1 /* 2 * linux/mm/swap.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * This file contains the default values for the operation of the 9 * Linux VM subsystem. Fine-tuning documentation can be found in 10 * Documentation/sysctl/vm.txt. 11 * Started 18.12.91 12 * Swap aging added 23.2.95, Stephen Tweedie. 13 * Buffermem limits added 12.3.98, Rik van Riel. 14 */ 15 16 #include <linux/mm.h> 17 #include <linux/sched.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/swap.h> 20 #include <linux/mman.h> 21 #include <linux/pagemap.h> 22 #include <linux/pagevec.h> 23 #include <linux/init.h> 24 #include <linux/export.h> 25 #include <linux/mm_inline.h> 26 #include <linux/percpu_counter.h> 27 #include <linux/memremap.h> 28 #include <linux/percpu.h> 29 #include <linux/cpu.h> 30 #include <linux/notifier.h> 31 #include <linux/backing-dev.h> 32 #include <linux/memcontrol.h> 33 #include <linux/gfp.h> 34 #include <linux/uio.h> 35 #include <linux/hugetlb.h> 36 #include <linux/page_idle.h> 37 38 #include "internal.h" 39 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/pagemap.h> 42 43 /* How many pages do we try to swap or page in/out together? */ 44 int page_cluster; 45 46 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec); 47 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs); 48 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs); 49 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs); 50 51 /* 52 * This path almost never happens for VM activity - pages are normally 53 * freed via pagevecs. But it gets used by networking. 54 */ 55 static void __page_cache_release(struct page *page) 56 { 57 if (PageLRU(page)) { 58 struct zone *zone = page_zone(page); 59 struct lruvec *lruvec; 60 unsigned long flags; 61 62 spin_lock_irqsave(&zone->lru_lock, flags); 63 lruvec = mem_cgroup_page_lruvec(page, zone); 64 VM_BUG_ON_PAGE(!PageLRU(page), page); 65 __ClearPageLRU(page); 66 del_page_from_lru_list(page, lruvec, page_off_lru(page)); 67 spin_unlock_irqrestore(&zone->lru_lock, flags); 68 } 69 mem_cgroup_uncharge(page); 70 } 71 72 static void __put_single_page(struct page *page) 73 { 74 __page_cache_release(page); 75 free_hot_cold_page(page, false); 76 } 77 78 static void __put_compound_page(struct page *page) 79 { 80 compound_page_dtor *dtor; 81 82 /* 83 * __page_cache_release() is supposed to be called for thp, not for 84 * hugetlb. This is because hugetlb page does never have PageLRU set 85 * (it's never listed to any LRU lists) and no memcg routines should 86 * be called for hugetlb (it has a separate hugetlb_cgroup.) 87 */ 88 if (!PageHuge(page)) 89 __page_cache_release(page); 90 dtor = get_compound_page_dtor(page); 91 (*dtor)(page); 92 } 93 94 void __put_page(struct page *page) 95 { 96 if (unlikely(PageCompound(page))) 97 __put_compound_page(page); 98 else 99 __put_single_page(page); 100 } 101 EXPORT_SYMBOL(__put_page); 102 103 /** 104 * put_pages_list() - release a list of pages 105 * @pages: list of pages threaded on page->lru 106 * 107 * Release a list of pages which are strung together on page.lru. Currently 108 * used by read_cache_pages() and related error recovery code. 109 */ 110 void put_pages_list(struct list_head *pages) 111 { 112 while (!list_empty(pages)) { 113 struct page *victim; 114 115 victim = list_entry(pages->prev, struct page, lru); 116 list_del(&victim->lru); 117 put_page(victim); 118 } 119 } 120 EXPORT_SYMBOL(put_pages_list); 121 122 /* 123 * get_kernel_pages() - pin kernel pages in memory 124 * @kiov: An array of struct kvec structures 125 * @nr_segs: number of segments to pin 126 * @write: pinning for read/write, currently ignored 127 * @pages: array that receives pointers to the pages pinned. 