xref: /linux/mm/swap.c (revision 02e9a22ceef0227175e391902d8760425fa072c6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swap.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * This file contains the default values for the operation of the
10  * Linux VM subsystem. Fine-tuning documentation can be found in
11  * Documentation/admin-guide/sysctl/vm.rst.
12  * Started 18.12.91
13  * Swap aging added 23.2.95, Stephen Tweedie.
14  * Buffermem limits added 12.3.98, Rik van Riel.
15  */
16 
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
40 
41 #include "internal.h"
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
45 
46 /* How many pages do we try to swap or page in/out together? As a power of 2 */
47 int page_cluster;
48 const int page_cluster_max = 31;
49 
50 struct cpu_fbatches {
51 	/*
52 	 * The following folio batches are grouped together because they are protected
53 	 * by disabling preemption (and interrupts remain enabled).
54 	 */
55 	local_lock_t lock;
56 	struct folio_batch lru_add;
57 	struct folio_batch lru_deactivate_file;
58 	struct folio_batch lru_deactivate;
59 	struct folio_batch lru_lazyfree;
60 #ifdef CONFIG_SMP
61 	struct folio_batch lru_activate;
62 #endif
63 	/* Protecting the following batches which require disabling interrupts */
64 	local_lock_t lock_irq;
65 	struct folio_batch lru_move_tail;
66 };
67 
68 static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
69 	.lock = INIT_LOCAL_LOCK(lock),
70 	.lock_irq = INIT_LOCAL_LOCK(lock_irq),
71 };
72 
73 static void __page_cache_release(struct folio *folio, struct lruvec **lruvecp,
74 		unsigned long *flagsp)
75 {
76 	if (folio_test_lru(folio)) {
77 		folio_lruvec_relock_irqsave(folio, lruvecp, flagsp);
78 		lruvec_del_folio(*lruvecp, folio);
79 		__folio_clear_lru_flags(folio);
80 	}
81 }
82 
83 /*
84  * This path almost never happens for VM activity - pages are normally freed
85  * in batches.  But it gets used by networking - and for compound pages.
86  */
87 static void page_cache_release(struct folio *folio)
88 {
89 	struct lruvec *lruvec = NULL;
90 	unsigned long flags;
91 
92 	__page_cache_release(folio, &lruvec, &flags);
93 	if (lruvec)
94 		unlock_page_lruvec_irqrestore(lruvec, flags);
95 }
96 
97 void __folio_put(struct folio *folio)
98 {
99 	if (unlikely(folio_is_zone_device(folio))) {
100 		free_zone_device_folio(folio);
101 		return;
102 	}
103 
104 	if (folio_test_hugetlb(folio)) {
105 		free_huge_folio(folio);
106 		return;
107 	}
108 
109 	page_cache_release(folio);
110 	folio_unqueue_deferred_split(folio);
111 	mem_cgroup_uncharge(folio);
112 	free_frozen_pages(&folio->page, folio_order(folio));
113 }
114 EXPORT_SYMBOL(__folio_put);
115 
116 typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
117 
118 static void lru_add(struct lruvec *lruvec, struct folio *folio)
119 {
120 	int was_unevictable = folio_test_clear_unevictable(folio);
121 	long nr_pages = folio_nr_pages(folio);
122 
123 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
124 
125 	/*
126 	 * Is an smp_mb__after_atomic() still required here, before
127 	 * folio_evictable() tests the mlocked flag, to rule out the possibility
128 	 * of stranding an evictable folio on an unevictable LRU?  I think
129 	 * not, because __munlock_folio() only clears the mlocked flag
130 	 * while the LRU lock is held.
131 	 *
132 	 * (That is not true of __page_cache_release(), and not necessarily
133 	 * true of folios_put(): but those only clear the mlocked flag after
134 	 * folio_put_testzero() has excluded any other users of the folio.)
135 	 */
136 	if (folio_evictable(folio)) {
137 		if (was_unevictable)
138 			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
139 	} else {
140 		folio_clear_active(folio);
141 		folio_set_unevictable(folio);
142 		/*
143 		 * folio->mlock_count = !!folio_test_mlocked(folio)?
144 		 * But that leaves __mlock_folio() in doubt whether another
145 		 * actor has already counted the mlock or not.  Err on the
146 		 * safe side, underestimate, let page reclaim fix it, rather
147 		 * than leaving a page on the unevictable LRU indefinitely.
