov = {
169 		.iov_base = (void *)start,
170 		.iov_len = PAGE_SIZE
171 	};
172 
173 	return get_kernel_pages(&kiov, 1, write, pages);
174 }
175 EXPORT_SYMBOL_GPL(get_kernel_page);
176 
177 static void pagevec_lru_move_fn(struct pagevec *pvec,
178 	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
179 	void *arg)
180 {
181 	int i;
182 	struct zone *zone = NULL;
183 	struct lruvec *lruvec;
184 	unsigned long flags = 0;
185 
186 	for (i = 0; i < pagevec_count(pvec); i++) {
187 		struct page *page = pvec->pages[i];
188 		struct zone *pagezone = page_zone(page);
189 
190 		if (pagezone != zone) {
191 			if (zone)
192 				spin_unlock_irqrestore(&zone->lru_lock, flags);
193 			zone = pagezone;
194 			spin_lock_irqsave(&zone->lru_lock, flags);
195 		}
196 
197 		lruvec = mem_cgroup_page_lruvec(page, zone);
198 		(*move_fn)(page, lruvec, arg);
199 	}
200 	if (zone)
201 		spin_unlock_irqrestore(&zone->lru_lock, flags);
202 	release_pages(pvec->pages, pvec->nr, pvec->cold);
203 	pagevec_reinit(pvec);
204 }
205 
206 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
207 				 void *arg)
208 {
209 	int *pgmoved = arg;
210 
211 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
212 		enum lru_list lru = page_lru_base_type(page);
213 		list_move_tail(&page->lru, &lruvec->lists[lru]);
214 		(*pgmoved)++;
215 	}
216 }
217 
218 /*
219  * pagevec_move_tail() must be called with IRQ disabled.
220  * Otherwise this may cause nasty races.
221  */
222 static void pagevec_move_tail(struct pagevec *pvec)
223 {
224 	int pgmoved = 0;
225 
226 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
227 	__count_vm_events(PGROTATED, pgmoved);
228 }
229 
230 /*
231  * Writeback is about to end against a page which has been marked for immediate
232  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
233  * inactive list.
234  */
235 void rotate_reclaimable_page(struct page *page)
236 {
237 	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
238 	    !PageUnevictable(page) && PageLRU(page)) {
239 		struct pagevec *pvec;
240 		unsigned long flags;
241 
242 		get_page(page);
243 		local_irq_save(flags);
244 		pvec = this_cpu_ptr(&lru_rotate_pvecs);
245 		if (!pagevec_add(pvec, page))
246 			pagevec_move_tail(pvec);
247 		local_irq_restore(flags);
248 	}
249 }
250 
251 static void update_page_reclaim_stat(struct lruvec *lruvec,
252 				     int file, int rotated)
253 {
254 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
255 
256 	reclaim_stat->recent_scanned[file]++;
257 	if (rotated)
258 		reclaim_stat->recent_rotated[file]++;
259 }
260 
261 static void __activate_page(struct page *page, struct lruvec *lruvec,
262 			    void *arg)
263 {
264 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
265 		int file = page_is_file_cache(page);
266 		int lru = page_lru_base_type(page);
267 
268 		del_page_from_lru_list(page, lruvec, lru);
269 		SetPageActive(page);
270 		lru += LRU_ACTIVE;
271 		add_page_to_lru_list(page, lruvec, lru);
272 		trace_mm_lru_activate(page);
273 
274 		__count_vm_event(PGACTIVATE);
275 		update_page_reclaim_stat(lruvec, file, 1);
276 	}
277 }
278 
279 #ifdef CONFIG_SMP
280 static void activate_page_drain(int cpu)
281 {
282 	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
283 
284 	if (pagevec_count(pvec))
285 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
286 }
287 
288 static bool need_activate_page_drain(int cpu)
289 {
290 	return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
291 }
292 
293 void activate_page(struct page *page)
294 {
295 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
296 		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
297 
298 		get_page(page);
299 		if (!pagevec_add(pvec, page))
300 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
301 		put_cpu_var(activate_page_pvecs);
302 	}
303 }
304 
305 #else
306 static inline void activate_page_drain(int cpu)
307 {
308 }
309 
310 static bool need_activate_page_drain(int cpu)
311 {
312 	return false;
313 }
314 
315 void activate_page(struct page *page)
316 {
317 	struct zone *zone = page_zone(page);
318 
319 	spin_lock_irq(&zone->lru_lock);
320 	__activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
321 	spin_unlock_irq(&zone->lru_lock);
322 }
323 #endif
324 
325 static void __lru_cache_activate_page(struct page *page)
326 {
327 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
328 	int i;
329 
330 	/*
331 	 * Search backwards on the optimistic assumption that the page being
332 	 * activated has just been added to this pagevec. Note that only
333 	 * the local pagevec is examined as a !PageLRU page could be in the
334 	 * process of being released, reclaimed, migrated or on a remote
335 	 * pagevec that is currently being drained. Furthermore, marking
336 	 * a remote pagevec's page PageActive potentially hits a race where
337 	 * a page is marked PageActive just after it is added to the inactive
338 	 * list causing accounting errors and BUG_ON checks to trigger.
