1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swap.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * This file contains the default values for the operation of the 10 * Linux VM subsystem. Fine-tuning documentation can be found in 11 * Documentation/admin-guide/sysctl/vm.rst. 12 * Started 18.12.91 13 * Swap aging added 23.2.95, Stephen Tweedie. 14 * Buffermem limits added 12.3.98, Rik van Riel. 15 */ 16 17 #include <linux/mm.h> 18 #include <linux/sched.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/mman.h> 22 #include <linux/pagemap.h> 23 #include <linux/pagevec.h> 24 #include <linux/init.h> 25 #include <linux/export.h> 26 #include <linux/mm_inline.h> 27 #include <linux/percpu_counter.h> 28 #include <linux/memremap.h> 29 #include <linux/percpu.h> 30 #include <linux/cpu.h> 31 #include <linux/notifier.h> 32 #include <linux/backing-dev.h> 33 #include <linux/memcontrol.h> 34 #include <linux/gfp.h> 35 #include <linux/uio.h> 36 #include <linux/hugetlb.h> 37 #include <linux/page_idle.h> 38 39 #include "internal.h" 40 41 #define CREATE_TRACE_POINTS 42 #include <trace/events/pagemap.h> 43 44 /* How many pages do we try to swap or page in/out together? */ 45 int page_cluster; 46 47 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec); 48 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs); 49 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs); 50 static DEFINE_PER_CPU(struct pagevec, lru_lazyfree_pvecs); 51 #ifdef CONFIG_SMP 52 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs); 53 #endif 54 55 /* 56 * This path almost never happens for VM activity - pages are normally 57 * freed via pagevecs. But it gets used by networking. 58 */ 59 static void __page_cache_release(struct page *page) 60 { 61 if (PageLRU(page)) { 62 pg_data_t *pgdat = page_pgdat(page); 63 struct lruvec *lruvec; 64 unsigned long flags; 65 66 spin_lock_irqsave(&pgdat->lru_lock, flags); 67 lruvec = mem_cgroup_page_lruvec(page, pgdat); 68 VM_BUG_ON_PAGE(!PageLRU(page), page); 69 __ClearPageLRU(page); 70 del_page_from_lru_list(page, lruvec, page_off_lru(page)); 71 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 72 } 73 __ClearPageWaiters(page); 74 mem_cgroup_uncharge(page); 75 } 76 77 static void __put_single_page(struct page *page) 78 { 79 __page_cache_release(page); 80 free_unref_page(page); 81 } 82 83 static void __put_compound_page(struct page *page) 84 { 85 compound_page_dtor *dtor; 86 87 /* 88 * __page_cache_release() is supposed to be called for thp, not for 89 * hugetlb. This is because hugetlb page does never have PageLRU set 90 * (it's never listed to any LRU lists) and no memcg routines should 91 * be called for hugetlb (it has a separate hugetlb_cgroup.) 92 */ 93 if (!PageHuge(page)) 94 __page_cache_release(page); 95 dtor = get_compound_page_dtor(page); 96 (*dtor)(page); 97 } 98 99 void __put_page(struct page *page) 100 { 101 if (is_zone_device_page(page)) { 102 put_dev_pagemap(page->pgmap); 103 104 /* 105 * The page belongs to the device that created pgmap. Do 106 * not return it to page allocator. 107 */ 108 return; 109 } 110 111 if (unlikely(PageCompound(page))) 112 __put_compound_page(page); 113 else 114 __put_single_page(page); 115 } 116 EXPORT_SYMBOL(__put_page); 117 118 /** 119 * put_pages_list() - release a list of pages 120 * @pages: list of pages threaded on page->lru 121 * 122 * Release a list of pages which are strung together on page.lru. Currently 123 * used by read_cache_pages() and related error recovery code. 124 */ 125 void put_pages_list(struct list_head *pages) 126 { 127 while (!list_empty(pages)) { 128 struct page *victim; 129 130 victim = lru_to_page(pages); 131 list_del(&victim->lru); 132 put_page(victim); 133 } 134 } 135 EXPORT_SYMBOL(put_pages_list); 136 137 /* 138 * get_kernel_pages() - pin kernel pages in memory 139 * @kiov: An array of struct kvec structures 140 * @nr_segs: number of segments to pin 141 * @write: pinning for read/write, currently ignored 142 * @pages: array that receives pointers to the pages pinned. 