xref: /linux/mm/sparse.c (revision f7511d5f66f01fc451747b24e79f3ada7a3af9af)
1 /*
2  * sparse memory mappings.
3  */
4 #include <linux/mm.h>
5 #include <linux/mmzone.h>
6 #include <linux/bootmem.h>
7 #include <linux/highmem.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/vmalloc.h>
11 #include "internal.h"
12 #include <asm/dma.h>
13 #include <asm/pgalloc.h>
14 #include <asm/pgtable.h>
15 
16 /*
17  * Permanent SPARSEMEM data:
18  *
19  * 1) mem_section	- memory sections, mem_map's for valid memory
20  */
21 #ifdef CONFIG_SPARSEMEM_EXTREME
22 struct mem_section *mem_section[NR_SECTION_ROOTS]
23 	____cacheline_internodealigned_in_smp;
24 #else
25 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
26 	____cacheline_internodealigned_in_smp;
27 #endif
28 EXPORT_SYMBOL(mem_section);
29 
30 #ifdef NODE_NOT_IN_PAGE_FLAGS
31 /*
32  * If we did not store the node number in the page then we have to
33  * do a lookup in the section_to_node_table in order to find which
34  * node the page belongs to.
35  */
36 #if MAX_NUMNODES <= 256
37 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
38 #else
39 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
40 #endif
41 
42 int page_to_nid(struct page *page)
43 {
44 	return section_to_node_table[page_to_section(page)];
45 }
46 EXPORT_SYMBOL(page_to_nid);
47 
48 static void set_section_nid(unsigned long section_nr, int nid)
49 {
50 	section_to_node_table[section_nr] = nid;
51 }
52 #else /* !NODE_NOT_IN_PAGE_FLAGS */
53 static inline void set_section_nid(unsigned long section_nr, int nid)
54 {
55 }
56 #endif
57 
58 #ifdef CONFIG_SPARSEMEM_EXTREME
59 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
60 {
61 	struct mem_section *section = NULL;
62 	unsigned long array_size = SECTIONS_PER_ROOT *
63 				   sizeof(struct mem_section);
64 
65 	if (slab_is_available())
66 		section = kmalloc_node(array_size, GFP_KERNEL, nid);
67 	else
68 		section = alloc_bootmem_node(NODE_DATA(nid), array_size);
69 
70 	if (section)
71 		memset(section, 0, array_size);
72 
73 	return section;
74 }
75 
76 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
77 {
78 	static DEFINE_SPINLOCK(index_init_lock);
79 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
80 	struct mem_section *section;
81 	int ret = 0;
82 
83 	if (mem_section[root])
84 		return -EEXIST;
85 
86 	section = sparse_index_alloc(nid);
87 	if (!section)
88 		return -ENOMEM;
89 	/*
90 	 * This lock keeps two different sections from
91 	 * reallocating for the same index
92 	 */
93 	spin_lock(&index_init_lock);
94 
95 	if (mem_section[root]) {
96 		ret = -EEXIST;
97 		goto out;
98 	}
99 
100 	mem_section[root] = section;
101 out:
102 	spin_unlock(&index_init_lock);
103 	return ret;
104 }
105 #else /* !SPARSEMEM_EXTREME */
106 static inline int sparse_index_init(unsigned long section_nr, int nid)
107 {
108 	return 0;
109 }
110 #endif
111 
112 /*
113  * Although written for the SPARSEMEM_EXTREME case, this happens
114  * to also work for the flat array case because
115  * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
116  */
117 int __section_nr(struct mem_section* ms)
118 {
119 	unsigned long root_nr;
120 	struct mem_section* root;
121 
122 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
123 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
124 		if (!root)
125 			continue;
126 
127 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
128 		     break;
129 	}
130 
131 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
132 }
133 
134 /*
135  * During early boot, before section_mem_map is used for an actual
136  * mem_map, we use section_mem_map to store the section's NUMA
137  * node.  This keeps us from having to use another data structure.  The
138  * node information is cleared just before we store the real mem_map.
