xref: /linux/mm/swap.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/memremap.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34 #include <linux/uio.h>
35 #include <linux/hugetlb.h>
36 #include <linux/page_idle.h>
37 
38 #include "internal.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/pagemap.h>
42 
43 /* How many pages do we try to swap or page in/out together? */
44 int page_cluster;
45 
46 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
47 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
48 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
49 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
50 
51 /*
52  * This path almost never happens for VM activity - pages are normally
53  * freed via pagevecs.  But it gets used by networking.
54  */
55 static void __page_cache_release(struct page *page)
56 {
57 	if (PageLRU(page)) {
58 		struct zone *zone = page_zone(page);
59 		struct lruvec *lruvec;
60 		unsigned long flags;
61 
62 		spin_lock_irqsave(&zone->lru_lock, flags);
63 		lruvec = mem_cgroup_page_lruvec(page, zone);
64 		VM_BUG_ON_PAGE(!PageLRU(page), page);
65 		__ClearPageLRU(page);
66 		del_page_from_lru_list(page, lruvec, page_off_lru(page));
67 		spin_unlock_irqrestore(&zone->lru_lock, flags);
68 	}
69 	mem_cgroup_uncharge(page);
70 }
71 
72 static void __put_single_page(struct page *page)
73 {
74 	__page_cache_release(page);
75 	free_hot_cold_page(page, false);
76 }
77 
78 static void __put_compound_page(struct page *page)
79 {
80 	compound_page_dtor *dtor;
81 
82 	/*
83 	 * __page_cache_release() is supposed to be called for thp, not for
84 	 * hugetlb. This is because hugetlb page does never have PageLRU set
85 	 * (it's never listed to any LRU lists) and no memcg routines should
86 	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
87 	 */
88 	if (!PageHuge(page))
89 		__page_cache_release(page);
90 	dtor = get_compound_page_dtor(page);
91 	(*dtor)(page);
92 }
93 
94 void __put_page(struct page *page)
95 {
96 	if (unlikely(PageCompound(page)))
97 		__put_compound_page(page);
98 	else
99 		__put_single_page(page);
100 }
101 EXPORT_SYMBOL(__put_page);
102 
103 /**
104  * put_pages_list() - release a list of pages
105  * @pages: list of pages threaded on page->lru
106  *
107  * Release a list of pages which are strung together on page.lru.  Currently
108  * used by read_cache_pages() and related error recovery code.
109  */
110 void put_pages_list(struct list_head *pages)
111 {
112 	while (!list_empty(pages)) {
113 		struct page *victim;
114 
115 		victim = list_entry(pages->prev, struct page, lru);
116 		list_del(&victim->lru);
117 		put_page(victim);
118 	}
119 }
120 EXPORT_SYMBOL(put_pages_list);
121 
122 /*
123  * get_kernel_pages() - pin kernel pages in memory
124  * @kiov:	An array of struct kvec structures
125  * @nr_segs:	number of segments to pin
126  * @write:	pinning for read/write, currently ignored
127  * @pages:	array that receives pointers to the pages pinned.
128  *		Should be at least nr_segs long.
129  *
130  * Returns number of pages pinned. This may be fewer than the number
131  * requested. If nr_pages is 0 or negative, returns 0. If no pages
132  * were pinned, returns -errno. Each page returned must be released
133  * with a put_page() call when it is finished with.
134  */
135 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
136 		struct page **pages)
137 {
138 	int seg;
139 
140 	for (seg = 0; seg < nr_segs; seg++) {
141 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
142 			return seg;
143 
144 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
145 		get_page(pages[seg]);
146 	}
147 
148 	return seg;
149 }
150 EXPORT_SYMBOL_GPL(get_kernel_pages);
151 
152 /*
153  * get_kernel_page() - pin a kernel page in memory
154  * @start:	starting kernel address
155  * @write:	pinning for read/write, currently ignored
156  * @pages:	array that receives pointer to the page pinned.
157  *		Must be at least nr_segs long.
158  *
159  * Returns 1 if page is pinned. If the page was not pinned, returns
160  * -errno. The page returned must be released with a put_page() call
161  * when it is finished with.
