1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swap.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * This file contains the default values for the operation of the 10 * Linux VM subsystem. Fine-tuning documentation can be found in 11 * Documentation/admin-guide/sysctl/vm.rst. 12 * Started 18.12.91 13 * Swap aging added 23.2.95, Stephen Tweedie. 14 * Buffermem limits added 12.3.98, Rik van Riel. 15 */ 16 17 #include <linux/mm.h> 18 #include <linux/sched.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/mman.h> 22 #include <linux/pagemap.h> 23 #include <linux/pagevec.h> 24 #include <linux/init.h> 25 #include <linux/export.h> 26 #include <linux/mm_inline.h> 27 #include <linux/percpu_counter.h> 28 #include <linux/memremap.h> 29 #include <linux/percpu.h> 30 #include <linux/cpu.h> 31 #include <linux/notifier.h> 32 #include <linux/backing-dev.h> 33 #include <linux/memcontrol.h> 34 #include <linux/gfp.h> 35 #include <linux/uio.h> 36 #include <linux/hugetlb.h> 37 #include <linux/page_idle.h> 38 #include <linux/local_lock.h> 39 #include <linux/buffer_head.h> 40 41 #include "internal.h" 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/pagemap.h> 45 46 /* How many pages do we try to swap or page in/out together? As a power of 2 */ 47 int page_cluster; 48 const int page_cluster_max = 31; 49 50 struct cpu_fbatches { 51 /* 52 * The following folio batches are grouped together because they are protected 53 * by disabling preemption (and interrupts remain enabled). 54 */ 55 local_lock_t lock; 56 struct folio_batch lru_add; 57 struct folio_batch lru_deactivate_file; 58 struct folio_batch lru_deactivate; 59 struct folio_batch lru_lazyfree; 60 #ifdef CONFIG_SMP 61 struct folio_batch lru_activate; 62 #endif 63 /* Protecting the following batches which require disabling interrupts */ 64 local_lock_t lock_irq; 65 struct folio_batch lru_move_tail; 66 }; 67 68 static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = { 69 .lock = INIT_LOCAL_LOCK(lock), 70 .lock_irq = INIT_LOCAL_LOCK(lock_irq), 71 }; 72 73 static void __page_cache_release(struct folio *folio, struct lruvec **lruvecp, 74 unsigned long *flagsp) 75 { 76 if (folio_test_lru(folio)) { 77 folio_lruvec_relock_irqsave(folio, lruvecp, flagsp); 78 lruvec_del_folio(*lruvecp, folio); 79 __folio_clear_lru_flags(folio); 80 } 81 } 82 83 /* 84 * This path almost never happens for VM activity - pages are normally freed 85 * in batches. But it gets used by networking - and for compound pages. 86 */ 87 static void page_cache_release(struct folio *folio) 88 { 89 struct lruvec *lruvec = NULL; 90 unsigned long flags; 91 92 __page_cache_release(folio, &lruvec, &flags); 93 if (lruvec) 94 unlock_page_lruvec_irqrestore(lruvec, flags); 95 } 96 97 void __folio_put(struct folio *folio) 98 { 99 if (unlikely(folio_is_zone_device(folio))) { 100 free_zone_device_folio(folio); 101 return; 102 } 103 104 if (folio_test_hugetlb(folio)) { 105 free_huge_folio(folio); 106 return; 107 } 108 109 page_cache_release(folio); 110 folio_unqueue_deferred_split(folio); 111 mem_cgroup_uncharge(folio); 112 free_frozen_pages(&folio->page, folio_order(folio)); 113 } 114 EXPORT_SYMBOL(__folio_put); 115 116 typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio); 117 118 static void lru_add(struct lruvec *lruvec, struct folio *folio) 119 { 120 int was_unevictable = folio_test_clear_unevictable(folio); 121 long nr_pages = folio_nr_pages(folio); 122 123 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 124 125 /* 126 * Is an smp_mb__after_atomic() still required here, before 127 * folio_evictable() tests the mlocked flag, to rule out the possibility 128 * of stranding an evictable folio on an unevictable LRU? I think 129 * not, because __munlock_folio() only clears the mlocked flag 130 * while the LRU lock is held. 131 * 132 * (That is not true of __page_cache_release(), and not necessarily 133 * true of folios_put(): but those only clear the mlocked flag after 134 * folio_put_testzero() has excluded any other users of the folio.) 135 */ 136 if (folio_evictable(folio)) { 137 if (was_unevictable) 138 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages); 139 } else { 140 folio_clear_active(folio); 141 folio_set_unevictable(folio); 142 /* 143 * folio->mlock_count = !!folio_test_mlocked(folio)? 