139  */
140 static inline unsigned long sparse_encode_early_nid(int nid)
141 {
142 	return (nid << SECTION_NID_SHIFT);
143 }
144 
145 static inline int sparse_early_nid(struct mem_section *section)
146 {
147 	return (section->section_mem_map >> SECTION_NID_SHIFT);
148 }
149 
150 /* Record a memory area against a node. */
151 void __init memory_present(int nid, unsigned long start, unsigned long end)
152 {
153 	unsigned long max_arch_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
154 	unsigned long pfn;
155 
156 	/*
157 	 * Sanity checks - do not allow an architecture to pass
158 	 * in larger pfns than the maximum scope of sparsemem:
159 	 */
160 	if (start >= max_arch_pfn)
161 		return;
162 	if (end >= max_arch_pfn)
163 		end = max_arch_pfn;
164 
165 	start &= PAGE_SECTION_MASK;
166 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
167 		unsigned long section = pfn_to_section_nr(pfn);
168 		struct mem_section *ms;
169 
170 		sparse_index_init(section, nid);
171 		set_section_nid(section, nid);
172 
173 		ms = __nr_to_section(section);
174 		if (!ms->section_mem_map)
175 			ms->section_mem_map = sparse_encode_early_nid(nid) |
176 							SECTION_MARKED_PRESENT;
177 	}
178 }
179 
180 /*
181  * Only used by the i386 NUMA architecures, but relatively
182  * generic code.
183  */
184 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
185 						     unsigned long end_pfn)
186 {
187 	unsigned long pfn;
188 	unsigned long nr_pages = 0;
189 
190 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
191 		if (nid != early_pfn_to_nid(pfn))
192 			continue;
193 
194 		if (pfn_present(pfn))
195 			nr_pages += PAGES_PER_SECTION;
196 	}
197 
198 	return nr_pages * sizeof(struct page);
199 }
200 
201 /*
202  * Subtle, we encode the real pfn into the mem_map such that
203  * the identity pfn - section_mem_map will return the actual
204  * physical page frame number.
205  */
206 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
207 {
208 	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
209 }
210 
211 /*
212  * Decode mem_map from the coded memmap
213  */
214 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
215 {
216 	/* mask off the extra low bits of information */
217 	coded_mem_map &= SECTION_MAP_MASK;
218 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
219 }
220 
221 static int __meminit sparse_init_one_section(struct mem_section *ms,
222 		unsigned long pnum, struct page *mem_map,
223 		unsigned long *pageblock_bitmap)
224 {
225 	if (!present_section(ms))
226 		return -EINVAL;
227 
228 	ms->section_mem_map &= ~SECTION_MAP_MASK;
229 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
230 							SECTION_HAS_MEM_MAP;
231  	ms->pageblock_flags = pageblock_bitmap;
232 
233 	return 1;
234 }
235 
236 unsigned long usemap_size(void)
237 {
238 	unsigned long size_bytes;
239 	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
240 	size_bytes = roundup(size_bytes, sizeof(unsigned long));
241 	return size_bytes;
242 }
243 
244 #ifdef CONFIG_MEMORY_HOTPLUG
245 static unsigned long *__kmalloc_section_usemap(void)
246 {
247 	return kmalloc(usemap_size(), GFP_KERNEL);
248 }
249 #endif /* CONFIG_MEMORY_HOTPLUG */
250 
251 static unsigned long *__init sparse_early_usemap_alloc(unsigned long pnum)
252 {
253 	unsigned long *usemap, section_nr;
254 	struct mem_section *ms = __nr_to_section(pnum);
255 	int nid = sparse_early_nid(ms);
256 	struct pglist_data *pgdat = NODE_DATA(nid);
257 
258 	/*
259 	 * Usemap's page can't be freed until freeing other sections
260 	 * which use it. And, Pgdat has same feature.
261 	 * If section A has pgdat and section B has usemap for other
262 	 * sections (includes section A), both sections can't be removed,
263 	 * because there is the dependency each other.