148 		 */
149 		folio->mlock_count = 0;
150 		if (!was_unevictable)
151 			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
152 	}
153 
154 	lruvec_add_folio(lruvec, folio);
155 	trace_mm_lru_insertion(folio);
156 }
157 
158 static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
159 {
160 	int i;
161 	struct lruvec *lruvec = NULL;
162 	unsigned long flags = 0;
163 
164 	for (i = 0; i < folio_batch_count(fbatch); i++) {
165 		struct folio *folio = fbatch->folios[i];
166 
167 		folio_lruvec_relock_irqsave(folio, &lruvec, &flags);
168 		move_fn(lruvec, folio);
169 
170 		folio_set_lru(folio);
171 	}
172 
173 	if (lruvec)
174 		unlock_page_lruvec_irqrestore(lruvec, flags);
175 	folios_put(fbatch);
176 }
177 
178 static void __folio_batch_add_and_move(struct folio_batch __percpu *fbatch,
179 		struct folio *folio, move_fn_t move_fn,
180 		bool on_lru, bool disable_irq)
181 {
182 	unsigned long flags;
183 
184 	if (on_lru && !folio_test_clear_lru(folio))
185 		return;
186 
187 	folio_get(folio);
188 
189 	if (disable_irq)
190 		local_lock_irqsave(&cpu_fbatches.lock_irq, flags);
191 	else
192 		local_lock(&cpu_fbatches.lock);
193 
194 	if (!folio_batch_add(this_cpu_ptr(fbatch), folio) || folio_test_large(folio) ||
195 	    lru_cache_disabled())
196 		folio_batch_move_lru(this_cpu_ptr(fbatch), move_fn);
197 
198 	if (disable_irq)
199 		local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags);
200 	else
201 		local_unlock(&cpu_fbatches.lock);
202 }
203 
204 #define folio_batch_add_and_move(folio, op, on_lru)						\
205 	__folio_batch_add_and_move(								\
206 		&cpu_fbatches.op,								\
207 		folio,										\
208 		op,										\
209 		on_lru,										\
210 		offsetof(struct cpu_fbatches, op) >= offsetof(struct cpu_fbatches, lock_irq)	\
211 	)
212 
213 static void lru_move_tail(struct lruvec *lruvec, struct folio *folio)
214 {
215 	if (folio_test_unevictable(folio))
216 		return;
217 
218 	lruvec_del_folio(lruvec, folio);
219 	folio_clear_active(folio);
220 	lruvec_add_folio_tail(lruvec, folio);
221 	__count_vm_events(PGROTATED, folio_nr_pages(folio));
222 }
223 
224 /*
225  * Writeback is about to end against a folio which has been marked for
226  * immediate reclaim.  If it still appears to be reclaimable, move it
227  * to the tail of the inactive list.
228  *
229  * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
230  */
231 void folio_rotate_reclaimable(struct folio *folio)
232 {
233 	if (folio_test_locked(folio) || folio_test_dirty(folio) ||
234 	    folio_test_unevictable(folio))
235 		return;
236 
237 	folio_batch_add_and_move(folio, lru_move_tail, true);
238 }
239 
240 void lru_note_cost(struct lruvec *lruvec, bool file,
241 		   unsigned int nr_io, unsigned int nr_rotated)
242 {
243 	unsigned long cost;
244 
245 	/*
246 	 * Reflect the relative cost of incurring IO and spending CPU
247 	 * time on rotations. This doesn't attempt to make a precise
248 	 * comparison, it just says: if reloads are about comparable
249 	 * between the LRU lists, or rotations are overwhelmingly
250 	 * different between them, adjust scan balance for CPU work.
251 	 */
252 	cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
253 
254 	do {
255 		unsigned long lrusize;
256 
257 		/*
258 		 * Hold lruvec->lru_lock is safe here, since
259 		 * 1) The pinned lruvec in reclaim, or
260 		 * 2) From a pre-LRU page during refault (which also holds the
261 		 *    rcu lock, so would be safe even if the page was on the LRU
262 		 *    and could move simultaneously to a new lruvec).
263 		 */
264 		spin_lock_irq(&lruvec->lru_lock);
265 		/* Record cost event */
266 		if (file)
267 			lruvec->file_cost += cost;
268 		else
269 			lruvec->anon_cost += cost;
270 
271 		/*
272 		 * Decay previous events
273 		 *
274 		 * Because workloads change over time (and to avoid
275 		 * overflow) we keep these statistics as a floating
276 		 * average, which ends up weighing recent refaults
277 		 * more than old ones.