144 * But that leaves __mlock_folio() in doubt whether another 145 * actor has already counted the mlock or not. Err on the 146 * safe side, underestimate, let page reclaim fix it, rather 147 * than leaving a page on the unevictable LRU indefinitely. 148 */ 149 folio->mlock_count = 0; 150 if (!was_unevictable) 151 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages); 152 } 153 154 lruvec_add_folio(lruvec, folio); 155 trace_mm_lru_insertion(folio); 156 } 157 158 static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn) 159 { 160 int i; 161 struct lruvec *lruvec = NULL; 162 unsigned long flags = 0; 163 164 for (i = 0; i < folio_batch_count(fbatch); i++) { 165 struct folio *folio = fbatch->folios[i]; 166 167 folio_lruvec_relock_irqsave(folio, &lruvec, &flags); 168 move_fn(lruvec, folio); 169 170 folio_set_lru(folio); 171 } 172 173 if (lruvec) 174 unlock_page_lruvec_irqrestore(lruvec, flags); 175 folios_put(fbatch); 176 } 177 178 static void __folio_batch_add_and_move(struct folio_batch __percpu *fbatch, 179 struct folio *folio, move_fn_t move_fn, 180 bool on_lru, bool disable_irq) 181 { 182 unsigned long flags; 183 184 if (on_lru && !folio_test_clear_lru(folio)) 185 return; 186 187 folio_get(folio); 188 189 if (disable_irq) 190 local_lock_irqsave(&cpu_fbatches.lock_irq, flags); 191 else 192 local_lock(&cpu_fbatches.lock); 193 194 if (!folio_batch_add(this_cpu_ptr(fbatch), folio) || folio_test_large(folio) || 195 lru_cache_disabled()) 196 folio_batch_move_lru(this_cpu_ptr(fbatch), move_fn); 197 198 if (disable_irq) 199 local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags); 200 else 201 local_unlock(&cpu_fbatches.lock); 202 } 203 204 #define folio_batch_add_and_move(folio, op, on_lru) \ 205 __folio_batch_add_and_move( \ 206 &cpu_fbatches.op, \ 207 folio, \ 208 op, \ 209 on_lru, \ 210 offsetof(struct cpu_fbatches, op) >= offsetof(struct cpu_fbatches, lock_irq) \ 211 ) 212 213 static void lru_move_tail(struct lruvec *lruvec, struct folio *folio) 214 { 215 if (folio_test_unevictable(folio)) 216 return; 217 218 lruvec_del_folio(lruvec, folio); 219 folio_clear_active(folio); 220 lruvec_add_folio_tail(lruvec, folio); 221 __count_vm_events(PGROTATED, folio_nr_pages(folio)); 222 } 223 224 /* 225 * Writeback is about to end against a folio which has been marked for 226 * immediate reclaim. If it still appears to be reclaimable, move it 227 * to the tail of the inactive list. 228 * 229 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races. 230 */ 231 void folio_rotate_reclaimable(struct folio *folio) 232 { 233 if (folio_test_locked(folio) || folio_test_dirty(folio) || 234 folio_test_unevictable(folio)) 235 return; 236 237 folio_batch_add_and_move(folio, lru_move_tail, true); 238 } 239 240 void lru_note_cost(struct lruvec *lruvec, bool file, 241 unsigned int nr_io, unsigned int nr_rotated) 242 { 243 unsigned long cost; 244 245 /* 246 * Reflect the relative cost of incurring IO and spending CPU 247 * time on rotations. This doesn't attempt to make a precise 248 * comparison, it just says: if reloads are about comparable 249 * between the LRU lists, or rotations are overwhelmingly 250 * different between them, adjust scan balance for CPU work. 251 */ 252 cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated; 253 254 do { 255 unsigned long lrusize; 256 257 /* 258 * Hold lruvec->lru_lock is safe here, since 259 * 1) The pinned lruvec in reclaim, or 260 * 2) From a pre-LRU page during refault (which also holds the 261 * rcu lock, so would be safe even if the page was on the LRU 262 * and could move simultaneously to a new lruvec). 