339 	 */
340 	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
341 		struct page *pagevec_page = pvec->pages[i];
342 
343 		if (pagevec_page == page) {
344 			SetPageActive(page);
345 			break;
346 		}
347 	}
348 
349 	put_cpu_var(lru_add_pvec);
350 }
351 
352 /*
353  * Mark a page as having seen activity.
354  *
355  * inactive,unreferenced	->	inactive,referenced
356  * inactive,referenced		->	active,unreferenced
357  * active,unreferenced		->	active,referenced
358  *
359  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
360  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
361  */
362 void mark_page_accessed(struct page *page)
363 {
364 	page = compound_head(page);
365 	if (!PageActive(page) && !PageUnevictable(page) &&
366 			PageReferenced(page)) {
367 
368 		/*
369 		 * If the page is on the LRU, queue it for activation via
370 		 * activate_page_pvecs. Otherwise, assume the page is on a
371 		 * pagevec, mark it active and it'll be moved to the active
372 		 * LRU on the next drain.
373 		 */
374 		if (PageLRU(page))
375 			activate_page(page);
376 		else
377 			__lru_cache_activate_page(page);
378 		ClearPageReferenced(page);
379 		if (page_is_file_cache(page))
380 			workingset_activation(page);
381 	} else if (!PageReferenced(page)) {
382 		SetPageReferenced(page);
383 	}
384 	if (page_is_idle(page))
385 		clear_page_idle(page);
386 }
387 EXPORT_SYMBOL(mark_page_accessed);
388 
389 static void __lru_cache_add(struct page *page)
390 {
391 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
392 
393 	get_page(page);
394 	if (!pagevec_space(pvec))
395 		__pagevec_lru_add(pvec);
396 	pagevec_add(pvec, page);
397 	put_cpu_var(lru_add_pvec);
398 }
399 
400 /**
401  * lru_cache_add: add a page to the page lists
402  * @page: the page to add
403  */
404 void lru_cache_add_anon(struct page *page)
405 {
406 	if (PageActive(page))
407 		ClearPageActive(page);
408 	__lru_cache_add(page);
409 }
410 
411 void lru_cache_add_file(struct page *page)
412 {
413 	if (PageActive(page))
414 		ClearPageActive(page);
415 	__lru_cache_add(page);
416 }
417 EXPORT_SYMBOL(lru_cache_add_file);
418 
419 /**
420  * lru_cache_add - add a page to a page list
421  * @page: the page to be added to the LRU.
422  *
423  * Queue the page for addition to the LRU via pagevec. The decision on whether
424  * to add the page to the [in]active [file|anon] list is deferred until the
425  * pagevec is drained. This gives a chance for the caller of lru_cache_add()
426  * have the page added to the active list using mark_page_accessed().
427  */
428 void lru_cache_add(struct page *page)
429 {
430 	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
431 	VM_BUG_ON_PAGE(PageLRU(page), page);
432 	__lru_cache_add(page);
433 }
434 
435 /**
436  * add_page_to_unevictable_list - add a page to the unevictable list
437  * @page:  the page to be added to the unevictable list
438  *
439  * Add page directly to its zone's unevictable list.  To avoid races with
440  * tasks that might be making the page evictable, through eg. munlock,
441  * munmap or exit, while it's not on the lru, we want to add the page
442  * while it's locked or otherwise "invisible" to other tasks.  This is
443  * difficult to do when using the pagevec cache, so bypass that.