128 * Should be at least nr_segs long. 129 * 130 * Returns number of pages pinned. This may be fewer than the number 131 * requested. If nr_pages is 0 or negative, returns 0. If no pages 132 * were pinned, returns -errno. Each page returned must be released 133 * with a put_page() call when it is finished with. 134 */ 135 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, 136 struct page **pages) 137 { 138 int seg; 139 140 for (seg = 0; seg < nr_segs; seg++) { 141 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) 142 return seg; 143 144 pages[seg] = kmap_to_page(kiov[seg].iov_base); 145 get_page(pages[seg]); 146 } 147 148 return seg; 149 } 150 EXPORT_SYMBOL_GPL(get_kernel_pages); 151 152 /* 153 * get_kernel_page() - pin a kernel page in memory 154 * @start: starting kernel address 155 * @write: pinning for read/write, currently ignored 156 * @pages: array that receives pointer to the page pinned. 157 * Must be at least nr_segs long. 158 * 159 * Returns 1 if page is pinned. If the page was not pinned, returns 160 * -errno. The page returned must be released with a put_page() call 161 * when it is finished with. 162 */ 163 int get_kernel_page(unsigned long start, int write, struct page **pages) 164 { 165 const struct kvec kiov = { 166 .iov_base = (void *)start, 167 .iov_len = PAGE_SIZE 168 }; 169 170 return get_kernel_pages(&kiov, 1, write, pages); 171 } 172 EXPORT_SYMBOL_GPL(get_kernel_page); 173 174 static void pagevec_lru_move_fn(struct pagevec *pvec, 175 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg), 176 void *arg) 177 { 178 int i; 179 struct zone *zone = NULL; 180 struct lruvec *lruvec; 181 unsigned long flags = 0; 182 183 for (i = 0; i < pagevec_count(pvec); i++) { 184 struct page *page = pvec->pages[i]; 185 struct zone *pagezone = page_zone(page); 186 187 if (pagezone != zone) { 188 if (zone) 189 spin_unlock_irqrestore(&zone->lru_lock, flags); 190 zone = pagezone; 191 spin_lock_irqsave(&zone->lru_lock, flags); 192 } 193 194 lruvec = mem_cgroup_page_lruvec(page, zone); 195 (*move_fn)(page, lruvec, arg); 196 } 197 if (zone) 198 spin_unlock_irqrestore(&zone->lru_lock, flags); 199 release_pages(pvec->pages, pvec->nr, pvec->cold); 200 pagevec_reinit(pvec); 201 } 202 203 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec, 204 void *arg) 205 { 206 int *pgmoved = arg; 207 208 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 209 enum lru_list lru = page_lru_base_type(page); 210 list_move_tail(&page->lru, &lruvec->lists[lru]); 211 (*pgmoved)++; 212 } 213 } 214 215 /* 216 * pagevec_move_tail() must be called with IRQ disabled. 217 * Otherwise this may cause nasty races. 218 */ 219 static void pagevec_move_tail(struct pagevec *pvec) 220 { 221 int pgmoved = 0; 222 223 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved); 224 __count_vm_events(PGROTATED, pgmoved); 225 } 226 227 /* 228 * Writeback is about to end against a page which has been marked for immediate 229 * reclaim. If it still appears to be reclaimable, move it to the tail of the 230 * inactive list. 231 */ 232 void rotate_reclaimable_page(struct page *page) 233 { 234 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) && 235 !PageUnevictable(page) && PageLRU(page)) { 236 struct pagevec *pvec; 237 unsigned long flags; 238 239 get_page(page); 240 local_irq_save(flags); 241 pvec = this_cpu_ptr(&lru_rotate_pvecs); 242 if (!pagevec_add(pvec, page)) 243 pagevec_move_tail(pvec); 244 local_irq_restore(flags); 245 } 246 } 247 248 static void update_page_reclaim_stat(struct lruvec *lruvec, 249 int file, int rotated) 