263 */ 264 spin_lock_irq(&lruvec->lru_lock); 265 /* Record cost event */ 266 if (file) 267 lruvec->file_cost += cost; 268 else 269 lruvec->anon_cost += cost; 270 271 /* 272 * Decay previous events 273 * 274 * Because workloads change over time (and to avoid 275 * overflow) we keep these statistics as a floating 276 * average, which ends up weighing recent refaults 277 * more than old ones. 278 */ 279 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) + 280 lruvec_page_state(lruvec, NR_ACTIVE_ANON) + 281 lruvec_page_state(lruvec, NR_INACTIVE_FILE) + 282 lruvec_page_state(lruvec, NR_ACTIVE_FILE); 283 284 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) { 285 lruvec->file_cost /= 2; 286 lruvec->anon_cost /= 2; 287 } 288 spin_unlock_irq(&lruvec->lru_lock); 289 } while ((lruvec = parent_lruvec(lruvec))); 290 } 291 292 void lru_note_cost_refault(struct folio *folio) 293 { 294 lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio), 295 folio_nr_pages(folio), 0); 296 } 297 298 static void lru_activate(struct lruvec *lruvec, struct folio *folio) 299 { 300 long nr_pages = folio_nr_pages(folio); 301 302 if (folio_test_active(folio) || folio_test_unevictable(folio)) 303 return; 304 305 306 lruvec_del_folio(lruvec, folio); 307 folio_set_active(folio); 308 lruvec_add_folio(lruvec, folio); 309 trace_mm_lru_activate(folio); 310 311 __count_vm_events(PGACTIVATE, nr_pages); 312 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, nr_pages); 313 } 314 315 #ifdef CONFIG_SMP 316 static void folio_activate_drain(int cpu) 317 { 318 struct folio_batch *fbatch = &per_cpu(cpu_fbatches.lru_activate, cpu); 319 320 if (folio_batch_count(fbatch)) 321 folio_batch_move_lru(fbatch, lru_activate); 322 } 323 324 void folio_activate(struct folio *folio) 325 { 326 if (folio_test_active(folio) || folio_test_unevictable(folio)) 327 return; 328 329 folio_batch_add_and_move(folio, lru_activate, true); 330 } 331 332 #else 333 static inline void folio_activate_drain(int cpu) 334 { 335 } 336 337 void folio_activate(struct folio *folio) 338 { 339 struct lruvec *lruvec; 340 341 if (!folio_test_clear_lru(folio)) 342 return; 343 344 lruvec = folio_lruvec_lock_irq(folio); 345 lru_activate(lruvec, folio); 346 unlock_page_lruvec_irq(lruvec); 347 folio_set_lru(folio); 348 } 349 #endif 350 351 static void __lru_cache_activate_folio(struct folio *folio) 352 { 353 struct folio_batch *fbatch; 354 int i; 355 356 local_lock(&cpu_fbatches.lock); 357 fbatch = this_cpu_ptr(&cpu_fbatches.lru_add); 358 359 /* 360 * Search backwards on the optimistic assumption that the folio being 361 * activated has just been added to this batch. Note that only 362 * the local batch is examined as a !LRU folio could be in the 363 * process of being released, reclaimed, migrated or on a remote 364 * batch that is currently being drained. Furthermore, marking 365 * a remote batch's folio active potentially hits a race where 366 * a folio is marked active just after it is added to the inactive 367 * list causing accounting errors and BUG_ON checks to trigger. 368 */ 369 for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) { 370 struct folio *batch_folio = fbatch->folios[i]; 371 372 if (batch_folio == folio) { 373 folio_set_active(folio); 374 break; 375 } 376 } 377 378 local_unlock(&cpu_fbatches.lock); 379 } 380 381 #ifdef CONFIG_LRU_GEN 382 383 static void lru_gen_inc_refs(struct folio *folio) 384 { 385 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 386 387 if (folio_test_unevictable(folio)) 388 return; 389 390 /* see the comment on LRU_REFS_FLAGS */ 391 if (!folio_test_referenced(folio)) { 392 set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced)); 393 return; 394 } 395 396 do { 397 if ((old_flags & LRU_REFS_MASK) == LRU_REFS_MASK) { 398 if (!folio_test_workingset(folio)) 399 folio_set_workingset(folio); 400 return; 401 } 402 403 new_flags = old_flags + BIT(LRU_REFS_PGOFF); 404 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 405 } 406 407 static bool lru_gen_clear_refs(struct folio *folio) 408 { 409 struct lru_gen_folio *lrugen; 410 int gen = folio_lru_gen(folio); 411 int type = folio_is_file_lru(folio); 412 413 if (gen < 0) 414 return true; 415 416 set_mask_bits(&folio->flags, LRU_REFS_FLAGS | BIT(PG_workingset), 0); 417 418 lrugen = &folio_lruvec(folio)->lrugen; 419 /* whether can do without shuffling under the LRU lock */ 420 return gen == lru_gen_from_seq(READ_ONCE(lrugen->min_seq[type])); 421 } 422 423 #else /* !CONFIG_LRU_GEN */ 424 425 static void lru_gen_inc_refs(struct folio *folio) 426 { 427 } 428 429 static bool lru_gen_clear_refs(struct folio *folio) 430 { 431 return false; 432 } 433 434 #endif /* CONFIG_LRU_GEN */ 435 436 /** 437 * folio_mark_accessed - Mark a folio as having seen activity. 