444  */
445 void add_page_to_unevictable_list(struct page *page)
446 {
447 	struct zone *zone = page_zone(page);
448 	struct lruvec *lruvec;
449 
450 	spin_lock_irq(&zone->lru_lock);
451 	lruvec = mem_cgroup_page_lruvec(page, zone);
452 	ClearPageActive(page);
453 	SetPageUnevictable(page);
454 	SetPageLRU(page);
455 	add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
456 	spin_unlock_irq(&zone->lru_lock);
457 }
458 
459 /**
460  * lru_cache_add_active_or_unevictable
461  * @page:  the page to be added to LRU
462  * @vma:   vma in which page is mapped for determining reclaimability
463  *
464  * Place @page on the active or unevictable LRU list, depending on its
465  * evictability.  Note that if the page is not evictable, it goes
466  * directly back onto it's zone's unevictable list, it does NOT use a
467  * per cpu pagevec.
468  */
469 void lru_cache_add_active_or_unevictable(struct page *page,
470 					 struct vm_area_struct *vma)
471 {
472 	VM_BUG_ON_PAGE(PageLRU(page), page);
473 
474 	if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
475 		SetPageActive(page);
476 		lru_cache_add(page);
477 		return;
478 	}
479 
480 	if (!TestSetPageMlocked(page)) {
481 		/*
482 		 * We use the irq-unsafe __mod_zone_page_stat because this
483 		 * counter is not modified from interrupt context, and the pte
484 		 * lock is held(spinlock), which implies preemption disabled.
485 		 */
486 		__mod_zone_page_state(page_zone(page), NR_MLOCK,
487 				    hpage_nr_pages(page));
488 		count_vm_event(UNEVICTABLE_PGMLOCKED);
489 	}
490 	add_page_to_unevictable_list(page);
491 }
492 
493 /*
494  * If the page can not be invalidated, it is moved to the
495  * inactive list to speed up its reclaim.  It is moved to the
496  * head of the list, rather than the tail, to give the flusher
497  * threads some time to write it out, as this is much more
498  * effective than the single-page writeout from reclaim.
499  *
500  * If the page isn't page_mapped and dirty/writeback, the page
501  * could reclaim asap using PG_reclaim.
502  *
503  * 1. active, mapped page -> none
504  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
505  * 3. inactive, mapped page -> none
506  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
507  * 5. inactive, clean -> inactive, tail
508  * 6. Others -> none
509  *
510  * In 4, why it moves inactive's head, the VM expects the page would
511  * be write it out by flusher threads as this is much more effective
512  * than the single-page writeout from reclaim.
513  */
514 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
515 			      void *arg)
516 {
517 	int lru, file;
518 	bool active;
519 
520 	if (!PageLRU(page))
521 		return;
522 
523 	if (PageUnevictable(page))
524 		return;
525 
526 	/* Some processes are using the page */
527 	if (page_mapped(page))
528 		return;
529 
530 	active = PageActive(page);
531 	file = page_is_file_cache(page);
532 	lru = page_lru_base_type(page);
533 
534 	del_page_from_lru_list(page, lruvec, lru + active);
535 	ClearPageActive(page);
536 	ClearPageReferenced(page);
537 	add_page_to_lru_list(page, lruvec, lru);
538 
539 	if (PageWriteback(page) || PageDirty(page)) {
540 		/*
541 		 * PG_reclaim could be raced with end_page_writeback
542 		 * It can make readahead confusing.  But race window
543 		 * is _really_ small and  it's non-critical problem.
544 		 */
545 		SetPageReclaim(page);
546 	} else {
547 		/*
548 		 * The page's writeback ends up during pagevec
549 		 * We moves tha page into tail of inactive.
550 		 */
551 		list_move_tail(&page->lru, &lruvec->lists[lru]);
552 		__count_vm_event(PGROTATED);
553 	}
554 
555 	if (active)
556 		__count_vm_event(PGDEACTIVATE);
557 	update_page_reclaim_stat(lruvec, file, 0);
558 }
559 
560 
561 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
562 			    void *arg)
563 {
564 	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
565 		int file = page_is_file_cache(page);
566 		int lru = page_lru_base_type(page);
567 
568 		del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
569 		ClearPageActive(page);
570 		ClearPageReferenced(page);
571 		add_page_to_lru_list(page, lruvec, lru);
572 
573 		__count_vm_event(PGDEACTIVATE);
574 		update_page_reclaim_stat(lruvec, file, 0);
575 	}
576 }
577 
578 /*
579  * Drain pages out of the cpu's pagevecs.