143 * Should be at least nr_segs long. 144 * 145 * Returns number of pages pinned. This may be fewer than the number 146 * requested. If nr_pages is 0 or negative, returns 0. If no pages 147 * were pinned, returns -errno. Each page returned must be released 148 * with a put_page() call when it is finished with. 149 */ 150 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, 151 struct page **pages) 152 { 153 int seg; 154 155 for (seg = 0; seg < nr_segs; seg++) { 156 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) 157 return seg; 158 159 pages[seg] = kmap_to_page(kiov[seg].iov_base); 160 get_page(pages[seg]); 161 } 162 163 return seg; 164 } 165 EXPORT_SYMBOL_GPL(get_kernel_pages); 166 167 /* 168 * get_kernel_page() - pin a kernel page in memory 169 * @start: starting kernel address 170 * @write: pinning for read/write, currently ignored 171 * @pages: array that receives pointer to the page pinned. 172 * Must be at least nr_segs long. 173 * 174 * Returns 1 if page is pinned. If the page was not pinned, returns 175 * -errno. The page returned must be released with a put_page() call 176 * when it is finished with. 177 */ 178 int get_kernel_page(unsigned long start, int write, struct page **pages) 179 { 180 const struct kvec kiov = { 181 .iov_base = (void *)start, 182 .iov_len = PAGE_SIZE 183 }; 184 185 return get_kernel_pages(&kiov, 1, write, pages); 186 } 187 EXPORT_SYMBOL_GPL(get_kernel_page); 188 189 static void pagevec_lru_move_fn(struct pagevec *pvec, 190 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg), 191 void *arg) 192 { 193 int i; 194 struct pglist_data *pgdat = NULL; 195 struct lruvec *lruvec; 196 unsigned long flags = 0; 197 198 for (i = 0; i < pagevec_count(pvec); i++) { 199 struct page *page = pvec->pages[i]; 200 struct pglist_data *pagepgdat = page_pgdat(page); 201 202 if (pagepgdat != pgdat) { 203 if (pgdat) 204 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 205 pgdat = pagepgdat; 206 spin_lock_irqsave(&pgdat->lru_lock, flags); 207 } 208 209 lruvec = mem_cgroup_page_lruvec(page, pgdat); 210 (*move_fn)(page, lruvec, arg); 211 } 212 if (pgdat) 213 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 214 release_pages(pvec->pages, pvec->nr); 215 pagevec_reinit(pvec); 216 } 217 218 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec, 219 void *arg) 220 { 221 int *pgmoved = arg; 222 223 if (PageLRU(page) && !PageUnevictable(page)) { 224 del_page_from_lru_list(page, lruvec, page_lru(page)); 225 ClearPageActive(page); 226 add_page_to_lru_list_tail(page, lruvec, page_lru(page)); 227 (*pgmoved)++; 228 } 229 } 230 231 /* 232 * pagevec_move_tail() must be called with IRQ disabled. 233 * Otherwise this may cause nasty races. 234 */ 235 static void pagevec_move_tail(struct pagevec *pvec) 236 { 237 int pgmoved = 0; 238 239 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved); 240 __count_vm_events(PGROTATED, pgmoved); 241 } 242 243 /* 244 * Writeback is about to end against a page which has been marked for immediate 245 * reclaim. If it still appears to be reclaimable, move it to the tail of the 246 * inactive list. 247 */ 248 void rotate_reclaimable_page(struct page *page) 249 { 250 if (!PageLocked(page) && !PageDirty(page) && 251 !PageUnevictable(page) && PageLRU(page)) { 252 struct pagevec *pvec; 253 unsigned long flags; 254 255 get_page(page); 256 local_irq_save(flags); 257 pvec = this_cpu_ptr(&lru_rotate_pvecs); 258 if (!pagevec_add(pvec, page) || PageCompound(page)) 259 pagevec_move_tail(pvec); 260 local_irq_restore(flags); 261 } 262 } 263 264 static void update_page_reclaim_stat(struct lruvec *lruvec, 265 int file, int rotated) 266 { 267 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 268 269 reclaim_stat->recent_scanned[file]++; 270 if (rotated) 271 reclaim_stat->recent_rotated[file]++; 272 } 273 274 static void __activate_page(struct page *page, struct lruvec *lruvec, 275 void *arg) 276 { 277 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 