162  */
163 int get_kernel_page(unsigned long start, int write, struct page **pages)
164 {
165 	const struct kvec kiov = {
166 		.iov_base = (void *)start,
167 		.iov_len = PAGE_SIZE
168 	};
169 
170 	return get_kernel_pages(&kiov, 1, write, pages);
171 }
172 EXPORT_SYMBOL_GPL(get_kernel_page);
173 
174 static void pagevec_lru_move_fn(struct pagevec *pvec,
175 	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
176 	void *arg)
177 {
178 	int i;
179 	struct zone *zone = NULL;
180 	struct lruvec *lruvec;
181 	unsigned long flags = 0;
182 
183 	for (i = 0; i < pagevec_count(pvec); i++) {
184 		struct page *page = pvec->pages[i];
185 		struct zone *pagezone = page_zone(page);
186 
187 		if (pagezone != zone) {
188 			if (zone)
189 				spin_unlock_irqrestore(&zone->lru_lock, flags);
190 			zone = pagezone;
191 			spin_lock_irqsave(&zone->lru_lock, flags);
192 		}
193 
194 		lruvec = mem_cgroup_page_lruvec(page, zone);
195 		(*move_fn)(page, lruvec, arg);
196 	}
197 	if (zone)
198 		spin_unlock_irqrestore(&zone->lru_lock, flags);
199 	release_pages(pvec->pages, pvec->nr, pvec->cold);
200 	pagevec_reinit(pvec);
201 }
202 
203 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
204 				 void *arg)
205 {
206 	int *pgmoved = arg;
207 
208 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
209 		enum lru_list lru = page_lru_base_type(page);
210 		list_move_tail(&page->lru, &lruvec->lists[lru]);
211 		(*pgmoved)++;
212 	}
213 }
214 
215 /*
216  * pagevec_move_tail() must be called with IRQ disabled.
217  * Otherwise this may cause nasty races.
218  */
219 static void pagevec_move_tail(struct pagevec *pvec)
220 {
221 	int pgmoved = 0;
222 
223 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
224 	__count_vm_events(PGROTATED, pgmoved);
225 }
226 
227 /*
228  * Writeback is about to end against a page which has been marked for immediate
229  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
230  * inactive list.
231  */
232 void rotate_reclaimable_page(struct page *page)
233 {
234 	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
235 	    !PageUnevictable(page) && PageLRU(page)) {
236 		struct pagevec *pvec;
237 		unsigned long flags;
238 
239 		get_page(page);
240 		local_irq_save(flags);
241 		pvec = this_cpu_ptr(&lru_rotate_pvecs);
242 		if (!pagevec_add(pvec, page))
243 			pagevec_move_tail(pvec);
244 		local_irq_restore(flags);
245 	}
246 }
247 
248 static void update_page_reclaim_stat(struct lruvec *lruvec,
249 				     int file, int rotated)
250 {
251 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
252 
253 	reclaim_stat->recent_scanned[file]++;
254 	if (rotated)
255 		reclaim_stat->recent_rotated[file]++;
256 }
257 
258 static void __activate_page(struct page *page, struct lruvec *lruvec,
259 			    void *arg)
260 {
261 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
262 		int file = page_is_file_cache(page);
263 		int lru = page_lru_base_type(page);
264 
265 		del_page_from_lru_list(page, lruvec, lru);
266 		SetPageActive(page);
267 		lru += LRU_ACTIVE;
268 		add_page_to_lru_list(page, lruvec, lru);
269 		trace_mm_lru_activate(page);
270 
271 		__count_vm_event(PGACTIVATE);
272 		update_page_reclaim_stat(lruvec, file, 1);
273 	}
274 }
275 
276 #ifdef CONFIG_SMP
277 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
278 
279 static void activate_page_drain(int cpu)
280 {
281 	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
282 
283 	if (pagevec_count(pvec))
284 		pagevec_lru_move_fn(pvec, __activate_page, NULL);
285 }
286 
287 static bool need_activate_page_drain(int cpu)
288 {
289 	return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
290 }
291 
292 void activate_page(struct page *page)
293 {
294 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
295 		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
296 
297 		get_page(page);
298 		if (!pagevec_add(pvec, page))
299 			pagevec_lru_move_fn(pvec, __activate_page, NULL);
300 		put_cpu_var(activate_page_pvecs);
301 	}
302 }
303 
304 #else
305 static inline void activate_page_drain(int cpu)
306 {
307 }
308 
309 static bool need_activate_page_drain(int cpu)
310 {
311 	return false;
312 }
313 
314 void activate_page(struct page *page)
315 {
316 	struct zone *zone = page_zone(page);
317 
318 	spin_lock_irq(&zone->lru_lock);
319 	__activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
320 	spin_unlock_irq(&zone->lru_lock);
321 }
322 #endif
323 
324 static void __lru_cache_activate_page(struct page *page)
325 {
326 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
327 	int i;
328 
329 	/*
330 	 * Search backwards on the optimistic assumption that the page being
331 	 * activated has just been added to this pagevec. Note that only
332 	 * the local pagevec is examined as a !PageLRU page could be in the
333 	 * process of being released, reclaimed, migrated or on a remote
334 	 * pagevec that is currently being drained. Furthermore, marking
335 	 * a remote pagevec's page PageActive potentially hits a race where
336 	 * a page is marked PageActive just after it is added to the inactive
337 	 * list causing accounting errors and BUG_ON checks to trigger.