278 		 */
279 		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
280 			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
281 			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
282 			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
283 
284 		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
285 			lruvec->file_cost /= 2;
286 			lruvec->anon_cost /= 2;
287 		}
288 		spin_unlock_irq(&lruvec->lru_lock);
289 	} while ((lruvec = parent_lruvec(lruvec)));
290 }
291 
292 void lru_note_cost_refault(struct folio *folio)
293 {
294 	lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
295 		      folio_nr_pages(folio), 0);
296 }
297 
298 static void lru_activate(struct lruvec *lruvec, struct folio *folio)
299 {
300 	long nr_pages = folio_nr_pages(folio);
301 
302 	if (folio_test_active(folio) || folio_test_unevictable(folio))
303 		return;
304 
305 
306 	lruvec_del_folio(lruvec, folio);
307 	folio_set_active(folio);
308 	lruvec_add_folio(lruvec, folio);
309 	trace_mm_lru_activate(folio);
310 
311 	__count_vm_events(PGACTIVATE, nr_pages);
312 	__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, nr_pages);
313 }
314 
315 #ifdef CONFIG_SMP
316 static void folio_activate_drain(int cpu)
317 {
318 	struct folio_batch *fbatch = &per_cpu(cpu_fbatches.lru_activate, cpu);
319 
320 	if (folio_batch_count(fbatch))
321 		folio_batch_move_lru(fbatch, lru_activate);
322 }
323 
324 void folio_activate(struct folio *folio)
325 {
326 	if (folio_test_active(folio) || folio_test_unevictable(folio))
327 		return;
328 
329 	folio_batch_add_and_move(folio, lru_activate, true);
330 }
331 
332 #else
333 static inline void folio_activate_drain(int cpu)
334 {
335 }
336 
337 void folio_activate(struct folio *folio)
338 {
339 	struct lruvec *lruvec;
340 
341 	if (!folio_test_clear_lru(folio))
342 		return;
343 
344 	lruvec = folio_lruvec_lock_irq(folio);
345 	lru_activate(lruvec, folio);
346 	unlock_page_lruvec_irq(lruvec);
347 	folio_set_lru(folio);
348 }
349 #endif
350 
351 static void __lru_cache_activate_folio(struct folio *folio)
352 {
353 	struct folio_batch *fbatch;
354 	int i;
355 
356 	local_lock(&cpu_fbatches.lock);
357 	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
358 
359 	/*
360 	 * Search backwards on the optimistic assumption that the folio being
361 	 * activated has just been added to this batch. Note that only
362 	 * the local batch is examined as a !LRU folio could be in the
363 	 * process of being released, reclaimed, migrated or on a remote
364 	 * batch that is currently being drained. Furthermore, marking
365 	 * a remote batch's folio active potentially hits a race where
366 	 * a folio is marked active just after it is added to the inactive
367 	 * list causing accounting errors and BUG_ON checks to trigger.
368 	 */
369 	for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
370 		struct folio *batch_folio = fbatch->folios[i];
371 
372 		if (batch_folio == folio) {
373 			folio_set_active(folio);
374 			break;
375 		}
376 	}
377 
378 	local_unlock(&cpu_fbatches.lock);
379 }
380 
381 #ifdef CONFIG_LRU_GEN
382 
383 static void lru_gen_inc_refs(struct folio *folio)
384 {
385 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
386 
387 	if (folio_test_unevictable(folio))
388 		return;
389 
390 	/* see the comment on LRU_REFS_FLAGS */
391 	if (!folio_test_referenced(folio)) {
392 		set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced));
393 		return;
394 	}
395 
396 	do {
397 		if ((old_flags & LRU_REFS_MASK) == LRU_REFS_MASK) {
398 			if (!folio_test_workingset(folio))
399 				folio_set_workingset(folio);
400 			return;
401 		}
402 
403 		new_flags = old_flags + BIT(LRU_REFS_PGOFF);
404 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
405 }
406 
407 static bool lru_gen_clear_refs(struct folio *folio)
408 {
409 	struct lru_gen_folio *lrugen;
410 	int gen = folio_lru_gen(folio);
411 	int type = folio_is_file_lru(folio);
412 
413 	if (gen < 0)
414 		return true;
415 
416 	set_mask_bits(&folio->flags, LRU_REFS_FLAGS | BIT(PG_workingset), 0);
417 
418 	lrugen = &folio_lruvec(folio)->lrugen;
419 	/* whether can do without shuffling under the LRU lock */
420 	return gen == lru_gen_from_seq(READ_ONCE(lrugen->min_seq[type]));
421 }
422 
423 #else /* !CONFIG_LRU_GEN */
424 
425 static void lru_gen_inc_refs(struct folio *folio)
426 {
427 }
428 
429 static bool lru_gen_clear_refs(struct folio *folio)
430 {
431 	return false;
432 }
433 
434 #endif /* CONFIG_LRU_GEN */
435 
436 /**
437  * folio_mark_accessed - Mark a folio as having seen activity.
438  * @folio: The folio to mark.