278 int file = page_is_file_cache(page); 279 int lru = page_lru_base_type(page); 280 281 del_page_from_lru_list(page, lruvec, lru); 282 SetPageActive(page); 283 lru += LRU_ACTIVE; 284 add_page_to_lru_list(page, lruvec, lru); 285 trace_mm_lru_activate(page); 286 287 __count_vm_event(PGACTIVATE); 288 update_page_reclaim_stat(lruvec, file, 1); 289 } 290 } 291 292 #ifdef CONFIG_SMP 293 static void activate_page_drain(int cpu) 294 { 295 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu); 296 297 if (pagevec_count(pvec)) 298 pagevec_lru_move_fn(pvec, __activate_page, NULL); 299 } 300 301 static bool need_activate_page_drain(int cpu) 302 { 303 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0; 304 } 305 306 void activate_page(struct page *page) 307 { 308 page = compound_head(page); 309 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { 310 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs); 311 312 get_page(page); 313 if (!pagevec_add(pvec, page) || PageCompound(page)) 314 pagevec_lru_move_fn(pvec, __activate_page, NULL); 315 put_cpu_var(activate_page_pvecs); 316 } 317 } 318 319 #else 320 static inline void activate_page_drain(int cpu) 321 { 322 } 323 324 void activate_page(struct page *page) 325 { 326 pg_data_t *pgdat = page_pgdat(page); 327 328 page = compound_head(page); 329 spin_lock_irq(&pgdat->lru_lock); 330 __activate_page(page, mem_cgroup_page_lruvec(page, pgdat), NULL); 331 spin_unlock_irq(&pgdat->lru_lock); 332 } 333 #endif 334 335 static void __lru_cache_activate_page(struct page *page) 336 { 337 struct pagevec *pvec = &get_cpu_var(lru_add_pvec); 338 int i; 339 340 /* 341 * Search backwards on the optimistic assumption that the page being 342 * activated has just been added to this pagevec. Note that only 343 * the local pagevec is examined as a !PageLRU page could be in the 344 * process of being released, reclaimed, migrated or on a remote 345 * pagevec that is currently being drained. Furthermore, marking 346 * a remote pagevec's page PageActive potentially hits a race where 347 * a page is marked PageActive just after it is added to the inactive 348 * list causing accounting errors and BUG_ON checks to trigger. 349 */ 350 for (i = pagevec_count(pvec) - 1; i >= 0; i--) { 351 struct page *pagevec_page = pvec->pages[i]; 352 353 if (pagevec_page == page) { 354 SetPageActive(page); 355 break; 356 } 357 } 358 359 put_cpu_var(lru_add_pvec); 360 } 361 362 /* 363 * Mark a page as having seen activity. 364 * 365 * inactive,unreferenced -> inactive,referenced 366 * inactive,referenced -> active,unreferenced 367 * active,unreferenced -> active,referenced 368 * 369 * When a newly allocated page is not yet visible, so safe for non-atomic ops, 370 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page). 371 */ 372 void mark_page_accessed(struct page *page) 373 { 374 page = compound_head(page); 375 if (!PageActive(page) && !PageUnevictable(page) && 376 PageReferenced(page)) { 377 378 /* 379 * If the page is on the LRU, queue it for activation via 380 * activate_page_pvecs. Otherwise, assume the page is on a 381 * pagevec, mark it active and it'll be moved to the active 382 * LRU on the next drain. 383 */ 384 if (PageLRU(page)) 385 activate_page(page); 386 else 387 __lru_cache_activate_page(page); 388 ClearPageReferenced(page); 389 if (page_is_file_cache(page)) 390 workingset_activation(page); 391 } else if (!PageReferenced(page)) { 392 SetPageReferenced(page); 393 } 394 if (page_is_idle(page)) 395 clear_page_idle(page); 396 } 397 EXPORT_SYMBOL(mark_page_accessed); 398 399 static void __lru_cache_add(struct page *page) 400 { 401 struct pagevec *pvec = &get_cpu_var(lru_add_pvec); 402 403 get_page(page); 404 if (!pagevec_add(pvec, page) || PageCompound(page)) 405 __pagevec_lru_add(pvec); 406 put_cpu_var(lru_add_pvec); 407 } 408 409 /** 410 * lru_cache_add_anon - add a page to the page lists 411 * @page: the page to add 412 */ 413 void lru_cache_add_anon(struct page *page) 414 { 415 if (PageActive(page)) 416 ClearPageActive(page); 417 __lru_cache_add(page); 418 } 419 420 void lru_cache_add_file(struct page *page) 421 { 422 if (PageActive(page)) 423 ClearPageActive(page); 424 __lru_cache_add(page); 425 } 426 EXPORT_SYMBOL(lru_cache_add_file); 427 428 /** 429 * lru_cache_add - add a page to a page list 430 * @page: the page to be added to the LRU. 431 * 432 * Queue the page for addition to the LRU via pagevec. The decision on whether 433 * to add the page to the [in]active [file|anon] list is deferred until the 434 * pagevec is drained. This gives a chance for the caller of lru_cache_add() 435 * have the page added to the active list using mark_page_accessed(). 436 */ 437 void lru_cache_add(struct page *page) 438 { 439 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page); 440 VM_BUG_ON_PAGE(PageLRU(page), page); 441 __lru_cache_add(page); 442 } 443 444 /** 445 * lru_cache_add_active_or_unevictable 446 * @page: the page to be added to LRU 447 * @vma: vma in which page is mapped for determining reclaimability 448 * 449 * Place @page on the active or unevictable LRU list, depending on its 450 * evictability. Note that if the page is not evictable, it goes 451 * directly back onto it's zone's unevictable list, it does NOT use a 452 * per cpu pagevec. 453 */ 454 void lru_cache_add_active_or_unevictable(struct page *page, 455 struct vm_area_struct *vma) 456 { 457 VM_BUG_ON_PAGE(PageLRU(page), page); 458 459 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) 460 SetPageActive(page); 461 else if (!TestSetPageMlocked(page)) { 462 /* 463 * We use the irq-unsafe __mod_zone_page_stat because this 464 * counter is not modified from interrupt context, and the pte 465 * lock is held(spinlock), which implies preemption disabled. 466 */ 467 __mod_zone_page_state(page_zone(page), NR_MLOCK, 468 hpage_nr_pages(page)); 469 count_vm_event(UNEVICTABLE_PGMLOCKED); 470 } 471 lru_cache_add(page); 472 } 473 474 /* 475 * If the page can not be invalidated, it is moved to the 476 * inactive list to speed up its reclaim. It is moved to the 477 * head of the list, rather than the tail, to give the flusher 478 * threads some time to write it out, as this is much more 479 * effective than the single-page writeout from reclaim. 480 * 481 * If the page isn't page_mapped and dirty/writeback, the page 482 * could reclaim asap using PG_reclaim. 483 * 484 * 1. active, mapped page -> none 485 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim 486 * 3. inactive, mapped page -> none 487 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim 488 * 5. inactive, clean -> inactive, tail 489 * 6. Others -> none 490 * 491 * In 4, why it moves inactive's head, the VM expects the page would 492 * be write it out by flusher threads as this is much more effective 493 * than the single-page writeout from reclaim. 494 */ 495 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec, 496 void *arg) 497 { 498 int lru, file; 499 bool active; 500 501 if (!PageLRU(page)) 502 return; 503 504 if (PageUnevictable(page)) 505 return; 506 507 /* Some processes are using the page */ 508 if (page_mapped(page)) 509 return; 510 511 active = PageActive(page); 512 file = page_is_file_cache(page); 513 lru = page_lru_base_type(page); 514 515 del_page_from_lru_list(page, lruvec, lru + active); 516 ClearPageActive(page); 517 ClearPageReferenced(page); 518 add_page_to_lru_list(page, lruvec, lru); 519 520 if (PageWriteback(page) || PageDirty(page)) { 521 /* 522 * PG_reclaim could be raced with end_page_writeback 523 * It can make readahead confusing. But race window 524 * is _really_ small and it's non-critical problem. 525 */ 526 SetPageReclaim(page); 527 } else { 528 /* 529 * The page's writeback ends up during pagevec 530 * We moves tha page into tail of inactive. 