250 { 251 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 252 253 reclaim_stat->recent_scanned[file]++; 254 if (rotated) 255 reclaim_stat->recent_rotated[file]++; 256 } 257 258 static void __activate_page(struct page *page, struct lruvec *lruvec, 259 void *arg) 260 { 261 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 262 int file = page_is_file_cache(page); 263 int lru = page_lru_base_type(page); 264 265 del_page_from_lru_list(page, lruvec, lru); 266 SetPageActive(page); 267 lru += LRU_ACTIVE; 268 add_page_to_lru_list(page, lruvec, lru); 269 trace_mm_lru_activate(page); 270 271 __count_vm_event(PGACTIVATE); 272 update_page_reclaim_stat(lruvec, file, 1); 273 } 274 } 275 276 #ifdef CONFIG_SMP 277 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs); 278 279 static void activate_page_drain(int cpu) 280 { 281 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu); 282 283 if (pagevec_count(pvec)) 284 pagevec_lru_move_fn(pvec, __activate_page, NULL); 285 } 286 287 static bool need_activate_page_drain(int cpu) 288 { 289 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0; 290 } 291 292 void activate_page(struct page *page) 293 { 294 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 295 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs); 296 297 get_page(page); 298 if (!pagevec_add(pvec, page)) 299 pagevec_lru_move_fn(pvec, __activate_page, NULL); 300 put_cpu_var(activate_page_pvecs); 301 } 302 } 303 304 #else 305 static inline void activate_page_drain(int cpu) 306 { 307 } 308 309 static bool need_activate_page_drain(int cpu) 310 { 311 return false; 312 } 313 314 void activate_page(struct page *page) 315 { 316 struct zone *zone = page_zone(page); 317 318 spin_lock_irq(&zone->lru_lock); 319 __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL); 320 spin_unlock_irq(&zone->lru_lock); 321 } 322 #endif 323 324 static void __lru_cache_activate_page(struct page *page) 325 { 326 struct pagevec *pvec = &get_cpu_var(lru_add_pvec); 327 int i; 328 329 /* 330 * Search backwards on the optimistic assumption that the page being 331 * activated has just been added to this pagevec. Note that only 332 * the local pagevec is examined as a !PageLRU page could be in the 333 * process of being released, reclaimed, migrated or on a remote 334 * pagevec that is currently being drained. Furthermore, marking 335 * a remote pagevec's page PageActive potentially hits a race where 336 * a page is marked PageActive just after it is added to the inactive 337 * list causing accounting errors and BUG_ON checks to trigger. 338 */ 339 for (i = pagevec_count(pvec) - 1; i >= 0; i--) { 340 struct page *pagevec_page = pvec->pages[i]; 341 342 if (pagevec_page == page) { 343 SetPageActive(page); 344 break; 345 } 346 } 347 348 put_cpu_var(lru_add_pvec); 349 } 350 351 /* 352 * Mark a page as having seen activity. 353 * 354 * inactive,unreferenced -> inactive,referenced 355 * inactive,referenced -> active,unreferenced 356 * active,unreferenced -> active,referenced 357 * 358 * When a newly allocated page is not yet visible, so safe for non-atomic ops, 359 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page). 360 */ 361 void mark_page_accessed(struct page *page) 362 { 363 page = compound_head(page); 364 if (!PageActive(page) && !PageUnevictable(page) && 365 PageReferenced(page)) { 366 367 /* 368 * If the page is on the LRU, queue it for activation via 369 * activate_page_pvecs. Otherwise, assume the page is on a 370 * pagevec, mark it active and it'll be moved to the active 371 * LRU on the next drain. 