338 	 */
339 	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
340 		struct page *pagevec_page = pvec->pages[i];
341 
342 		if (pagevec_page == page) {
343 			SetPageActive(page);
344 			break;
345 		}
346 	}
347 
348 	put_cpu_var(lru_add_pvec);
349 }
350 
351 /*
352  * Mark a page as having seen activity.
353  *
354  * inactive,unreferenced	->	inactive,referenced
355  * inactive,referenced		->	active,unreferenced
356  * active,unreferenced		->	active,referenced
357  *
358  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
359  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
360  */
361 void mark_page_accessed(struct page *page)
362 {
363 	page = compound_head(page);
364 	if (!PageActive(page) && !PageUnevictable(page) &&
365 			PageReferenced(page)) {
366 
367 		/*
368 		 * If the page is on the LRU, queue it for activation via
369 		 * activate_page_pvecs. Otherwise, assume the page is on a
370 		 * pagevec, mark it active and it'll be moved to the active
371 		 * LRU on the next drain.
372 		 */
373 		if (PageLRU(page))
374 			activate_page(page);
375 		else
376 			__lru_cache_activate_page(page);
377 		ClearPageReferenced(page);
378 		if (page_is_file_cache(page))
379 			workingset_activation(page);
380 	} else if (!PageReferenced(page)) {
381 		SetPageReferenced(page);
382 	}
383 	if (page_is_idle(page))
384 		clear_page_idle(page);
385 }
386 EXPORT_SYMBOL(mark_page_accessed);
387 
388 static void __lru_cache_add(struct page *page)
389 {
390 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
391 
392 	get_page(page);
393 	if (!pagevec_space(pvec))
394 		__pagevec_lru_add(pvec);
395 	pagevec_add(pvec, page);
396 	put_cpu_var(lru_add_pvec);
397 }
398 
399 /**
400  * lru_cache_add: add a page to the page lists
401  * @page: the page to add
402  */
403 void lru_cache_add_anon(struct page *page)
404 {
405 	if (PageActive(page))
406 		ClearPageActive(page);
407 	__lru_cache_add(page);
408 }
409 
410 void lru_cache_add_file(struct page *page)
411 {
412 	if (PageActive(page))
413 		ClearPageActive(page);
414 	__lru_cache_add(page);
415 }
416 EXPORT_SYMBOL(lru_cache_add_file);
417 
418 /**
419  * lru_cache_add - add a page to a page list
420  * @page: the page to be added to the LRU.
421  *
422  * Queue the page for addition to the LRU via pagevec. The decision on whether
423  * to add the page to the [in]active [file|anon] list is deferred until the
424  * pagevec is drained. This gives a chance for the caller of lru_cache_add()
425  * have the page added to the active list using mark_page_accessed().
426  */
427 void lru_cache_add(struct page *page)
428 {
429 	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
430 	VM_BUG_ON_PAGE(PageLRU(page), page);
431 	__lru_cache_add(page);
432 }
433 
434 /**
435  * add_page_to_unevictable_list - add a page to the unevictable list
436  * @page:  the page to be added to the unevictable list
437  *
438  * Add page directly to its zone's unevictable list.  To avoid races with
439  * tasks that might be making the page evictable, through eg. munlock,
440  * munmap or exit, while it's not on the lru, we want to add the page
441  * while it's locked or otherwise "invisible" to other tasks.  This is
442  * difficult to do when using the pagevec cache, so bypass that.