531 */ 532 list_move_tail(&page->lru, &lruvec->lists[lru]); 533 __count_vm_event(PGROTATED); 534 } 535 536 if (active) 537 __count_vm_event(PGDEACTIVATE); 538 update_page_reclaim_stat(lruvec, file, 0); 539 } 540 541 542 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec, 543 void *arg) 544 { 545 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) && 546 !PageSwapCache(page) && !PageUnevictable(page)) { 547 bool active = PageActive(page); 548 549 del_page_from_lru_list(page, lruvec, 550 LRU_INACTIVE_ANON + active); 551 ClearPageActive(page); 552 ClearPageReferenced(page); 553 /* 554 * lazyfree pages are clean anonymous pages. They have 555 * SwapBacked flag cleared to distinguish normal anonymous 556 * pages 557 */ 558 ClearPageSwapBacked(page); 559 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE); 560 561 __count_vm_events(PGLAZYFREE, hpage_nr_pages(page)); 562 count_memcg_page_event(page, PGLAZYFREE); 563 update_page_reclaim_stat(lruvec, 1, 0); 564 } 565 } 566 567 /* 568 * Drain pages out of the cpu's pagevecs. 569 * Either "cpu" is the current CPU, and preemption has already been 570 * disabled; or "cpu" is being hot-unplugged, and is already dead. 571 */ 572 void lru_add_drain_cpu(int cpu) 573 { 574 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu); 575 576 if (pagevec_count(pvec)) 577 __pagevec_lru_add(pvec); 578 579 pvec = &per_cpu(lru_rotate_pvecs, cpu); 580 if (pagevec_count(pvec)) { 581 unsigned long flags; 582 583 /* No harm done if a racing interrupt already did this */ 584 local_irq_save(flags); 585 pagevec_move_tail(pvec); 586 local_irq_restore(flags); 587 } 588 589 pvec = &per_cpu(lru_deactivate_file_pvecs, cpu); 590 if (pagevec_count(pvec)) 591 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL); 592 593 pvec = &per_cpu(lru_lazyfree_pvecs, cpu); 594 if (pagevec_count(pvec)) 595 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL); 596 597 activate_page_drain(cpu); 598 } 599 600 /** 601 * deactivate_file_page - forcefully deactivate a file page 602 * @page: page to deactivate 603 * 604 * This function hints the VM that @page is a good reclaim candidate, 605 * for example if its invalidation fails due to the page being dirty 606 * or under writeback. 607 */ 608 void deactivate_file_page(struct page *page) 609 { 610 /* 611 * In a workload with many unevictable page such as mprotect, 612 * unevictable page deactivation for accelerating reclaim is pointless. 613 */ 614 if (PageUnevictable(page)) 615 return; 616 617 if (likely(get_page_unless_zero(page))) { 618 struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs); 619 620 if (!pagevec_add(pvec, page) || PageCompound(page)) 621 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL); 622 put_cpu_var(lru_deactivate_file_pvecs); 623 } 624 } 625 626 /** 627 * mark_page_lazyfree - make an anon page lazyfree 628 * @page: page to deactivate 629 * 630 * mark_page_lazyfree() moves @page to the inactive file list. 631 * This is done to accelerate the reclaim of @page. 632 */ 633 void mark_page_lazyfree(struct page *page) 634 { 635 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) && 636 !PageSwapCache(page) && !PageUnevictable(page)) { 637 struct pagevec *pvec = &get_cpu_var(lru_lazyfree_pvecs); 638 639 get_page(page); 640 if (!pagevec_add(pvec, page) || PageCompound(page)) 641 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL); 642 put_cpu_var(lru_lazyfree_pvecs); 643 } 644 } 645 646 void lru_add_drain(void) 647 { 648 lru_add_drain_cpu(get_cpu()); 649 put_cpu(); 650 } 651 652 #ifdef CONFIG_SMP 653 654 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); 655 656 static void lru_add_drain_per_cpu(struct work_struct *dummy) 657 { 658 lru_add_drain(); 659 } 660 661 /* 662 * Doesn't need any cpu hotplug locking because we do rely on per-cpu 663 * kworkers being shut down before our page_alloc_cpu_dead callback is 664 * executed on the offlined cpu. 665 * Calling this function with cpu hotplug locks held can actually lead 666 * to obscure indirect dependencies via WQ context. 667 */ 668 void lru_add_drain_all(void) 669 { 670 static DEFINE_MUTEX(lock); 671 static struct cpumask has_work; 672 int cpu; 673 674 /* 675 * Make sure nobody triggers this path before mm_percpu_wq is fully 676 * initialized. 