372 */ 373 if (PageLRU(page)) 374 activate_page(page); 375 else 376 __lru_cache_activate_page(page); 377 ClearPageReferenced(page); 378 if (page_is_file_cache(page)) 379 workingset_activation(page); 380 } else if (!PageReferenced(page)) { 381 SetPageReferenced(page); 382 } 383 if (page_is_idle(page)) 384 clear_page_idle(page); 385 } 386 EXPORT_SYMBOL(mark_page_accessed); 387 388 static void __lru_cache_add(struct page *page) 389 { 390 struct pagevec *pvec = &get_cpu_var(lru_add_pvec); 391 392 get_page(page); 393 if (!pagevec_space(pvec)) 394 __pagevec_lru_add(pvec); 395 pagevec_add(pvec, page); 396 put_cpu_var(lru_add_pvec); 397 } 398 399 /** 400 * lru_cache_add: add a page to the page lists 401 * @page: the page to add 402 */ 403 void lru_cache_add_anon(struct page *page) 404 { 405 if (PageActive(page)) 406 ClearPageActive(page); 407 __lru_cache_add(page); 408 } 409 410 void lru_cache_add_file(struct page *page) 411 { 412 if (PageActive(page)) 413 ClearPageActive(page); 414 __lru_cache_add(page); 415 } 416 EXPORT_SYMBOL(lru_cache_add_file); 417 418 /** 419 * lru_cache_add - add a page to a page list 420 * @page: the page to be added to the LRU. 421 * 422 * Queue the page for addition to the LRU via pagevec. The decision on whether 423 * to add the page to the [in]active [file|anon] list is deferred until the 424 * pagevec is drained. This gives a chance for the caller of lru_cache_add() 425 * have the page added to the active list using mark_page_accessed(). 426 */ 427 void lru_cache_add(struct page *page) 428 { 429 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page); 430 VM_BUG_ON_PAGE(PageLRU(page), page); 431 __lru_cache_add(page); 432 } 433 434 /** 435 * add_page_to_unevictable_list - add a page to the unevictable list 436 * @page: the page to be added to the unevictable list 437 * 438 * Add page directly to its zone's unevictable list. To avoid races with 439 * tasks that might be making the page evictable, through eg. munlock, 440 * munmap or exit, while it's not on the lru, we want to add the page 441 * while it's locked or otherwise "invisible" to other tasks. This is 442 * difficult to do when using the pagevec cache, so bypass that. 443 */ 444 void add_page_to_unevictable_list(struct page *page) 445 { 446 struct zone *zone = page_zone(page); 447 struct lruvec *lruvec; 448 449 spin_lock_irq(&zone->lru_lock); 450 lruvec = mem_cgroup_page_lruvec(page, zone); 451 ClearPageActive(page); 452 SetPageUnevictable(page); 453 SetPageLRU(page); 454 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE); 455 spin_unlock_irq(&zone->lru_lock); 456 } 457 458 /** 459 * lru_cache_add_active_or_unevictable 460 * @page: the page to be added to LRU 461 * @vma: vma in which page is mapped for determining reclaimability 462 * 463 * Place @page on the active or unevictable LRU list, depending on its 464 * evictability. Note that if the page is not evictable, it goes 465 * directly back onto it's zone's unevictable list, it does NOT use a 466 * per cpu pagevec. 467 */ 468 void lru_cache_add_active_or_unevictable(struct page *page, 469 struct vm_area_struct *vma) 470 { 471 VM_BUG_ON_PAGE(PageLRU(page), page); 472 473 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) { 474 SetPageActive(page); 475 lru_cache_add(page); 476 return; 477 } 478 479 if (!TestSetPageMlocked(page)) { 480 /* 481 * We use the irq-unsafe __mod_zone_page_stat because this 482 * counter is not modified from interrupt context, and the pte 483 * lock is held(spinlock), which implies preemption disabled. 