439  *
440  * This function will perform one of the following transitions:
441  *
442  * * inactive,unreferenced	->	inactive,referenced
443  * * inactive,referenced	->	active,unreferenced
444  * * active,unreferenced	->	active,referenced
445  *
446  * When a newly allocated folio is not yet visible, so safe for non-atomic ops,
447  * __folio_set_referenced() may be substituted for folio_mark_accessed().
448  */
449 void folio_mark_accessed(struct folio *folio)
450 {
451 	if (folio_test_dropbehind(folio))
452 		return;
453 	if (lru_gen_enabled()) {
454 		lru_gen_inc_refs(folio);
455 		return;
456 	}
457 
458 	if (!folio_test_referenced(folio)) {
459 		folio_set_referenced(folio);
460 	} else if (folio_test_unevictable(folio)) {
461 		/*
462 		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
463 		 * this list is never rotated or maintained, so marking an
464 		 * unevictable page accessed has no effect.
465 		 */
466 	} else if (!folio_test_active(folio)) {
467 		/*
468 		 * If the folio is on the LRU, queue it for activation via
469 		 * cpu_fbatches.lru_activate. Otherwise, assume the folio is in a
470 		 * folio_batch, mark it active and it'll be moved to the active
471 		 * LRU on the next drain.
472 		 */
473 		if (folio_test_lru(folio))
474 			folio_activate(folio);
475 		else
476 			__lru_cache_activate_folio(folio);
477 		folio_clear_referenced(folio);
478 		workingset_activation(folio);
479 	}
480 	if (folio_test_idle(folio))
481 		folio_clear_idle(folio);
482 }
483 EXPORT_SYMBOL(folio_mark_accessed);
484 
485 /**
486  * folio_add_lru - Add a folio to an LRU list.
487  * @folio: The folio to be added to the LRU.
488  *
489  * Queue the folio for addition to the LRU. The decision on whether
490  * to add the page to the [in]active [file|anon] list is deferred until the
491  * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
492  * have the folio added to the active list using folio_mark_accessed().
493  */
494 void folio_add_lru(struct folio *folio)
495 {
496 	VM_BUG_ON_FOLIO(folio_test_active(folio) &&
497 			folio_test_unevictable(folio), folio);
498 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
499 
500 	/* see the comment in lru_gen_folio_seq() */
501 	if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
502 	    lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
503 		folio_set_active(folio);
504 
505 	folio_batch_add_and_move(folio, lru_add, false);
506 }
507 EXPORT_SYMBOL(folio_add_lru);
508 
509 /**
510  * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
511  * @folio: The folio to be added to the LRU.
512  * @vma: VMA in which the folio is mapped.
513  *
514  * If the VMA is mlocked, @folio is added to the unevictable list.
515  * Otherwise, it is treated the same way as folio_add_lru().
516  */
517 void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
518 {
519 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
520 
521 	if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
522 		mlock_new_folio(folio);
523 	else
524 		folio_add_lru(folio);
525 }
526 
527 /*
528  * If the folio cannot be invalidated, it is moved to the
529  * inactive list to speed up its reclaim.  It is moved to the
530  * head of the list, rather than the tail, to give the flusher
531  * threads some time to write it out, as this is much more
532  * effective than the single-page writeout from reclaim.
533  *
534  * If the folio isn't mapped and dirty/writeback, the folio
535  * could be reclaimed asap using the reclaim flag.
536  *
537  * 1. active, mapped folio -> none
538  * 2. active, dirty/writeback folio -> inactive, head, reclaim
539  * 3. inactive, mapped folio -> none
540  * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
541  * 5. inactive, clean -> inactive, tail
542  * 6. Others -> none
543  *
544  * In 4, it moves to the head of the inactive list so the folio is
545  * written out by flusher threads as this is much more efficient
546  * than the single-page writeout from reclaim.
547  */
548 static void lru_deactivate_file(struct lruvec *lruvec, struct folio *folio)
549 {
550 	bool active = folio_test_active(folio) || lru_gen_enabled();
551 	long nr_pages = folio_nr_pages(folio);
552 
553 	if (folio_test_unevictable(folio))
554 		return;
555 
556 	/* Some processes are using the folio */
557 	if (folio_mapped(folio))
558 		return;
559 
560 	lruvec_del_folio(lruvec, folio);
561 	folio_clear_active(folio);
562 	folio_clear_referenced(folio);
563 
564 	if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
565 		/*
566 		 * Setting the reclaim flag could race with
567 		 * folio_end_writeback() and confuse readahead.  But the
568 		 * race window is _really_ small and  it's not a critical
569 		 * problem.
570 		 */
571 		lruvec_add_folio(lruvec, folio);
572 		folio_set_reclaim(folio);
573 	} else {
574 		/*
575 		 * The folio's writeback ended while it was in the batch.