677 */ 678 if (WARN_ON(!mm_percpu_wq)) 679 return; 680 681 mutex_lock(&lock); 682 cpumask_clear(&has_work); 683 684 for_each_online_cpu(cpu) { 685 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); 686 687 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) || 688 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) || 689 pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) || 690 pagevec_count(&per_cpu(lru_lazyfree_pvecs, cpu)) || 691 need_activate_page_drain(cpu)) { 692 INIT_WORK(work, lru_add_drain_per_cpu); 693 queue_work_on(cpu, mm_percpu_wq, work); 694 cpumask_set_cpu(cpu, &has_work); 695 } 696 } 697 698 for_each_cpu(cpu, &has_work) 699 flush_work(&per_cpu(lru_add_drain_work, cpu)); 700 701 mutex_unlock(&lock); 702 } 703 #else 704 void lru_add_drain_all(void) 705 { 706 lru_add_drain(); 707 } 708 #endif 709 710 /** 711 * release_pages - batched put_page() 712 * @pages: array of pages to release 713 * @nr: number of pages 714 * 715 * Decrement the reference count on all the pages in @pages. If it 716 * fell to zero, remove the page from the LRU and free it. 717 */ 718 void release_pages(struct page **pages, int nr) 719 { 720 int i; 721 LIST_HEAD(pages_to_free); 722 struct pglist_data *locked_pgdat = NULL; 723 struct lruvec *lruvec; 724 unsigned long uninitialized_var(flags); 725 unsigned int uninitialized_var(lock_batch); 726 727 for (i = 0; i < nr; i++) { 728 struct page *page = pages[i]; 729 730 /* 731 * Make sure the IRQ-safe lock-holding time does not get 732 * excessive with a continuous string of pages from the 733 * same pgdat. The lock is held only if pgdat != NULL. 734 */ 735 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) { 736 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags); 737 locked_pgdat = NULL; 738 } 739 740 if (is_huge_zero_page(page)) 741 continue; 742 743 if (is_zone_device_page(page)) { 744 if (locked_pgdat) { 745 spin_unlock_irqrestore(&locked_pgdat->lru_lock, 746 flags); 747 locked_pgdat = NULL; 748 } 749 /* 750 * ZONE_DEVICE pages that return 'false' from 751 * put_devmap_managed_page() do not require special 752 * processing, and instead, expect a call to 753 * put_page_testzero(). 754 */ 755 if (put_devmap_managed_page(page)) 756 continue; 757 } 758 759 page = compound_head(page); 760 if (!put_page_testzero(page)) 761 continue; 762 763 if (PageCompound(page)) { 764 if (locked_pgdat) { 765 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags); 766 locked_pgdat = NULL; 767 } 768 __put_compound_page(page); 769 continue; 770 } 771 772 if (PageLRU(page)) { 773 struct pglist_data *pgdat = page_pgdat(page); 774 775 if (pgdat != locked_pgdat) { 776 if (locked_pgdat) 777 spin_unlock_irqrestore(&locked_pgdat->lru_lock, 778 flags); 779 lock_batch = 0; 780 locked_pgdat = pgdat; 781 spin_lock_irqsave(&locked_pgdat->lru_lock, flags); 782 } 783 784 lruvec = mem_cgroup_page_lruvec(page, locked_pgdat); 785 VM_BUG_ON_PAGE(!PageLRU(page), page); 786 __ClearPageLRU(page); 787 del_page_from_lru_list(page, lruvec, page_off_lru(page)); 788 } 789 790 /* Clear Active bit in case of parallel mark_page_accessed */ 791 __ClearPageActive(page); 792 __ClearPageWaiters(page); 793 794 list_add(&page->lru, &pages_to_free); 795 } 796 if (locked_pgdat) 797 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags); 798 799 mem_cgroup_uncharge_list(&pages_to_free); 800 free_unref_page_list(&pages_to_free); 801 } 802 EXPORT_SYMBOL(release_pages); 803 804 /* 805 * The pages which we're about to release may be in the deferred lru-addition 806 * queues. That would prevent them from really being freed right now. That's 807 * OK from a correctness point of view but is inefficient - those pages may be 808 * cache-warm and we want to give them back to the page allocator ASAP. 809 * 810 * So __pagevec_release() will drain those queues here. __pagevec_lru_add() 811 * and __pagevec_lru_add_active() call release_pages() directly to avoid 812 * mutual recursion. 