438 * @folio: The folio to mark. 439 * 440 * This function will perform one of the following transitions: 441 * 442 * * inactive,unreferenced -> inactive,referenced 443 * * inactive,referenced -> active,unreferenced 444 * * active,unreferenced -> active,referenced 445 * 446 * When a newly allocated folio is not yet visible, so safe for non-atomic ops, 447 * __folio_set_referenced() may be substituted for folio_mark_accessed(). 448 */ 449 void folio_mark_accessed(struct folio *folio) 450 { 451 if (folio_test_dropbehind(folio)) 452 return; 453 if (lru_gen_enabled()) { 454 lru_gen_inc_refs(folio); 455 return; 456 } 457 458 if (!folio_test_referenced(folio)) { 459 folio_set_referenced(folio); 460 } else if (folio_test_unevictable(folio)) { 461 /* 462 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But, 463 * this list is never rotated or maintained, so marking an 464 * unevictable page accessed has no effect. 465 */ 466 } else if (!folio_test_active(folio)) { 467 /* 468 * If the folio is on the LRU, queue it for activation via 469 * cpu_fbatches.lru_activate. Otherwise, assume the folio is in a 470 * folio_batch, mark it active and it'll be moved to the active 471 * LRU on the next drain. 472 */ 473 if (folio_test_lru(folio)) 474 folio_activate(folio); 475 else 476 __lru_cache_activate_folio(folio); 477 folio_clear_referenced(folio); 478 workingset_activation(folio); 479 } 480 if (folio_test_idle(folio)) 481 folio_clear_idle(folio); 482 } 483 EXPORT_SYMBOL(folio_mark_accessed); 484 485 /** 486 * folio_add_lru - Add a folio to an LRU list. 487 * @folio: The folio to be added to the LRU. 488 * 489 * Queue the folio for addition to the LRU. The decision on whether 490 * to add the page to the [in]active [file|anon] list is deferred until the 491 * folio_batch is drained. This gives a chance for the caller of folio_add_lru() 492 * have the folio added to the active list using folio_mark_accessed(). 493 */ 494 void folio_add_lru(struct folio *folio) 495 { 496 VM_BUG_ON_FOLIO(folio_test_active(folio) && 497 folio_test_unevictable(folio), folio); 498 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 499 500 /* see the comment in lru_gen_folio_seq() */ 501 if (lru_gen_enabled() && !folio_test_unevictable(folio) && 502 lru_gen_in_fault() && !(current->flags & PF_MEMALLOC)) 503 folio_set_active(folio); 504 505 folio_batch_add_and_move(folio, lru_add, false); 506 } 507 EXPORT_SYMBOL(folio_add_lru); 508 509 /** 510 * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA. 511 * @folio: The folio to be added to the LRU. 512 * @vma: VMA in which the folio is mapped. 513 * 514 * If the VMA is mlocked, @folio is added to the unevictable list. 515 * Otherwise, it is treated the same way as folio_add_lru(). 516 */ 517 void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma) 518 { 519 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 520 521 if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED)) 522 mlock_new_folio(folio); 523 else 524 folio_add_lru(folio); 525 } 526 527 /* 528 * If the folio cannot be invalidated, it is moved to the 529 * inactive list to speed up its reclaim. It is moved to the 530 * head of the list, rather than the tail, to give the flusher 531 * threads some time to write it out, as this is much more 532 * effective than the single-page writeout from reclaim. 533 * 534 * If the folio isn't mapped and dirty/writeback, the folio 535 * could be reclaimed asap using the reclaim flag. 536 * 537 * 1. active, mapped folio -> none 538 * 2. active, dirty/writeback folio -> inactive, head, reclaim 539 * 3. inactive, mapped folio -> none 540 * 4. inactive, dirty/writeback folio -> inactive, head, reclaim 541 * 5. inactive, clean -> inactive, tail 542 * 6. Others -> none 543 * 544 * In 4, it moves to the head of the inactive list so the folio is 545 * written out by flusher threads as this is much more efficient 546 * than the single-page writeout from reclaim. 