576 		 * We move that folio to the tail of the inactive list.
577 		 */
578 		lruvec_add_folio_tail(lruvec, folio);
579 		__count_vm_events(PGROTATED, nr_pages);
580 	}
581 
582 	if (active) {
583 		__count_vm_events(PGDEACTIVATE, nr_pages);
584 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
585 				     nr_pages);
586 	}
587 }
588 
589 static void lru_deactivate(struct lruvec *lruvec, struct folio *folio)
590 {
591 	long nr_pages = folio_nr_pages(folio);
592 
593 	if (folio_test_unevictable(folio) || !(folio_test_active(folio) || lru_gen_enabled()))
594 		return;
595 
596 	lruvec_del_folio(lruvec, folio);
597 	folio_clear_active(folio);
598 	folio_clear_referenced(folio);
599 	lruvec_add_folio(lruvec, folio);
600 
601 	__count_vm_events(PGDEACTIVATE, nr_pages);
602 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_pages);
603 }
604 
605 static void lru_lazyfree(struct lruvec *lruvec, struct folio *folio)
606 {
607 	long nr_pages = folio_nr_pages(folio);
608 
609 	if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) ||
610 	    folio_test_swapcache(folio) || folio_test_unevictable(folio))
611 		return;
612 
613 	lruvec_del_folio(lruvec, folio);
614 	folio_clear_active(folio);
615 	if (lru_gen_enabled())
616 		lru_gen_clear_refs(folio);
617 	else
618 		folio_clear_referenced(folio);
619 	/*
620 	 * Lazyfree folios are clean anonymous folios.  They have
621 	 * the swapbacked flag cleared, to distinguish them from normal
622 	 * anonymous folios
623 	 */
624 	folio_clear_swapbacked(folio);
625 	lruvec_add_folio(lruvec, folio);
626 
627 	__count_vm_events(PGLAZYFREE, nr_pages);
628 	__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, nr_pages);
629 }
630 
631 /*
632  * Drain pages out of the cpu's folio_batch.
633  * Either "cpu" is the current CPU, and preemption has already been
634  * disabled; or "cpu" is being hot-unplugged, and is already dead.
635  */
636 void lru_add_drain_cpu(int cpu)
637 {
638 	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
639 	struct folio_batch *fbatch = &fbatches->lru_add;
640 
641 	if (folio_batch_count(fbatch))
642 		folio_batch_move_lru(fbatch, lru_add);
643 
644 	fbatch = &fbatches->lru_move_tail;
645 	/* Disabling interrupts below acts as a compiler barrier. */
646 	if (data_race(folio_batch_count(fbatch))) {
647 		unsigned long flags;
648 
649 		/* No harm done if a racing interrupt already did this */
650 		local_lock_irqsave(&cpu_fbatches.lock_irq, flags);
651 		folio_batch_move_lru(fbatch, lru_move_tail);
652 		local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags);
653 	}
654 
655 	fbatch = &fbatches->lru_deactivate_file;
656 	if (folio_batch_count(fbatch))
657 		folio_batch_move_lru(fbatch, lru_deactivate_file);
658 
659 	fbatch = &fbatches->lru_deactivate;
660 	if (folio_batch_count(fbatch))
661 		folio_batch_move_lru(fbatch, lru_deactivate);
662 
663 	fbatch = &fbatches->lru_lazyfree;
664 	if (folio_batch_count(fbatch))
665 		folio_batch_move_lru(fbatch, lru_lazyfree);
666 
667 	folio_activate_drain(cpu);
668 }
669 
670 /**
671  * deactivate_file_folio() - Deactivate a file folio.
672  * @folio: Folio to deactivate.
673  *
674  * This function hints to the VM that @folio is a good reclaim candidate,
675  * for example if its invalidation fails due to the folio being dirty
676  * or under writeback.
677  *
678  * Context: Caller holds a reference on the folio.
679  */
680 void deactivate_file_folio(struct folio *folio)
681 {
682 	/* Deactivating an unevictable folio will not accelerate reclaim */
683 	if (folio_test_unevictable(folio))
684 		return;
685 
686 	if (lru_gen_enabled() && lru_gen_clear_refs(folio))
687 		return;
688 
689 	folio_batch_add_and_move(folio, lru_deactivate_file, true);
690 }
691 
692 /*
693  * folio_deactivate - deactivate a folio
694  * @folio: folio to deactivate
695  *
696  * folio_deactivate() moves @folio to the inactive list if @folio was on the
697  * active list and was not unevictable. This is done to accelerate the
698  * reclaim of @folio.