813 */ 814 void __pagevec_release(struct pagevec *pvec) 815 { 816 if (!pvec->percpu_pvec_drained) { 817 lru_add_drain(); 818 pvec->percpu_pvec_drained = true; 819 } 820 release_pages(pvec->pages, pagevec_count(pvec)); 821 pagevec_reinit(pvec); 822 } 823 EXPORT_SYMBOL(__pagevec_release); 824 825 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 826 /* used by __split_huge_page_refcount() */ 827 void lru_add_page_tail(struct page *page, struct page *page_tail, 828 struct lruvec *lruvec, struct list_head *list) 829 { 830 const int file = 0; 831 832 VM_BUG_ON_PAGE(!PageHead(page), page); 833 VM_BUG_ON_PAGE(PageCompound(page_tail), page); 834 VM_BUG_ON_PAGE(PageLRU(page_tail), page); 835 lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock); 836 837 if (!list) 838 SetPageLRU(page_tail); 839 840 if (likely(PageLRU(page))) 841 list_add_tail(&page_tail->lru, &page->lru); 842 else if (list) { 843 /* page reclaim is reclaiming a huge page */ 844 get_page(page_tail); 845 list_add_tail(&page_tail->lru, list); 846 } else { 847 struct list_head *list_head; 848 /* 849 * Head page has not yet been counted, as an hpage, 850 * so we must account for each subpage individually. 851 * 852 * Use the standard add function to put page_tail on the list, 853 * but then correct its position so they all end up in order. 854 */ 855 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail)); 856 list_head = page_tail->lru.prev; 857 list_move_tail(&page_tail->lru, list_head); 858 } 859 860 if (!PageUnevictable(page)) 861 update_page_reclaim_stat(lruvec, file, PageActive(page_tail)); 862 } 863 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 864 865 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec, 866 void *arg) 867 { 868 enum lru_list lru; 869 int was_unevictable = TestClearPageUnevictable(page); 870 871 VM_BUG_ON_PAGE(PageLRU(page), page); 872 873 SetPageLRU(page); 874 /* 875 * Page becomes evictable in two ways: 876 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()]. 877 * 2) Before acquiring LRU lock to put the page to correct LRU and then 878 * a) do PageLRU check with lock [check_move_unevictable_pages] 879 * b) do PageLRU check before lock [clear_page_mlock] 880 * 881 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need 882 * following strict ordering: 883 * 884 * #0: __pagevec_lru_add_fn #1: clear_page_mlock 885 * 886 * SetPageLRU() TestClearPageMlocked() 887 * smp_mb() // explicit ordering // above provides strict 888 * // ordering 889 * PageMlocked() PageLRU() 890 * 891 * 892 * if '#1' does not observe setting of PG_lru by '#0' and fails 893 * isolation, the explicit barrier will make sure that page_evictable 894 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU 895 * can be reordered after PageMlocked check and can make '#1' to fail 896 * the isolation of the page whose Mlocked bit is cleared (#0 is also 897 * looking at the same page) and the evictable page will be stranded 898 * in an unevictable LRU. 899 */ 900 smp_mb(); 901 902 if (page_evictable(page)) { 903 lru = page_lru(page); 904 update_page_reclaim_stat(lruvec, page_is_file_cache(page), 905 PageActive(page)); 906 if (was_unevictable) 907 count_vm_event(UNEVICTABLE_PGRESCUED); 908 } else { 909 lru = LRU_UNEVICTABLE; 910 ClearPageActive(page); 911 SetPageUnevictable(page); 912 if (!was_unevictable) 913 count_vm_event(UNEVICTABLE_PGCULLED); 914 } 915 916 add_page_to_lru_list(page, lruvec, lru); 917 trace_mm_lru_insertion(page, lru); 918 } 919 920 /* 921 * Add the passed pages to the LRU, then drop the caller's refcount 922 * on them. Reinitialises the caller's pagevec. 