547 */ 548 static void lru_deactivate_file(struct lruvec *lruvec, struct folio *folio) 549 { 550 bool active = folio_test_active(folio) || lru_gen_enabled(); 551 long nr_pages = folio_nr_pages(folio); 552 553 if (folio_test_unevictable(folio)) 554 return; 555 556 /* Some processes are using the folio */ 557 if (folio_mapped(folio)) 558 return; 559 560 lruvec_del_folio(lruvec, folio); 561 folio_clear_active(folio); 562 folio_clear_referenced(folio); 563 564 if (folio_test_writeback(folio) || folio_test_dirty(folio)) { 565 /* 566 * Setting the reclaim flag could race with 567 * folio_end_writeback() and confuse readahead. But the 568 * race window is _really_ small and it's not a critical 569 * problem. 570 */ 571 lruvec_add_folio(lruvec, folio); 572 folio_set_reclaim(folio); 573 } else { 574 /* 575 * The folio's writeback ended while it was in the batch. 576 * We move that folio to the tail of the inactive list. 577 */ 578 lruvec_add_folio_tail(lruvec, folio); 579 __count_vm_events(PGROTATED, nr_pages); 580 } 581 582 if (active) { 583 __count_vm_events(PGDEACTIVATE, nr_pages); 584 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, 585 nr_pages); 586 } 587 } 588 589 static void lru_deactivate(struct lruvec *lruvec, struct folio *folio) 590 { 591 long nr_pages = folio_nr_pages(folio); 592 593 if (folio_test_unevictable(folio) || !(folio_test_active(folio) || lru_gen_enabled())) 594 return; 595 596 lruvec_del_folio(lruvec, folio); 597 folio_clear_active(folio); 598 folio_clear_referenced(folio); 599 lruvec_add_folio(lruvec, folio); 600 601 __count_vm_events(PGDEACTIVATE, nr_pages); 602 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_pages); 603 } 604 605 static void lru_lazyfree(struct lruvec *lruvec, struct folio *folio) 606 { 607 long nr_pages = folio_nr_pages(folio); 608 609 if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) || 610 folio_test_swapcache(folio) || folio_test_unevictable(folio)) 611 return; 612 613 lruvec_del_folio(lruvec, folio); 614 folio_clear_active(folio); 615 if (lru_gen_enabled()) 616 lru_gen_clear_refs(folio); 617 else 618 folio_clear_referenced(folio); 619 /* 620 * Lazyfree folios are clean anonymous folios. They have 621 * the swapbacked flag cleared, to distinguish them from normal 622 * anonymous folios 623 */ 624 folio_clear_swapbacked(folio); 625 lruvec_add_folio(lruvec, folio); 626 627 __count_vm_events(PGLAZYFREE, nr_pages); 628 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, nr_pages); 629 } 630 631 /* 632 * Drain pages out of the cpu's folio_batch. 633 * Either "cpu" is the current CPU, and preemption has already been 634 * disabled; or "cpu" is being hot-unplugged, and is already dead. 635 */ 636 void lru_add_drain_cpu(int cpu) 637 { 638 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu); 639 struct folio_batch *fbatch = &fbatches->lru_add; 640 641 if (folio_batch_count(fbatch)) 642 folio_batch_move_lru(fbatch, lru_add); 643 644 fbatch = &fbatches->lru_move_tail; 645 /* Disabling interrupts below acts as a compiler barrier. */ 646 if (data_race(folio_batch_count(fbatch))) { 647 unsigned long flags; 648 649 /* No harm done if a racing interrupt already did this */ 650 local_lock_irqsave(&cpu_fbatches.lock_irq, flags); 651 folio_batch_move_lru(fbatch, lru_move_tail); 652 local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags); 653 } 654 655 fbatch = &fbatches->lru_deactivate_file; 656 if (folio_batch_count(fbatch)) 657 folio_batch_move_lru(fbatch, lru_deactivate_file); 658 659 fbatch = &fbatches->lru_deactivate; 660 if (folio_batch_count(fbatch)) 661 folio_batch_move_lru(fbatch, lru_deactivate); 662 663 fbatch = &fbatches->lru_lazyfree; 664 if (folio_batch_count(fbatch)) 665 folio_batch_move_lru(fbatch, lru_lazyfree); 666 667 folio_activate_drain(cpu); 668 } 669 670 /** 671 * deactivate_file_folio() - Deactivate a file folio. 672 * @folio: Folio to deactivate. 673 * 674 * This function hints to the VM that @folio is a good reclaim candidate, 675 * for example if its invalidation fails due to the folio being dirty 676 * or under writeback. 677 * 678 * Context: Caller holds a reference on the folio. 