699  */
700 void folio_deactivate(struct folio *folio)
701 {
702 	if (folio_test_unevictable(folio))
703 		return;
704 
705 	if (lru_gen_enabled() ? lru_gen_clear_refs(folio) : !folio_test_active(folio))
706 		return;
707 
708 	folio_batch_add_and_move(folio, lru_deactivate, true);
709 }
710 
711 /**
712  * folio_mark_lazyfree - make an anon folio lazyfree
713  * @folio: folio to deactivate
714  *
715  * folio_mark_lazyfree() moves @folio to the inactive file list.
716  * This is done to accelerate the reclaim of @folio.
717  */
718 void folio_mark_lazyfree(struct folio *folio)
719 {
720 	if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) ||
721 	    folio_test_swapcache(folio) || folio_test_unevictable(folio))
722 		return;
723 
724 	folio_batch_add_and_move(folio, lru_lazyfree, true);
725 }
726 
727 void lru_add_drain(void)
728 {
729 	local_lock(&cpu_fbatches.lock);
730 	lru_add_drain_cpu(smp_processor_id());
731 	local_unlock(&cpu_fbatches.lock);
732 	mlock_drain_local();
733 }
734 
735 /*
736  * It's called from per-cpu workqueue context in SMP case so
737  * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
738  * the same cpu. It shouldn't be a problem in !SMP case since
739  * the core is only one and the locks will disable preemption.
740  */
741 static void lru_add_and_bh_lrus_drain(void)
742 {
743 	local_lock(&cpu_fbatches.lock);
744 	lru_add_drain_cpu(smp_processor_id());
745 	local_unlock(&cpu_fbatches.lock);
746 	invalidate_bh_lrus_cpu();
747 	mlock_drain_local();
748 }
749 
750 void lru_add_drain_cpu_zone(struct zone *zone)
751 {
752 	local_lock(&cpu_fbatches.lock);
753 	lru_add_drain_cpu(smp_processor_id());
754 	drain_local_pages(zone);
755 	local_unlock(&cpu_fbatches.lock);
756 	mlock_drain_local();
757 }
758 
759 #ifdef CONFIG_SMP
760 
761 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
762 
763 static void lru_add_drain_per_cpu(struct work_struct *dummy)
764 {
765 	lru_add_and_bh_lrus_drain();
766 }
767 
768 static bool cpu_needs_drain(unsigned int cpu)
769 {
770 	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
771 
772 	/* Check these in order of likelihood that they're not zero */
773 	return folio_batch_count(&fbatches->lru_add) ||
774 		folio_batch_count(&fbatches->lru_move_tail) ||
775 		folio_batch_count(&fbatches->lru_deactivate_file) ||
776 		folio_batch_count(&fbatches->lru_deactivate) ||
777 		folio_batch_count(&fbatches->lru_lazyfree) ||
778 		folio_batch_count(&fbatches->lru_activate) ||
779 		need_mlock_drain(cpu) ||
780 		has_bh_in_lru(cpu, NULL);
781 }
782 
783 /*
784  * Doesn't need any cpu hotplug locking because we do rely on per-cpu
785  * kworkers being shut down before our page_alloc_cpu_dead callback is
786  * executed on the offlined cpu.
787  * Calling this function with cpu hotplug locks held can actually lead
788  * to obscure indirect dependencies via WQ context.
789  */
790 static inline void __lru_add_drain_all(bool force_all_cpus)
791 {
792 	/*
793 	 * lru_drain_gen - Global pages generation number
794 	 *
795 	 * (A) Definition: global lru_drain_gen = x implies that all generations
796 	 *     0 < n <= x are already *scheduled* for draining.
797 	 *
798 	 * This is an optimization for the highly-contended use case where a
799 	 * user space workload keeps constantly generating a flow of pages for
800 	 * each CPU.
801 	 */
802 	static unsigned int lru_drain_gen;
803 	static struct cpumask has_work;
804 	static DEFINE_MUTEX(lock);
805 	unsigned cpu, this_gen;
806 
807 	/*
808 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
809 	 * initialized.
810 	 */
811 	if (WARN_ON(!mm_percpu_wq))
812 		return;
813 
814 	/*
815 	 * Guarantee folio_batch counter stores visible by this CPU
816 	 * are visible to other CPUs before loading the current drain
817 	 * generation.
818 	 */
819 	smp_mb();
820 
821 	/*
822 	 * (B) Locally cache global LRU draining generation number
823 	 *
824 	 * The read barrier ensures that the counter is loaded before the mutex
825 	 * is taken. It pairs with smp_mb() inside the mutex critical section
826 	 * at (D).