580  * Either "cpu" is the current CPU, and preemption has already been
581  * disabled; or "cpu" is being hot-unplugged, and is already dead.
582  */
583 void lru_add_drain_cpu(int cpu)
584 {
585 	struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
586 
587 	if (pagevec_count(pvec))
588 		__pagevec_lru_add(pvec);
589 
590 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
591 	if (pagevec_count(pvec)) {
592 		unsigned long flags;
593 
594 		/* No harm done if a racing interrupt already did this */
595 		local_irq_save(flags);
596 		pagevec_move_tail(pvec);
597 		local_irq_restore(flags);
598 	}
599 
600 	pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
601 	if (pagevec_count(pvec))
602 		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
603 
604 	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
605 	if (pagevec_count(pvec))
606 		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
607 
608 	activate_page_drain(cpu);
609 }
610 
611 /**
612  * deactivate_file_page - forcefully deactivate a file page
613  * @page: page to deactivate
614  *
615  * This function hints the VM that @page is a good reclaim candidate,
616  * for example if its invalidation fails due to the page being dirty
617  * or under writeback.
618  */
619 void deactivate_file_page(struct page *page)
620 {
621 	/*
622 	 * In a workload with many unevictable page such as mprotect,
623 	 * unevictable page deactivation for accelerating reclaim is pointless.
624 	 */
625 	if (PageUnevictable(page))
626 		return;
627 
628 	if (likely(get_page_unless_zero(page))) {
629 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
630 
631 		if (!pagevec_add(pvec, page))
632 			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
633 		put_cpu_var(lru_deactivate_file_pvecs);
634 	}
635 }
636 
637 /**
638  * deactivate_page - deactivate a page
639  * @page: page to deactivate
640  *
641  * deactivate_page() moves @page to the inactive list if @page was on the active
642  * list and was not an unevictable page.  This is done to accelerate the reclaim
643  * of @page.
644  */
645 void deactivate_page(struct page *page)
646 {
647 	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
648 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
649 
650 		get_page(page);
651 		if (!pagevec_add(pvec, page))
652 			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
653 		put_cpu_var(lru_deactivate_pvecs);
654 	}
655 }
656 
657 void lru_add_drain(void)
658 {
659 	lru_add_drain_cpu(get_cpu());
660 	put_cpu();
661 }
662 
663 static void lru_add_drain_per_cpu(struct work_struct *dummy)
664 {
665 	lru_add_drain();
666 }
667 
668 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
669 
670 void lru_add_drain_all(void)
671 {
672 	static DEFINE_MUTEX(lock);
673 	static struct cpumask has_work;
674 	int cpu;
675 
676 	mutex_lock(&lock);
677 	get_online_cpus();
678 	cpumask_clear(&has_work);
679 
680 	for_each_online_cpu(cpu) {
681 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
682 
683 		if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
684 		    pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
685 		    pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
686 		    pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
687 		    need_activate_page_drain(cpu)) {
688 			INIT_WORK(work, lru_add_drain_per_cpu);
689 			schedule_work_on(cpu, work);
690 			cpumask_set_cpu(cpu, &has_work);
691 		}
692 	}
693 
694 	for_each_cpu(cpu, &has_work)
695 		flush_work(&per_cpu(lru_add_drain_work, cpu));
696 
697 	put_online_cpus();
698 	mutex_unlock(&lock);
699 }
700 
701 /**
702  * release_pages - batched put_page()
703  * @pages: array of pages to release
704  * @nr: number of pages
705  * @cold: whether the pages are cache cold
706  *
707  * Decrement the reference count on all the pages in @pages.  If it
708  * fell to zero, remove the page from the LRU and free it.
709  */
710 void release_pages(struct page **pages, int nr, bool cold)
711 {
712 	int i;
713 	LIST_HEAD(pages_to_free);
714 	struct zone *zone = NULL;
715 	struct lruvec *lruvec;
716 	unsigned long uninitialized_var(flags);
717 	unsigned int uninitialized_var(lock_batch);
718 
719 	for (i = 0; i < nr; i++) {
720 		struct page *page = pages[i];
721 
722 		/*
723 		 * Make sure the IRQ-safe lock-holding time does not get
724 		 * excessive with a continuous string of pages from the
725 		 * same zone. The lock is held only if zone != NULL.