443  */
444 void add_page_to_unevictable_list(struct page *page)
445 {
446 	struct zone *zone = page_zone(page);
447 	struct lruvec *lruvec;
448 
449 	spin_lock_irq(&zone->lru_lock);
450 	lruvec = mem_cgroup_page_lruvec(page, zone);
451 	ClearPageActive(page);
452 	SetPageUnevictable(page);
453 	SetPageLRU(page);
454 	add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
455 	spin_unlock_irq(&zone->lru_lock);
456 }
457 
458 /**
459  * lru_cache_add_active_or_unevictable
460  * @page:  the page to be added to LRU
461  * @vma:   vma in which page is mapped for determining reclaimability
462  *
463  * Place @page on the active or unevictable LRU list, depending on its
464  * evictability.  Note that if the page is not evictable, it goes
465  * directly back onto it's zone's unevictable list, it does NOT use a
466  * per cpu pagevec.
467  */
468 void lru_cache_add_active_or_unevictable(struct page *page,
469 					 struct vm_area_struct *vma)
470 {
471 	VM_BUG_ON_PAGE(PageLRU(page), page);
472 
473 	if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
474 		SetPageActive(page);
475 		lru_cache_add(page);
476 		return;
477 	}
478 
479 	if (!TestSetPageMlocked(page)) {
480 		/*
481 		 * We use the irq-unsafe __mod_zone_page_stat because this
482 		 * counter is not modified from interrupt context, and the pte
483 		 * lock is held(spinlock), which implies preemption disabled.
484 		 */
485 		__mod_zone_page_state(page_zone(page), NR_MLOCK,
486 				    hpage_nr_pages(page));
487 		count_vm_event(UNEVICTABLE_PGMLOCKED);
488 	}
489 	add_page_to_unevictable_list(page);
490 }
491 
492 /*
493  * If the page can not be invalidated, it is moved to the
494  * inactive list to speed up its reclaim.  It is moved to the
495  * head of the list, rather than the tail, to give the flusher
496  * threads some time to write it out, as this is much more
497  * effective than the single-page writeout from reclaim.
498  *
499  * If the page isn't page_mapped and dirty/writeback, the page
500  * could reclaim asap using PG_reclaim.
501  *
502  * 1. active, mapped page -> none
503  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
504  * 3. inactive, mapped page -> none
505  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
506  * 5. inactive, clean -> inactive, tail
507  * 6. Others -> none
508  *
509  * In 4, why it moves inactive's head, the VM expects the page would
510  * be write it out by flusher threads as this is much more effective
511  * than the single-page writeout from reclaim.
512  */
513 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
514 			      void *arg)
515 {
516 	int lru, file;
517 	bool active;
518 
519 	if (!PageLRU(page))
520 		return;
521 
522 	if (PageUnevictable(page))
523 		return;
524 
525 	/* Some processes are using the page */
526 	if (page_mapped(page))
527 		return;
528 
529 	active = PageActive(page);
530 	file = page_is_file_cache(page);
531 	lru = page_lru_base_type(page);
532 
533 	del_page_from_lru_list(page, lruvec, lru + active);
534 	ClearPageActive(page);
535 	ClearPageReferenced(page);
536 	add_page_to_lru_list(page, lruvec, lru);
537 
538 	if (PageWriteback(page) || PageDirty(page)) {
539 		/*
540 		 * PG_reclaim could be raced with end_page_writeback
541 		 * It can make readahead confusing.  But race window
542 		 * is _really_ small and  it's non-critical problem.
543 		 */
544 		SetPageReclaim(page);
545 	} else {
546 		/*
547 		 * The page's writeback ends up during pagevec
548 		 * We moves tha page into tail of inactive.
549 		 */
550 		list_move_tail(&page->lru, &lruvec->lists[lru]);
551 		__count_vm_event(PGROTATED);
552 	}
553 
554 	if (active)
555 		__count_vm_event(PGDEACTIVATE);
556 	update_page_reclaim_stat(lruvec, file, 0);
557 }
558 
559 
560 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
561 			    void *arg)
562 {
563 	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
564 		int file = page_is_file_cache(page);
565 		int lru = page_lru_base_type(page);
566 
567 		del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
568 		ClearPageActive(page);
569 		ClearPageReferenced(page);
570 		add_page_to_lru_list(page, lruvec, lru);
571 
572 		__count_vm_event(PGDEACTIVATE);
573 		update_page_reclaim_stat(lruvec, file, 0);
574 	}
575 }
576 
577 /*
578  * Drain pages out of the cpu's pagevecs.