827 	 */
828 	this_gen = smp_load_acquire(&lru_drain_gen);
829 
830 	mutex_lock(&lock);
831 
832 	/*
833 	 * (C) Exit the draining operation if a newer generation, from another
834 	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
835 	 */
836 	if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
837 		goto done;
838 
839 	/*
840 	 * (D) Increment global generation number
841 	 *
842 	 * Pairs with smp_load_acquire() at (B), outside of the critical
843 	 * section. Use a full memory barrier to guarantee that the
844 	 * new global drain generation number is stored before loading
845 	 * folio_batch counters.
846 	 *
847 	 * This pairing must be done here, before the for_each_online_cpu loop
848 	 * below which drains the page vectors.
849 	 *
850 	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
851 	 * Assume CPU #z is in the middle of the for_each_online_cpu loop
852 	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
853 	 * along, adds some pages to its per-cpu vectors, then calls
854 	 * lru_add_drain_all().
855 	 *
856 	 * If the paired barrier is done at any later step, e.g. after the
857 	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
858 	 * added pages.
859 	 */
860 	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
861 	smp_mb();
862 
863 	cpumask_clear(&has_work);
864 	for_each_online_cpu(cpu) {
865 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
866 
867 		if (cpu_needs_drain(cpu)) {
868 			INIT_WORK(work, lru_add_drain_per_cpu);
869 			queue_work_on(cpu, mm_percpu_wq, work);
870 			__cpumask_set_cpu(cpu, &has_work);
871 		}
872 	}
873 
874 	for_each_cpu(cpu, &has_work)
875 		flush_work(&per_cpu(lru_add_drain_work, cpu));
876 
877 done:
878 	mutex_unlock(&lock);
879 }
880 
881 void lru_add_drain_all(void)
882 {
883 	__lru_add_drain_all(false);
884 }
885 #else
886 void lru_add_drain_all(void)
887 {
888 	lru_add_drain();
889 }
890 #endif /* CONFIG_SMP */
891 
892 atomic_t lru_disable_count = ATOMIC_INIT(0);
893 
894 /*
895  * lru_cache_disable() needs to be called before we start compiling
896  * a list of folios to be migrated using folio_isolate_lru().
897  * It drains folios on LRU cache and then disable on all cpus until
898  * lru_cache_enable is called.
899  *
900  * Must be paired with a call to lru_cache_enable().
901  */
902 void lru_cache_disable(void)
903 {
904 	atomic_inc(&lru_disable_count);
905 	/*
906 	 * Readers of lru_disable_count are protected by either disabling
907 	 * preemption or rcu_read_lock:
908 	 *
909 	 * preempt_disable, local_irq_disable  [bh_lru_lock()]
910 	 * rcu_read_lock		       [rt_spin_lock CONFIG_PREEMPT_RT]
911 	 * preempt_disable		       [local_lock !CONFIG_PREEMPT_RT]
912 	 *
913 	 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
914 	 * preempt_disable() regions of code. So any CPU which sees
915 	 * lru_disable_count = 0 will have exited the critical
916 	 * section when synchronize_rcu() returns.
917 	 */
918 	synchronize_rcu_expedited();
919 #ifdef CONFIG_SMP
920 	__lru_add_drain_all(true);
921 #else
922 	lru_add_and_bh_lrus_drain();
923 #endif
924 }
925 
926 /**
927  * folios_put_refs - Reduce the reference count on a batch of folios.
928  * @folios: The folios.
929  * @refs: The number of refs to subtract from each folio.
930  *
931  * Like folio_put(), but for a batch of folios.  This is more efficient
932  * than writing the loop yourself as it will optimise the locks which need
933  * to be taken if the folios are freed.  The folios batch is returned
934  * empty and ready to be reused for another batch; there is no need
935  * to reinitialise it.  If @refs is NULL, we subtract one from each
936  * folio refcount.
937  *
938  * Context: May be called in process or interrupt context, but not in NMI
939  * context.  May be called while holding a spinlock.