726 		 */
727 		if (zone && ++lock_batch == SWAP_CLUSTER_MAX) {
728 			spin_unlock_irqrestore(&zone->lru_lock, flags);
729 			zone = NULL;
730 		}
731 
732 		if (is_huge_zero_page(page)) {
733 			put_huge_zero_page();
734 			continue;
735 		}
736 
737 		page = compound_head(page);
738 		if (!put_page_testzero(page))
739 			continue;
740 
741 		if (PageCompound(page)) {
742 			if (zone) {
743 				spin_unlock_irqrestore(&zone->lru_lock, flags);
744 				zone = NULL;
745 			}
746 			__put_compound_page(page);
747 			continue;
748 		}
749 
750 		if (PageLRU(page)) {
751 			struct zone *pagezone = page_zone(page);
752 
753 			if (pagezone != zone) {
754 				if (zone)
755 					spin_unlock_irqrestore(&zone->lru_lock,
756 									flags);
757 				lock_batch = 0;
758 				zone = pagezone;
759 				spin_lock_irqsave(&zone->lru_lock, flags);
760 			}
761 
762 			lruvec = mem_cgroup_page_lruvec(page, zone);
763 			VM_BUG_ON_PAGE(!PageLRU(page), page);
764 			__ClearPageLRU(page);
765 			del_page_from_lru_list(page, lruvec, page_off_lru(page));
766 		}
767 
768 		/* Clear Active bit in case of parallel mark_page_accessed */
769 		__ClearPageActive(page);
770 
771 		list_add(&page->lru, &pages_to_free);
772 	}
773 	if (zone)
774 		spin_unlock_irqrestore(&zone->lru_lock, flags);
775 
776 	mem_cgroup_uncharge_list(&pages_to_free);
777 	free_hot_cold_page_list(&pages_to_free, cold);
778 }
779 EXPORT_SYMBOL(release_pages);
780 
781 /*
782  * The pages which we're about to release may be in the deferred lru-addition
783  * queues.  That would prevent them from really being freed right now.  That's
784  * OK from a correctness point of view but is inefficient - those pages may be
785  * cache-warm and we want to give them back to the page allocator ASAP.
786  *
787  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
788  * and __pagevec_lru_add_active() call release_pages() directly to avoid
789  * mutual recursion.
790  */
791 void __pagevec_release(struct pagevec *pvec)
792 {
793 	lru_add_drain();
794 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
795 	pagevec_reinit(pvec);
796 }
797 EXPORT_SYMBOL(__pagevec_release);
798 
799 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
800 /* used by __split_huge_page_refcount() */
801 void lru_add_page_tail(struct page *page, struct page *page_tail,
802 		       struct lruvec *lruvec, struct list_head *list)
803 {
804 	const int file = 0;
805 
806 	VM_BUG_ON_PAGE(!PageHead(page), page);
807 	VM_BUG_ON_PAGE(PageCompound(page_tail), page);
808 	VM_BUG_ON_PAGE(PageLRU(page_tail), page);
809 	VM_BUG_ON(NR_CPUS != 1 &&
810 		  !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
811 
812 	if (!list)
813 		SetPageLRU(page_tail);
814 
815 	if (likely(PageLRU(page)))
816 		list_add_tail(&page_tail->lru, &page->lru);
817 	else if (list) {
818 		/* page reclaim is reclaiming a huge page */
819 		get_page(page_tail);
820 		list_add_tail(&page_tail->lru, list);
821 	} else {
822 		struct list_head *list_head;
823 		/*
824 		 * Head page has not yet been counted, as an hpage,
825 		 * so we must account for each subpage individually.
826 		 *
827 		 * Use the standard add function to put page_tail on the list,
828 		 * but then correct its position so they all end up in order.