579  * Either "cpu" is the current CPU, and preemption has already been
580  * disabled; or "cpu" is being hot-unplugged, and is already dead.
581  */
582 void lru_add_drain_cpu(int cpu)
583 {
584 	struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
585 
586 	if (pagevec_count(pvec))
587 		__pagevec_lru_add(pvec);
588 
589 	pvec = &per_cpu(lru_rotate_pvecs, cpu);
590 	if (pagevec_count(pvec)) {
591 		unsigned long flags;
592 
593 		/* No harm done if a racing interrupt already did this */
594 		local_irq_save(flags);
595 		pagevec_move_tail(pvec);
596 		local_irq_restore(flags);
597 	}
598 
599 	pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
600 	if (pagevec_count(pvec))
601 		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
602 
603 	pvec = &per_cpu(lru_deactivate_pvecs, cpu);
604 	if (pagevec_count(pvec))
605 		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
606 
607 	activate_page_drain(cpu);
608 }
609 
610 /**
611  * deactivate_file_page - forcefully deactivate a file page
612  * @page: page to deactivate
613  *
614  * This function hints the VM that @page is a good reclaim candidate,
615  * for example if its invalidation fails due to the page being dirty
616  * or under writeback.
617  */
618 void deactivate_file_page(struct page *page)
619 {
620 	/*
621 	 * In a workload with many unevictable page such as mprotect,
622 	 * unevictable page deactivation for accelerating reclaim is pointless.
623 	 */
624 	if (PageUnevictable(page))
625 		return;
626 
627 	if (likely(get_page_unless_zero(page))) {
628 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
629 
630 		if (!pagevec_add(pvec, page))
631 			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
632 		put_cpu_var(lru_deactivate_file_pvecs);
633 	}
634 }
635 
636 /**
637  * deactivate_page - deactivate a page
638  * @page: page to deactivate
639  *
640  * deactivate_page() moves @page to the inactive list if @page was on the active
641  * list and was not an unevictable page.  This is done to accelerate the reclaim
642  * of @page.
643  */
644 void deactivate_page(struct page *page)
645 {
646 	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
647 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
648 
649 		get_page(page);
650 		if (!pagevec_add(pvec, page))
651 			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
652 		put_cpu_var(lru_deactivate_pvecs);
653 	}
654 }
655 
656 void lru_add_drain(void)
657 {
658 	lru_add_drain_cpu(get_cpu());
659 	put_cpu();
660 }
661 
662 static void lru_add_drain_per_cpu(struct work_struct *dummy)
663 {
664 	lru_add_drain();
665 }
666 
667 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
668 
669 void lru_add_drain_all(void)
670 {
671 	static DEFINE_MUTEX(lock);
672 	static struct cpumask has_work;
673 	int cpu;
674 
675 	mutex_lock(&lock);
676 	get_online_cpus();
677 	cpumask_clear(&has_work);
678 
679 	for_each_online_cpu(cpu) {
680 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
681 
682 		if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
683 		    pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
684 		    pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
685 		    pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
686 		    need_activate_page_drain(cpu)) {
687 			INIT_WORK(work, lru_add_drain_per_cpu);
688 			schedule_work_on(cpu, work);
689 			cpumask_set_cpu(cpu, &has_work);
690 		}
691 	}
692 
693 	for_each_cpu(cpu, &has_work)
694 		flush_work(&per_cpu(lru_add_drain_work, cpu));
695 
696 	put_online_cpus();
697 	mutex_unlock(&lock);
698 }
699 
700 /**
701  * release_pages - batched put_page()
702  * @pages: array of pages to release
703  * @nr: number of pages
704  * @cold: whether the pages are cache cold
705  *
706  * Decrement the reference count on all the pages in @pages.  If it
707  * fell to zero, remove the page from the LRU and free it.