679 */ 680 void deactivate_file_folio(struct folio *folio) 681 { 682 /* Deactivating an unevictable folio will not accelerate reclaim */ 683 if (folio_test_unevictable(folio)) 684 return; 685 686 if (lru_gen_enabled() && lru_gen_clear_refs(folio)) 687 return; 688 689 folio_batch_add_and_move(folio, lru_deactivate_file, true); 690 } 691 692 /* 693 * folio_deactivate - deactivate a folio 694 * @folio: folio to deactivate 695 * 696 * folio_deactivate() moves @folio to the inactive list if @folio was on the 697 * active list and was not unevictable. This is done to accelerate the 698 * reclaim of @folio. 699 */ 700 void folio_deactivate(struct folio *folio) 701 { 702 if (folio_test_unevictable(folio)) 703 return; 704 705 if (lru_gen_enabled() ? lru_gen_clear_refs(folio) : !folio_test_active(folio)) 706 return; 707 708 folio_batch_add_and_move(folio, lru_deactivate, true); 709 } 710 711 /** 712 * folio_mark_lazyfree - make an anon folio lazyfree 713 * @folio: folio to deactivate 714 * 715 * folio_mark_lazyfree() moves @folio to the inactive file list. 716 * This is done to accelerate the reclaim of @folio. 717 */ 718 void folio_mark_lazyfree(struct folio *folio) 719 { 720 if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) || 721 folio_test_swapcache(folio) || folio_test_unevictable(folio)) 722 return; 723 724 folio_batch_add_and_move(folio, lru_lazyfree, true); 725 } 726 727 void lru_add_drain(void) 728 { 729 local_lock(&cpu_fbatches.lock); 730 lru_add_drain_cpu(smp_processor_id()); 731 local_unlock(&cpu_fbatches.lock); 732 mlock_drain_local(); 733 } 734 735 /* 736 * It's called from per-cpu workqueue context in SMP case so 737 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on 738 * the same cpu. It shouldn't be a problem in !SMP case since 739 * the core is only one and the locks will disable preemption. 740 */ 741 static void lru_add_and_bh_lrus_drain(void) 742 { 743 local_lock(&cpu_fbatches.lock); 744 lru_add_drain_cpu(smp_processor_id()); 745 local_unlock(&cpu_fbatches.lock); 746 invalidate_bh_lrus_cpu(); 747 mlock_drain_local(); 748 } 749 750 void lru_add_drain_cpu_zone(struct zone *zone) 751 { 752 local_lock(&cpu_fbatches.lock); 753 lru_add_drain_cpu(smp_processor_id()); 754 drain_local_pages(zone); 755 local_unlock(&cpu_fbatches.lock); 756 mlock_drain_local(); 757 } 758 759 #ifdef CONFIG_SMP 760 761 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); 762 763 static void lru_add_drain_per_cpu(struct work_struct *dummy) 764 { 765 lru_add_and_bh_lrus_drain(); 766 } 767 768 static bool cpu_needs_drain(unsigned int cpu) 769 { 770 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu); 771 772 /* Check these in order of likelihood that they're not zero */ 773 return folio_batch_count(&fbatches->lru_add) || 774 folio_batch_count(&fbatches->lru_move_tail) || 775 folio_batch_count(&fbatches->lru_deactivate_file) || 776 folio_batch_count(&fbatches->lru_deactivate) || 777 folio_batch_count(&fbatches->lru_lazyfree) || 778 folio_batch_count(&fbatches->lru_activate) || 779 need_mlock_drain(cpu) || 780 has_bh_in_lru(cpu, NULL); 781 } 782 783 /* 784 * Doesn't need any cpu hotplug locking because we do rely on per-cpu 785 * kworkers being shut down before our page_alloc_cpu_dead callback is 786 * executed on the offlined cpu. 787 * Calling this function with cpu hotplug locks held can actually lead 788 * to obscure indirect dependencies via WQ context. 789 */ 790 static inline void __lru_add_drain_all(bool force_all_cpus) 791 { 792 /* 793 * lru_drain_gen - Global pages generation number 794 * 795 * (A) Definition: global lru_drain_gen = x implies that all generations 796 * 0 < n <= x are already *scheduled* for draining. 797 * 798 * This is an optimization for the highly-contended use case where a 799 * user space workload keeps constantly generating a flow of pages for 800 * each CPU. 801 */ 802 static unsigned int lru_drain_gen; 803 static struct cpumask has_work; 804 static DEFINE_MUTEX(lock); 805 unsigned cpu, this_gen; 806 807 /* 808 * Make sure nobody triggers this path before mm_percpu_wq is fully 809 * initialized. 810 */ 811 if (WARN_ON(!mm_percpu_wq)) 812 return; 813 814 /* 815 * Guarantee folio_batch counter stores visible by this CPU 816 * are visible to other CPUs before loading the current drain 817 * generation. 818 */ 819 smp_mb(); 820 821 /* 822 * (B) Locally cache global LRU draining generation number 823 * 824 * The read barrier ensures that the counter is loaded before the mutex 825 * is taken. It pairs with smp_mb() inside the mutex critical section 826 * at (D). 