484 */ 485 __mod_zone_page_state(page_zone(page), NR_MLOCK, 486 hpage_nr_pages(page)); 487 count_vm_event(UNEVICTABLE_PGMLOCKED); 488 } 489 add_page_to_unevictable_list(page); 490 } 491 492 /* 493 * If the page can not be invalidated, it is moved to the 494 * inactive list to speed up its reclaim. It is moved to the 495 * head of the list, rather than the tail, to give the flusher 496 * threads some time to write it out, as this is much more 497 * effective than the single-page writeout from reclaim. 498 * 499 * If the page isn't page_mapped and dirty/writeback, the page 500 * could reclaim asap using PG_reclaim. 501 * 502 * 1. active, mapped page -> none 503 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim 504 * 3. inactive, mapped page -> none 505 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim 506 * 5. inactive, clean -> inactive, tail 507 * 6. Others -> none 508 * 509 * In 4, why it moves inactive's head, the VM expects the page would 510 * be write it out by flusher threads as this is much more effective 511 * than the single-page writeout from reclaim. 512 */ 513 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec, 514 void *arg) 515 { 516 int lru, file; 517 bool active; 518 519 if (!PageLRU(page)) 520 return; 521 522 if (PageUnevictable(page)) 523 return; 524 525 /* Some processes are using the page */ 526 if (page_mapped(page)) 527 return; 528 529 active = PageActive(page); 530 file = page_is_file_cache(page); 531 lru = page_lru_base_type(page); 532 533 del_page_from_lru_list(page, lruvec, lru + active); 534 ClearPageActive(page); 535 ClearPageReferenced(page); 536 add_page_to_lru_list(page, lruvec, lru); 537 538 if (PageWriteback(page) || PageDirty(page)) { 539 /* 540 * PG_reclaim could be raced with end_page_writeback 541 * It can make readahead confusing. But race window 542 * is _really_ small and it's non-critical problem. 543 */ 544 SetPageReclaim(page); 545 } else { 546 /* 547 * The page's writeback ends up during pagevec 548 * We moves tha page into tail of inactive. 549 */ 550 list_move_tail(&page->lru, &lruvec->lists[lru]); 551 __count_vm_event(PGROTATED); 552 } 553 554 if (active) 555 __count_vm_event(PGDEACTIVATE); 556 update_page_reclaim_stat(lruvec, file, 0); 557 } 558 559 560 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec, 561 void *arg) 562 { 563 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) { 564 int file = page_is_file_cache(page); 565 int lru = page_lru_base_type(page); 566 567 del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE); 568 ClearPageActive(page); 569 ClearPageReferenced(page); 570 add_page_to_lru_list(page, lruvec, lru); 571 572 __count_vm_event(PGDEACTIVATE); 573 update_page_reclaim_stat(lruvec, file, 0); 574 } 575 } 576 577 /* 578 * Drain pages out of the cpu's pagevecs. 579 * Either "cpu" is the current CPU, and preemption has already been 580 * disabled; or "cpu" is being hot-unplugged, and is already dead. 581 */ 582 void lru_add_drain_cpu(int cpu) 583 { 584 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu); 585 586 if (pagevec_count(pvec)) 587 __pagevec_lru_add(pvec); 588 589 pvec = &per_cpu(lru_rotate_pvecs, cpu); 590 if (pagevec_count(pvec)) { 591 unsigned long flags; 592 593 /* No harm done if a racing interrupt already did this */ 594 local_irq_save(flags); 595 pagevec_move_tail(pvec); 596 local_irq_restore(flags); 597 } 598 599 pvec = &per_cpu(lru_deactivate_file_pvecs, cpu); 600 if (pagevec_count(pvec)) 601 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL); 602 603 pvec = &per_cpu(lru_deactivate_pvecs, cpu); 604 if (pagevec_count(pvec)) 605 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); 606 607 activate_page_drain(cpu); 608 } 609 610 /** 611 * deactivate_file_page - forcefully deactivate a file page 612 * @page: page to deactivate 613 * 614 * This function hints the VM that @page is a good reclaim candidate, 615 * for example if its invalidation fails due to the page being dirty 616 * or under writeback. 