708  */
709 void release_pages(struct page **pages, int nr, bool cold)
710 {
711 	int i;
712 	LIST_HEAD(pages_to_free);
713 	struct zone *zone = NULL;
714 	struct lruvec *lruvec;
715 	unsigned long uninitialized_var(flags);
716 	unsigned int uninitialized_var(lock_batch);
717 
718 	for (i = 0; i < nr; i++) {
719 		struct page *page = pages[i];
720 
721 		/*
722 		 * Make sure the IRQ-safe lock-holding time does not get
723 		 * excessive with a continuous string of pages from the
724 		 * same zone. The lock is held only if zone != NULL.
725 		 */
726 		if (zone && ++lock_batch == SWAP_CLUSTER_MAX) {
727 			spin_unlock_irqrestore(&zone->lru_lock, flags);
728 			zone = NULL;
729 		}
730 
731 		page = compound_head(page);
732 		if (!put_page_testzero(page))
733 			continue;
734 
735 		if (PageCompound(page)) {
736 			if (zone) {
737 				spin_unlock_irqrestore(&zone->lru_lock, flags);
738 				zone = NULL;
739 			}
740 			__put_compound_page(page);
741 			continue;
742 		}
743 
744 		if (PageLRU(page)) {
745 			struct zone *pagezone = page_zone(page);
746 
747 			if (pagezone != zone) {
748 				if (zone)
749 					spin_unlock_irqrestore(&zone->lru_lock,
750 									flags);
751 				lock_batch = 0;
752 				zone = pagezone;
753 				spin_lock_irqsave(&zone->lru_lock, flags);
754 			}
755 
756 			lruvec = mem_cgroup_page_lruvec(page, zone);
757 			VM_BUG_ON_PAGE(!PageLRU(page), page);
758 			__ClearPageLRU(page);
759 			del_page_from_lru_list(page, lruvec, page_off_lru(page));
760 		}
761 
762 		/* Clear Active bit in case of parallel mark_page_accessed */
763 		__ClearPageActive(page);
764 
765 		list_add(&page->lru, &pages_to_free);
766 	}
767 	if (zone)
768 		spin_unlock_irqrestore(&zone->lru_lock, flags);
769 
770 	mem_cgroup_uncharge_list(&pages_to_free);
771 	free_hot_cold_page_list(&pages_to_free, cold);
772 }
773 EXPORT_SYMBOL(release_pages);
774 
775 /*
776  * The pages which we're about to release may be in the deferred lru-addition
777  * queues.  That would prevent them from really being freed right now.  That's
778  * OK from a correctness point of view but is inefficient - those pages may be
779  * cache-warm and we want to give them back to the page allocator ASAP.
780  *
781  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
782  * and __pagevec_lru_add_active() call release_pages() directly to avoid
783  * mutual recursion.
784  */
785 void __pagevec_release(struct pagevec *pvec)
786 {
787 	lru_add_drain();
788 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
789 	pagevec_reinit(pvec);
790 }
791 EXPORT_SYMBOL(__pagevec_release);
792 
793 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
794 /* used by __split_huge_page_refcount() */
795 void lru_add_page_tail(struct page *page, struct page *page_tail,
796 		       struct lruvec *lruvec, struct list_head *list)
797 {
798 	const int file = 0;
799 
800 	VM_BUG_ON_PAGE(!PageHead(page), page);
801 	VM_BUG_ON_PAGE(PageCompound(page_tail), page);
802 	VM_BUG_ON_PAGE(PageLRU(page_tail), page);
803 	VM_BUG_ON(NR_CPUS != 1 &&
804 		  !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
805 
806 	if (!list)
807 		SetPageLRU(page_tail);
808 
809 	if (likely(PageLRU(page)))
810 		list_add_tail(&page_tail->lru, &page->lru);
811 	else if (list) {
812 		/* page reclaim is reclaiming a huge page */
813 		get_page(page_tail);
814 		list_add_tail(&page_tail->lru, list);
815 	} else {
816 		struct list_head *list_head;
817 		/*
818 		 * Head page has not yet been counted, as an hpage,
819 		 * so we must account for each subpage individually.
820 		 *
821 		 * Use the standard add function to put page_tail on the list,
822 		 * but then correct its position so they all end up in order.