827 */ 828 this_gen = smp_load_acquire(&lru_drain_gen); 829 830 mutex_lock(&lock); 831 832 /* 833 * (C) Exit the draining operation if a newer generation, from another 834 * lru_add_drain_all(), was already scheduled for draining. Check (A). 835 */ 836 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus)) 837 goto done; 838 839 /* 840 * (D) Increment global generation number 841 * 842 * Pairs with smp_load_acquire() at (B), outside of the critical 843 * section. Use a full memory barrier to guarantee that the 844 * new global drain generation number is stored before loading 845 * folio_batch counters. 846 * 847 * This pairing must be done here, before the for_each_online_cpu loop 848 * below which drains the page vectors. 849 * 850 * Let x, y, and z represent some system CPU numbers, where x < y < z. 851 * Assume CPU #z is in the middle of the for_each_online_cpu loop 852 * below and has already reached CPU #y's per-cpu data. CPU #x comes 853 * along, adds some pages to its per-cpu vectors, then calls 854 * lru_add_drain_all(). 855 * 856 * If the paired barrier is done at any later step, e.g. after the 857 * loop, CPU #x will just exit at (C) and miss flushing out all of its 858 * added pages. 859 */ 860 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1); 861 smp_mb(); 862 863 cpumask_clear(&has_work); 864 for_each_online_cpu(cpu) { 865 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); 866 867 if (cpu_needs_drain(cpu)) { 868 INIT_WORK(work, lru_add_drain_per_cpu); 869 queue_work_on(cpu, mm_percpu_wq, work); 870 __cpumask_set_cpu(cpu, &has_work); 871 } 872 } 873 874 for_each_cpu(cpu, &has_work) 875 flush_work(&per_cpu(lru_add_drain_work, cpu)); 876 877 done: 878 mutex_unlock(&lock); 879 } 880 881 void lru_add_drain_all(void) 882 { 883 __lru_add_drain_all(false); 884 } 885 #else 886 void lru_add_drain_all(void) 887 { 888 lru_add_drain(); 889 } 890 #endif /* CONFIG_SMP */ 891 892 atomic_t lru_disable_count = ATOMIC_INIT(0); 893 894 /* 895 * lru_cache_disable() needs to be called before we start compiling 896 * a list of folios to be migrated using folio_isolate_lru(). 897 * It drains folios on LRU cache and then disable on all cpus until 898 * lru_cache_enable is called. 899 * 900 * Must be paired with a call to lru_cache_enable(). 901 */ 902 void lru_cache_disable(void) 903 { 904 atomic_inc(&lru_disable_count); 905 /* 906 * Readers of lru_disable_count are protected by either disabling 907 * preemption or rcu_read_lock: 908 * 909 * preempt_disable, local_irq_disable [bh_lru_lock()] 910 * rcu_read_lock [rt_spin_lock CONFIG_PREEMPT_RT] 911 * preempt_disable [local_lock !CONFIG_PREEMPT_RT] 912 * 913 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on 914 * preempt_disable() regions of code. So any CPU which sees 915 * lru_disable_count = 0 will have exited the critical 916 * section when synchronize_rcu() returns. 917 */ 918 synchronize_rcu_expedited(); 919 #ifdef CONFIG_SMP 920 __lru_add_drain_all(true); 921 #else 922 lru_add_and_bh_lrus_drain(); 923 #endif 924 } 925 926 /** 927 * folios_put_refs - Reduce the reference count on a batch of folios. 928 * @folios: The folios. 929 * @refs: The number of refs to subtract from each folio. 930 * 931 * Like folio_put(), but for a batch of folios. This is more efficient 932 * than writing the loop yourself as it will optimise the locks which need 933 * to be taken if the folios are freed. The folios batch is returned 934 * empty and ready to be reused for another batch; there is no need 935 * to reinitialise it. If @refs is NULL, we subtract one from each 936 * folio refcount. 937 * 938 * Context: May be called in process or interrupt context, but not in NMI 939 * context. May be called while holding a spinlock. 