617 */ 618 void deactivate_file_page(struct page *page) 619 { 620 /* 621 * In a workload with many unevictable page such as mprotect, 622 * unevictable page deactivation for accelerating reclaim is pointless. 623 */ 624 if (PageUnevictable(page)) 625 return; 626 627 if (likely(get_page_unless_zero(page))) { 628 struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs); 629 630 if (!pagevec_add(pvec, page)) 631 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL); 632 put_cpu_var(lru_deactivate_file_pvecs); 633 } 634 } 635 636 /** 637 * deactivate_page - deactivate a page 638 * @page: page to deactivate 639 * 640 * deactivate_page() moves @page to the inactive list if @page was on the active 641 * list and was not an unevictable page. This is done to accelerate the reclaim 642 * of @page. 643 */ 644 void deactivate_page(struct page *page) 645 { 646 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) { 647 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs); 648 649 get_page(page); 650 if (!pagevec_add(pvec, page)) 651 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); 652 put_cpu_var(lru_deactivate_pvecs); 653 } 654 } 655 656 void lru_add_drain(void) 657 { 658 lru_add_drain_cpu(get_cpu()); 659 put_cpu(); 660 } 661 662 static void lru_add_drain_per_cpu(struct work_struct *dummy) 663 { 664 lru_add_drain(); 665 } 666 667 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); 668 669 void lru_add_drain_all(void) 670 { 671 static DEFINE_MUTEX(lock); 672 static struct cpumask has_work; 673 int cpu; 674 675 mutex_lock(&lock); 676 get_online_cpus(); 677 cpumask_clear(&has_work); 678 679 for_each_online_cpu(cpu) { 680 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); 681 682 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) || 683 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) || 684 pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) || 685 pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) || 686 need_activate_page_drain(cpu)) { 687 INIT_WORK(work, lru_add_drain_per_cpu); 688 schedule_work_on(cpu, work); 689 cpumask_set_cpu(cpu, &has_work); 690 } 691 } 692 693 for_each_cpu(cpu, &has_work) 694 flush_work(&per_cpu(lru_add_drain_work, cpu)); 695 696 put_online_cpus(); 697 mutex_unlock(&lock); 698 } 699 700 /** 701 * release_pages - batched put_page() 702 * @pages: array of pages to release 703 * @nr: number of pages 704 * @cold: whether the pages are cache cold 705 * 706 * Decrement the reference count on all the pages in @pages. If it 707 * fell to zero, remove the page from the LRU and free it. 708 */ 709 void release_pages(struct page **pages, int nr, bool cold) 710 { 711 int i; 712 LIST_HEAD(pages_to_free); 713 struct zone *zone = NULL; 714 struct lruvec *lruvec; 715 unsigned long uninitialized_var(flags); 716 unsigned int uninitialized_var(lock_batch); 717 718 for (i = 0; i < nr; i++) { 719 struct page *page = pages[i]; 720 721 /* 722 * Make sure the IRQ-safe lock-holding time does not get 723 * excessive with a continuous string of pages from the 724 * same zone. The lock is held only if zone != NULL. 725 */ 726 if (zone && ++lock_batch == SWAP_CLUSTER_MAX) { 727 spin_unlock_irqrestore(&zone->lru_lock, flags); 728 zone = NULL; 729 } 730 731 page = compound_head(page); 732 if (!put_page_testzero(page)) 733 continue; 734 735 if (PageCompound(page)) { 736 if (zone) { 737 spin_unlock_irqrestore(&zone->lru_lock, flags); 738 