829 		 */
830 		add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
831 		list_head = page_tail->lru.prev;
832 		list_move_tail(&page_tail->lru, list_head);
833 	}
834 
835 	if (!PageUnevictable(page))
836 		update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
837 }
838 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
839 
840 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
841 				 void *arg)
842 {
843 	int file = page_is_file_cache(page);
844 	int active = PageActive(page);
845 	enum lru_list lru = page_lru(page);
846 
847 	VM_BUG_ON_PAGE(PageLRU(page), page);
848 
849 	SetPageLRU(page);
850 	add_page_to_lru_list(page, lruvec, lru);
851 	update_page_reclaim_stat(lruvec, file, active);
852 	trace_mm_lru_insertion(page, lru);
853 }
854 
855 /*
856  * Add the passed pages to the LRU, then drop the caller's refcount
857  * on them.  Reinitialises the caller's pagevec.
858  */
859 void __pagevec_lru_add(struct pagevec *pvec)
860 {
861 	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
862 }
863 EXPORT_SYMBOL(__pagevec_lru_add);
864 
865 /**
866  * pagevec_lookup_entries - gang pagecache lookup
867  * @pvec:	Where the resulting entries are placed
868  * @mapping:	The address_space to search
869  * @start:	The starting entry index
870  * @nr_entries:	The maximum number of entries
871  * @indices:	The cache indices corresponding to the entries in @pvec
872  *
873  * pagevec_lookup_entries() will search for and return a group of up
874  * to @nr_entries pages and shadow entries in the mapping.  All
875  * entries are placed in @pvec.  pagevec_lookup_entries() takes a
876  * reference against actual pages in @pvec.
877  *
878  * The search returns a group of mapping-contiguous entries with
879  * ascending indexes.  There may be holes in the indices due to
880  * not-present entries.
881  *
882  * pagevec_lookup_entries() returns the number of entries which were
883  * found.
884  */
885 unsigned pagevec_lookup_entries(struct pagevec *pvec,
886 				struct address_space *mapping,
887 				pgoff_t start, unsigned nr_pages,
888 				pgoff_t *indices)
889 {
890 	pvec->nr = find_get_entries(mapping, start, nr_pages,
891 				    pvec->pages, indices);
892 	return pagevec_count(pvec);
893 }
894 
895 /**
896  * pagevec_remove_exceptionals - pagevec exceptionals pruning
897  * @pvec:	The pagevec to prune
898  *
899  * pagevec_lookup_entries() fills both pages and exceptional radix
900  * tree entries into the pagevec.  This function prunes all
901  * exceptionals from @pvec without leaving holes, so that it can be
902  * passed on to page-only pagevec operations.
903  */
904 void pagevec_remove_exceptionals(struct pagevec *pvec)
905 {
906 	int i, j;
907 
908 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
909 		struct page *page = pvec->pages[i];
910 		if (!radix_tree_exceptional_entry(page))
911 			pvec->pages[j++] = page;
912 	}
913 	pvec->nr = j;
914 }
915 
916 /**
917  * pagevec_lookup - gang pagecache lookup
918  * @pvec:	Where the resulting pages are placed
919  * @mapping:	The address_space to search
920  * @start:	The starting page index
921  * @nr_pages:	The maximum number of pages
922  *
923  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
924  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
925  * reference against the pages in @pvec.
926  *
927  * The search returns a group of mapping-contiguous pages with ascending
928  * indexes.  There may be holes in the indices due to not-present pages.
929  *
930  * pagevec_lookup() returns the number of pages which were found.
931  */
932 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
933 		pgoff_t start, unsigned nr_pages)
934 {
935 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
936 	return pagevec_count(pvec);
937 }
938 EXPORT_SYMBOL(pagevec_lookup);
939 
940 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
941 		pgoff_t *index, int tag, unsigned nr_pages)
942 {
943 	pvec->nr = find_get_pages_tag(mapping, index, tag,
944 					nr_pages, pvec->pages);
945 	return pagevec_count(pvec);
946 }
947 EXPORT_SYMBOL(pagevec_lookup_tag);
948 
949 /*
950  * Perform any setup for the swap system
951  */
952 void __init swap_setup(void)
953 {
954 	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
955 #ifdef CONFIG_SWAP
956 	int i;
957 
958 	for (i = 0; i < MAX_SWAPFILES; i++)
959 		spin_lock_init(&swapper_spaces[i].tree_lock);
960 #endif
961 
962 	/* Use a smaller cluster for small-memory machines */
963 	if (megs < 16)
964 		page_cluster = 2;
965 	else
966 		page_cluster = 3;
967 	/*
968 	 * Right now other parts of the system means that we
969 	 * _really_ don't want to cluster much more
970 	 */
971 }
972