923 */ 924 void __pagevec_lru_add(struct pagevec *pvec) 925 { 926 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL); 927 } 928 EXPORT_SYMBOL(__pagevec_lru_add); 929 930 /** 931 * pagevec_lookup_entries - gang pagecache lookup 932 * @pvec: Where the resulting entries are placed 933 * @mapping: The address_space to search 934 * @start: The starting entry index 935 * @nr_entries: The maximum number of pages 936 * @indices: The cache indices corresponding to the entries in @pvec 937 * 938 * pagevec_lookup_entries() will search for and return a group of up 939 * to @nr_pages pages and shadow entries in the mapping. All 940 * entries are placed in @pvec. pagevec_lookup_entries() takes a 941 * reference against actual pages in @pvec. 942 * 943 * The search returns a group of mapping-contiguous entries with 944 * ascending indexes. There may be holes in the indices due to 945 * not-present entries. 946 * 947 * pagevec_lookup_entries() returns the number of entries which were 948 * found. 949 */ 950 unsigned pagevec_lookup_entries(struct pagevec *pvec, 951 struct address_space *mapping, 952 pgoff_t start, unsigned nr_entries, 953 pgoff_t *indices) 954 { 955 pvec->nr = find_get_entries(mapping, start, nr_entries, 956 pvec->pages, indices); 957 return pagevec_count(pvec); 958 } 959 960 /** 961 * pagevec_remove_exceptionals - pagevec exceptionals pruning 962 * @pvec: The pagevec to prune 963 * 964 * pagevec_lookup_entries() fills both pages and exceptional radix 965 * tree entries into the pagevec. This function prunes all 966 * exceptionals from @pvec without leaving holes, so that it can be 967 * passed on to page-only pagevec operations. 968 */ 969 void pagevec_remove_exceptionals(struct pagevec *pvec) 970 { 971 int i, j; 972 973 for (i = 0, j = 0; i < pagevec_count(pvec); i++) { 974 struct page *page = pvec->pages[i]; 975 if (!xa_is_value(page)) 976 pvec->pages[j++] = page; 977 } 978 pvec->nr = j; 979 } 980 981 /** 982 * pagevec_lookup_range - gang pagecache lookup 983 * @pvec: Where the resulting pages are placed 984 * @mapping: The address_space to search 985 * @start: The starting page index 986 * @end: The final page index 987 * 988 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE 989 * pages in the mapping starting from index @start and upto index @end 990 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a 991 * reference against the pages in @pvec. 992 * 993 * The search returns a group of mapping-contiguous pages with ascending 994 * indexes. There may be holes in the indices due to not-present pages. We 995 * also update @start to index the next page for the traversal. 996 * 997 * pagevec_lookup_range() returns the number of pages which were found. If this 998 * number is smaller than PAGEVEC_SIZE, the end of specified range has been 999 * reached. 1000 */ 1001 unsigned pagevec_lookup_range(struct pagevec *pvec, 1002 struct address_space *mapping, pgoff_t *start, pgoff_t end) 1003 { 1004 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE, 1005 pvec->pages); 1006 return pagevec_count(pvec); 1007 } 1008 EXPORT_SYMBOL(pagevec_lookup_range); 1009 1010 unsigned pagevec_lookup_range_tag(struct pagevec *pvec, 1011 struct address_space *mapping, pgoff_t *index, pgoff_t end, 1012 xa_mark_t tag) 1013 { 1014 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag, 1015 PAGEVEC_SIZE, pvec->pages); 1016 return pagevec_count(pvec); 1017 } 1018 EXPORT_SYMBOL(pagevec_lookup_range_tag); 1019 1020 unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec, 1021 struct address_space *mapping, pgoff_t *index, pgoff_t end, 1022 xa_mark_t tag, unsigned max_pages) 1023 { 1024 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag, 1025 min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages); 1026 return pagevec_count(pvec); 1027 } 1028 EXPORT_SYMBOL(pagevec_lookup_range_nr_tag); 1029 /* 1030 * Perform any setup for the swap system 1031 */ 1032 void __init swap_setup(void) 1033 { 1034 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT); 1035 1036 /* Use a smaller cluster for small-memory machines */ 1037 if (megs < 16) 1038 page_cluster = 2; 1039 else 1040 page_cluster = 3; 1041 /* 1042 * Right now other parts of the system means that we 1043 * _really_ don't want to cluster much more 1044 */ 1045 } 1046