zone = NULL; 739 } 740 __put_compound_page(page); 741 continue; 742 } 743 744 if (PageLRU(page)) { 745 struct zone *pagezone = page_zone(page); 746 747 if (pagezone != zone) { 748 if (zone) 749 spin_unlock_irqrestore(&zone->lru_lock, 750 flags); 751 lock_batch = 0; 752 zone = pagezone; 753 spin_lock_irqsave(&zone->lru_lock, flags); 754 } 755 756 lruvec = mem_cgroup_page_lruvec(page, zone); 757 VM_BUG_ON_PAGE(!PageLRU(page), page); 758 __ClearPageLRU(page); 759 del_page_from_lru_list(page, lruvec, page_off_lru(page)); 760 } 761 762 /* Clear Active bit in case of parallel mark_page_accessed */ 763 __ClearPageActive(page); 764 765 list_add(&page->lru, &pages_to_free); 766 } 767 if (zone) 768 spin_unlock_irqrestore(&zone->lru_lock, flags); 769 770 mem_cgroup_uncharge_list(&pages_to_free); 771 free_hot_cold_page_list(&pages_to_free, cold); 772 } 773 EXPORT_SYMBOL(release_pages); 774 775 /* 776 * The pages which we're about to release may be in the deferred lru-addition 777 * queues. That would prevent them from really being freed right now. That's 778 * OK from a correctness point of view but is inefficient - those pages may be 779 * cache-warm and we want to give them back to the page allocator ASAP. 780 * 781 * So __pagevec_release() will drain those queues here. __pagevec_lru_add() 782 * and __pagevec_lru_add_active() call release_pages() directly to avoid 783 * mutual recursion. 784 */ 785 void __pagevec_release(struct pagevec *pvec) 786 { 787 lru_add_drain(); 788 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold); 789 pagevec_reinit(pvec); 790 } 791 EXPORT_SYMBOL(__pagevec_release); 792 793 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 794 /* used by __split_huge_page_refcount() */ 795 void lru_add_page_tail(struct page *page, struct page *page_tail, 796 struct lruvec *lruvec, struct list_head *list) 797 { 798 const int file = 0; 799 800 VM_BUG_ON_PAGE(!PageHead(page), page); 801 VM_BUG_ON_PAGE(PageCompound(page_tail), page); 802 VM_BUG_ON_PAGE(PageLRU(page_tail), page); 803 VM_BUG_ON(NR_CPUS != 1 && 804 !spin_is_locked(&lruvec_zone(lruvec)->lru_lock)); 805 806 if (!list) 807 SetPageLRU(page_tail); 808 809 if (likely(PageLRU(page))) 810 list_add_tail(&page_tail->lru, &page->lru); 811 else if (list) { 812 /* page reclaim is reclaiming a huge page */ 813 get_page(page_tail); 814 list_add_tail(&page_tail->lru, list); 815 } else { 816 struct list_head *list_head; 817 /* 818 * Head page has not yet been counted, as an hpage, 819 * so we must account for each subpage individually. 820 * 821 * Use the standard add function to put page_tail on the list, 822 * but then correct its position so they all end up in order. 823 */ 824 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail)); 825 list_head = page_tail->lru.prev; 826 list_move_tail(&page_tail->lru, list_head); 827 } 828 829 if (!PageUnevictable(page)) 830 update_page_reclaim_stat(lruvec, file, PageActive(page_tail)); 831 } 832 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 833 834 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec, 835 void *arg) 836 { 837 int file = page_is_file_cache(page); 838 int active = PageActive(page); 839 enum lru_list lru = page_lru(page); 840 841 VM_BUG_ON_PAGE(PageLRU(page), page); 842 843 SetPageLRU(page); 844 add_page_to_lru_list(page, lruvec, lru); 845 update_page_reclaim_stat(lruvec, file, active); 846 trace_mm_lru_insertion(page, lru); 847 } 848 849 /* 850 * Add the passed pages to the LRU, then drop the caller's refcount 851 * on them. Reinitialises the caller's pagevec. 