940  */
941 void folios_put_refs(struct folio_batch *folios, unsigned int *refs)
942 {
943 	int i, j;
944 	struct lruvec *lruvec = NULL;
945 	unsigned long flags = 0;
946 
947 	for (i = 0, j = 0; i < folios->nr; i++) {
948 		struct folio *folio = folios->folios[i];
949 		unsigned int nr_refs = refs ? refs[i] : 1;
950 
951 		if (is_huge_zero_folio(folio))
952 			continue;
953 
954 		if (folio_is_zone_device(folio)) {
955 			if (lruvec) {
956 				unlock_page_lruvec_irqrestore(lruvec, flags);
957 				lruvec = NULL;
958 			}
959 			if (put_devmap_managed_folio_refs(folio, nr_refs))
960 				continue;
961 			if (folio_ref_sub_and_test(folio, nr_refs))
962 				free_zone_device_folio(folio);
963 			continue;
964 		}
965 
966 		if (!folio_ref_sub_and_test(folio, nr_refs))
967 			continue;
968 
969 		/* hugetlb has its own memcg */
970 		if (folio_test_hugetlb(folio)) {
971 			if (lruvec) {
972 				unlock_page_lruvec_irqrestore(lruvec, flags);
973 				lruvec = NULL;
974 			}
975 			free_huge_folio(folio);
976 			continue;
977 		}
978 		folio_unqueue_deferred_split(folio);
979 		__page_cache_release(folio, &lruvec, &flags);
980 
981 		if (j != i)
982 			folios->folios[j] = folio;
983 		j++;
984 	}
985 	if (lruvec)
986 		unlock_page_lruvec_irqrestore(lruvec, flags);
987 	if (!j) {
988 		folio_batch_reinit(folios);
989 		return;
990 	}
991 
992 	folios->nr = j;
993 	mem_cgroup_uncharge_folios(folios);
994 	free_unref_folios(folios);
995 }
996 EXPORT_SYMBOL(folios_put_refs);
997 
998 /**
999  * release_pages - batched put_page()
1000  * @arg: array of pages to release
1001  * @nr: number of pages
1002  *
1003  * Decrement the reference count on all the pages in @arg.  If it
1004  * fell to zero, remove the page from the LRU and free it.
1005  *
1006  * Note that the argument can be an array of pages, encoded pages,
1007  * or folio pointers. We ignore any encoded bits, and turn any of
1008  * them into just a folio that gets free'd.
1009  */
1010 void release_pages(release_pages_arg arg, int nr)
1011 {
1012 	struct folio_batch fbatch;
1013 	int refs[PAGEVEC_SIZE];
1014 	struct encoded_page **encoded = arg.encoded_pages;
1015 	int i;
1016 
1017 	folio_batch_init(&fbatch);
1018 	for (i = 0; i < nr; i++) {
1019 		/* Turn any of the argument types into a folio */
1020 		struct folio *folio = page_folio(encoded_page_ptr(encoded[i]));
1021 
1022 		/* Is our next entry actually "nr_pages" -> "nr_refs" ? */
1023 		refs[fbatch.nr] = 1;
1024 		if (unlikely(encoded_page_flags(encoded[i]) &
1025 			     ENCODED_PAGE_BIT_NR_PAGES_NEXT))
1026 			refs[fbatch.nr] = encoded_nr_pages(encoded[++i]);
1027 
1028 		if (folio_batch_add(&fbatch, folio) > 0)
1029 			continue;
1030 		folios_put_refs(&fbatch, refs);
1031 	}
1032 
1033 	if (fbatch.nr)
1034 		folios_put_refs(&fbatch, refs);
1035 }
1036 EXPORT_SYMBOL(release_pages);
1037 
1038 /*
1039  * The folios which we're about to release may be in the deferred lru-addition
1040  * queues.  That would prevent them from really being freed right now.  That's
1041  * OK from a correctness point of view but is inefficient - those folios may be
1042  * cache-warm and we want to give them back to the page allocator ASAP.
1043  *
1044  * So __folio_batch_release() will drain those queues here.
1045  * folio_batch_move_lru() calls folios_put() directly to avoid
1046  * mutual recursion.
1047  */
1048 void __folio_batch_release(struct folio_batch *fbatch)
1049 {
1050 	if (!fbatch->percpu_pvec_drained) {
1051 		lru_add_drain();
1052 		fbatch->percpu_pvec_drained = true;
1053 	}
1054 	folios_put(fbatch);
1055 }
1056 EXPORT_SYMBOL(__folio_batch_release);
1057 
1058 /**
1059  * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1060  * @fbatch: The batch to prune
1061  *
1062  * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1063  * entries.  This function prunes all the non-folio entries from @fbatch
1064  * without leaving holes, so that it can be passed on to folio-only batch
1065  * operations.
1066  */
1067 void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1068 {
1069 	unsigned int i, j;
1070 
1071 	for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1072 		struct folio *folio = fbatch->folios[i];
1073 		if (!xa_is_value(folio))
1074 			fbatch->folios[j++] = folio;
1075 	}
1076 	fbatch->nr = j;
1077 }
1078 
1079 /*
1080  * Perform any setup for the swap system
1081  */
1082 void __init swap_setup(void)
1083 {
1084 	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1085 
1086 	/* Use a smaller cluster for small-memory machines */
1087 	if (megs < 16)
1088 		page_cluster = 2;
1089 	else
1090 		page_cluster = 3;
1091 	/*
1092 	 * Right now other parts of the system means that we
1093 	 * _really_ don't want to cluster much more
1094 	 */
1095 }
1096