940 */ 941 void folios_put_refs(struct folio_batch *folios, unsigned int *refs) 942 { 943 int i, j; 944 struct lruvec *lruvec = NULL; 945 unsigned long flags = 0; 946 947 for (i = 0, j = 0; i < folios->nr; i++) { 948 struct folio *folio = folios->folios[i]; 949 unsigned int nr_refs = refs ? refs[i] : 1; 950 951 if (is_huge_zero_folio(folio)) 952 continue; 953 954 if (folio_is_zone_device(folio)) { 955 if (lruvec) { 956 unlock_page_lruvec_irqrestore(lruvec, flags); 957 lruvec = NULL; 958 } 959 if (put_devmap_managed_folio_refs(folio, nr_refs)) 960 continue; 961 if (folio_ref_sub_and_test(folio, nr_refs)) 962 free_zone_device_folio(folio); 963 continue; 964 } 965 966 if (!folio_ref_sub_and_test(folio, nr_refs)) 967 continue; 968 969 /* hugetlb has its own memcg */ 970 if (folio_test_hugetlb(folio)) { 971 if (lruvec) { 972 unlock_page_lruvec_irqrestore(lruvec, flags); 973 lruvec = NULL; 974 } 975 free_huge_folio(folio); 976 continue; 977 } 978 folio_unqueue_deferred_split(folio); 979 __page_cache_release(folio, &lruvec, &flags); 980 981 if (j != i) 982 folios->folios[j] = folio; 983 j++; 984 } 985 if (lruvec) 986 unlock_page_lruvec_irqrestore(lruvec, flags); 987 if (!j) { 988 folio_batch_reinit(folios); 989 return; 990 } 991 992 folios->nr = j; 993 mem_cgroup_uncharge_folios(folios); 994 free_unref_folios(folios); 995 } 996 EXPORT_SYMBOL(folios_put_refs); 997 998 /** 999 * release_pages - batched put_page() 1000 * @arg: array of pages to release 1001 * @nr: number of pages 1002 * 1003 * Decrement the reference count on all the pages in @arg. If it 1004 * fell to zero, remove the page from the LRU and free it. 1005 * 1006 * Note that the argument can be an array of pages, encoded pages, 1007 * or folio pointers. We ignore any encoded bits, and turn any of 1008 * them into just a folio that gets free'd. 1009 */ 1010 void release_pages(release_pages_arg arg, int nr) 1011 { 1012 struct folio_batch fbatch; 1013 int refs[PAGEVEC_SIZE]; 1014 struct encoded_page **encoded = arg.encoded_pages; 1015 int i; 1016 1017 folio_batch_init(&fbatch); 1018 for (i = 0; i < nr; i++) { 1019 /* Turn any of the argument types into a folio */ 1020 struct folio *folio = page_folio(encoded_page_ptr(encoded[i])); 1021 1022 /* Is our next entry actually "nr_pages" -> "nr_refs" ? */ 1023 refs[fbatch.nr] = 1; 1024 if (unlikely(encoded_page_flags(encoded[i]) & 1025 ENCODED_PAGE_BIT_NR_PAGES_NEXT)) 1026 refs[fbatch.nr] = encoded_nr_pages(encoded[++i]); 1027 1028 if (folio_batch_add(&fbatch, folio) > 0) 1029 continue; 1030 folios_put_refs(&fbatch, refs); 1031 } 1032 1033 if (fbatch.nr) 1034 folios_put_refs(&fbatch, refs); 1035 } 1036 EXPORT_SYMBOL(release_pages); 1037 1038 /* 1039 * The folios which we're about to release may be in the deferred lru-addition 1040 * queues. That would prevent them from really being freed right now. That's 1041 * OK from a correctness point of view but is inefficient - those folios may be 1042 * cache-warm and we want to give them back to the page allocator ASAP. 1043 * 1044 * So __folio_batch_release() will drain those queues here. 1045 * folio_batch_move_lru() calls folios_put() directly to avoid 1046 * mutual recursion. 1047 */ 1048 void __folio_batch_release(struct folio_batch *fbatch) 1049 { 1050 if (!fbatch->percpu_pvec_drained) { 1051 lru_add_drain(); 1052 fbatch->percpu_pvec_drained = true; 1053 } 1054 folios_put(fbatch); 1055 } 1056 EXPORT_SYMBOL(__folio_batch_release); 1057 1058 /** 1059 * folio_batch_remove_exceptionals() - Prune non-folios from a batch. 1060 * @fbatch: The batch to prune 1061 * 1062 * find_get_entries() fills a batch with both folios and shadow/swap/DAX 1063 * entries. This function prunes all the non-folio entries from @fbatch 1064 * without leaving holes, so that it can be passed on to folio-only batch 1065 * operations. 1066 */ 1067 void folio_batch_remove_exceptionals(struct folio_batch *fbatch) 1068 { 1069 unsigned int i, j; 1070 1071 for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) { 1072 struct folio *folio = fbatch->folios[i]; 1073 if (!xa_is_value(folio)) 1074 fbatch->folios[j++] = folio; 1075 } 1076 fbatch->nr = j; 1077 } 1078 1079 /* 1080 * Perform any setup for the swap system 1081 */ 1082 void __init swap_setup(void) 1083 { 1084 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT); 1085 1086 /* Use a smaller cluster for small-memory machines */ 1087 if (megs < 16) 1088 page_cluster = 2; 1089 else 1090 page_cluster = 3; 1091 /* 1092 * Right now other parts of the system means that we 1093 * _really_ don't want to cluster much more 1094 */ 1095 } 1096