823 		 */
824 		add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
825 		list_head = page_tail->lru.prev;
826 		list_move_tail(&page_tail->lru, list_head);
827 	}
828 
829 	if (!PageUnevictable(page))
830 		update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
831 }
832 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
833 
834 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
835 				 void *arg)
836 {
837 	int file = page_is_file_cache(page);
838 	int active = PageActive(page);
839 	enum lru_list lru = page_lru(page);
840 
841 	VM_BUG_ON_PAGE(PageLRU(page), page);
842 
843 	SetPageLRU(page);
844 	add_page_to_lru_list(page, lruvec, lru);
845 	update_page_reclaim_stat(lruvec, file, active);
846 	trace_mm_lru_insertion(page, lru);
847 }
848 
849 /*
850  * Add the passed pages to the LRU, then drop the caller's refcount
851  * on them.  Reinitialises the caller's pagevec.
852  */
853 void __pagevec_lru_add(struct pagevec *pvec)
854 {
855 	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
856 }
857 EXPORT_SYMBOL(__pagevec_lru_add);
858 
859 /**
860  * pagevec_lookup_entries - gang pagecache lookup
861  * @pvec:	Where the resulting entries are placed
862  * @mapping:	The address_space to search
863  * @start:	The starting entry index
864  * @nr_entries:	The maximum number of entries
865  * @indices:	The cache indices corresponding to the entries in @pvec
866  *
867  * pagevec_lookup_entries() will search for and return a group of up
868  * to @nr_entries pages and shadow entries in the mapping.  All
869  * entries are placed in @pvec.  pagevec_lookup_entries() takes a
870  * reference against actual pages in @pvec.
871  *
872  * The search returns a group of mapping-contiguous entries with
873  * ascending indexes.  There may be holes in the indices due to
874  * not-present entries.
875  *
876  * pagevec_lookup_entries() returns the number of entries which were
877  * found.
878  */
879 unsigned pagevec_lookup_entries(struct pagevec *pvec,
880 				struct address_space *mapping,
881 				pgoff_t start, unsigned nr_pages,
882 				pgoff_t *indices)
883 {
884 	pvec->nr = find_get_entries(mapping, start, nr_pages,
885 				    pvec->pages, indices);
886 	return pagevec_count(pvec);
887 }
888 
889 /**
890  * pagevec_remove_exceptionals - pagevec exceptionals pruning
891  * @pvec:	The pagevec to prune
892  *
893  * pagevec_lookup_entries() fills both pages and exceptional radix
894  * tree entries into the pagevec.  This function prunes all
895  * exceptionals from @pvec without leaving holes, so that it can be
896  * passed on to page-only pagevec operations.
897  */
898 void pagevec_remove_exceptionals(struct pagevec *pvec)
899 {
900 	int i, j;
901 
902 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
903 		struct page *page = pvec->pages[i];
904 		if (!radix_tree_exceptional_entry(page))
905 			pvec->pages[j++] = page;
906 	}
907 	pvec->nr = j;
908 }
909 
910 /**
911  * pagevec_lookup - gang pagecache lookup
912  * @pvec:	Where the resulting pages are placed
913  * @mapping:	The address_space to search
914  * @start:	The starting page index
915  * @nr_pages:	The maximum number of pages
916  *
917  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
918  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
919  * reference against the pages in @pvec.
920  *
921  * The search returns a group of mapping-contiguous pages with ascending
922  * indexes.  There may be holes in the indices due to not-present pages.
923  *
924  * pagevec_lookup() returns the number of pages which were found.
925  */
926 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
927 		pgoff_t start, unsigned nr_pages)
928 {
929 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
930 	return pagevec_count(pvec);
931 }
932 EXPORT_SYMBOL(pagevec_lookup);
933 
934 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
935 		pgoff_t *index, int tag, unsigned nr_pages)
936 {
937 	pvec->nr = find_get_pages_tag(mapping, index, tag,
938 					nr_pages, pvec->pages);
939 	return pagevec_count(pvec);
940 }
941 EXPORT_SYMBOL(pagevec_lookup_tag);
942 
943 /*
944  * Perform any setup for the swap system
945  */
946 void __init swap_setup(void)
947 {
948 	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
949 #ifdef CONFIG_SWAP
950 	int i;
951 
952 	for (i = 0; i < MAX_SWAPFILES; i++)
953 		spin_lock_init(&swapper_spaces[i].tree_lock);
954 #endif
955 
956 	/* Use a smaller cluster for small-memory machines */
957 	if (megs < 16)
958 		page_cluster = 2;
959 	else
960 		page_cluster = 3;
961 	/*
962 	 * Right now other parts of the system means that we
963 	 * _really_ don't want to cluster much more
964 	 */
965 }
966