852 */ 853 void __pagevec_lru_add(struct pagevec *pvec) 854 { 855 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL); 856 } 857 EXPORT_SYMBOL(__pagevec_lru_add); 858 859 /** 860 * pagevec_lookup_entries - gang pagecache lookup 861 * @pvec: Where the resulting entries are placed 862 * @mapping: The address_space to search 863 * @start: The starting entry index 864 * @nr_entries: The maximum number of entries 865 * @indices: The cache indices corresponding to the entries in @pvec 866 * 867 * pagevec_lookup_entries() will search for and return a group of up 868 * to @nr_entries pages and shadow entries in the mapping. All 869 * entries are placed in @pvec. pagevec_lookup_entries() takes a 870 * reference against actual pages in @pvec. 871 * 872 * The search returns a group of mapping-contiguous entries with 873 * ascending indexes. There may be holes in the indices due to 874 * not-present entries. 875 * 876 * pagevec_lookup_entries() returns the number of entries which were 877 * found. 878 */ 879 unsigned pagevec_lookup_entries(struct pagevec *pvec, 880 struct address_space *mapping, 881 pgoff_t start, unsigned nr_pages, 882 pgoff_t *indices) 883 { 884 pvec->nr = find_get_entries(mapping, start, nr_pages, 885 pvec->pages, indices); 886 return pagevec_count(pvec); 887 } 888 889 /** 890 * pagevec_remove_exceptionals - pagevec exceptionals pruning 891 * @pvec: The pagevec to prune 892 * 893 * pagevec_lookup_entries() fills both pages and exceptional radix 894 * tree entries into the pagevec. This function prunes all 895 * exceptionals from @pvec without leaving holes, so that it can be 896 * passed on to page-only pagevec operations. 897 */ 898 void pagevec_remove_exceptionals(struct pagevec *pvec) 899 { 900 int i, j; 901 902 for (i = 0, j = 0; i < pagevec_count(pvec); i++) { 903 struct page *page = pvec->pages[i]; 904 if (!radix_tree_exceptional_entry(page)) 905 pvec->pages[j++] = page; 906 } 907 pvec->nr = j; 908 } 909 910 /** 911 * pagevec_lookup - gang pagecache lookup 912 * @pvec: Where the resulting pages are placed 913 * @mapping: The address_space to search 914 * @start: The starting page index 915 * @nr_pages: The maximum number of pages 916 * 917 * pagevec_lookup() will search for and return a group of up to @nr_pages pages 918 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a 919 * reference against the pages in @pvec. 920 * 921 * The search returns a group of mapping-contiguous pages with ascending 922 * indexes. There may be holes in the indices due to not-present pages. 923 * 924 * pagevec_lookup() returns the number of pages which were found. 925 */ 926 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping, 927 pgoff_t start, unsigned nr_pages) 928 { 929 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages); 930 return pagevec_count(pvec); 931 } 932 EXPORT_SYMBOL(pagevec_lookup); 933 934 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping, 935 pgoff_t *index, int tag, unsigned nr_pages) 936 { 937 pvec->nr = find_get_pages_tag(mapping, index, tag, 938 nr_pages, pvec->pages); 939 return pagevec_count(pvec); 940 } 941 EXPORT_SYMBOL(pagevec_lookup_tag); 942 943 /* 944 * Perform any setup for the swap system 945 */ 946 void __init swap_setup(void) 947 { 948 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT); 949 #ifdef CONFIG_SWAP 950 int i; 951 952 for (i = 0; i < MAX_SWAPFILES; i++) 953 spin_lock_init(&swapper_spaces[i].tree_lock); 954 #endif 955 956 /* Use a smaller cluster for small-memory machines */ 957 if (megs < 16) 958 page_cluster = 2; 959 else 960 page_cluster = 3; 961 /* 962 * Right now other parts of the system means that we 963 * _really_ don't want to cluster much more 964 */ 965 } 966