264 	 * To solve above issue, this collects all usemap on the same section
265 	 * which has pgdat.
266 	 */
267 	section_nr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
268 	usemap = alloc_bootmem_section(usemap_size(), section_nr);
269 	if (usemap)
270 		return usemap;
271 
272 	/* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */
273 	nid = 0;
274 
275 	printk(KERN_WARNING "%s: allocation failed\n", __FUNCTION__);
276 	return NULL;
277 }
278 
279 #ifndef CONFIG_SPARSEMEM_VMEMMAP
280 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
281 {
282 	struct page *map;
283 
284 	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
285 	if (map)
286 		return map;
287 
288 	map = alloc_bootmem_pages_node(NODE_DATA(nid),
289 		       PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION));
290 	return map;
291 }
292 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
293 
294 struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
295 {
296 	struct page *map;
297 	struct mem_section *ms = __nr_to_section(pnum);
298 	int nid = sparse_early_nid(ms);
299 
300 	map = sparse_mem_map_populate(pnum, nid);
301 	if (map)
302 		return map;
303 
304 	printk(KERN_ERR "%s: sparsemem memory map backing failed "
305 			"some memory will not be available.\n", __FUNCTION__);
306 	ms->section_mem_map = 0;
307 	return NULL;
308 }
309 
310 void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
311 {
312 }
313 /*
314  * Allocate the accumulated non-linear sections, allocate a mem_map
315  * for each and record the physical to section mapping.
316  */
317 void __init sparse_init(void)
318 {
319 	unsigned long pnum;
320 	struct page *map;
321 	unsigned long *usemap;
322 	unsigned long **usemap_map;
323 	int size;
324 
325 	/*
326 	 * map is using big page (aka 2M in x86 64 bit)
327 	 * usemap is less one page (aka 24 bytes)
328 	 * so alloc 2M (with 2M align) and 24 bytes in turn will
329 	 * make next 2M slip to one more 2M later.
330 	 * then in big system, the memory will have a lot of holes...
331 	 * here try to allocate 2M pages continously.
332 	 *
333 	 * powerpc need to call sparse_init_one_section right after each
334 	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
335 	 */
336 	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
337 	usemap_map = alloc_bootmem(size);
338 	if (!usemap_map)
339 		panic("can not allocate usemap_map\n");
340 
341 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
342 		if (!present_section_nr(pnum))
343 			continue;
344 		usemap_map[pnum] = sparse_early_usemap_alloc(pnum);
345 	}
346 
347 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
348 		if (!present_section_nr(pnum))
349 			continue;
350 
351 		usemap = usemap_map[pnum];
352 		if (!usemap)
353 			continue;
354 
355 		map = sparse_early_mem_map_alloc(pnum);
356 		if (!map)
357 			continue;
358 
359 		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
360 								usemap);
361 	}
362 
363 	vmemmap_populate_print_last();
364 
365 	free_bootmem(__pa(usemap_map), size);
366 }
367 
368 #ifdef CONFIG_MEMORY_HOTPLUG
369 #ifdef CONFIG_SPARSEMEM_VMEMMAP
370 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
371 						 unsigned long nr_pages)
372 {
373 	/* This will make the necessary allocations eventually. */
374 	return sparse_mem_map_populate(pnum, nid);
375 }
376 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
377 {
378 	return; /* XXX: Not implemented yet */
379 }
380 static void free_map_bootmem(struct page *page, unsigned long nr_pages)
381 {
382 }
383 #else
384 static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
385 {
386 	struct page *page, *ret;
387 	unsigned long memmap_size = sizeof(struct page) * nr_pages;
388 
389 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
390 	if (page)
391 		goto got_map_page;
392 
393 	ret = vmalloc(memmap_size);
394 	if (ret)
395 		goto got_map_ptr;
396 
397 	return NULL;
398 got_map_page:
399 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
400 got_map_ptr:
401 	memset(ret, 0, memmap_size);
402 
403 	return ret;
404 }
405 
406 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
407 						  unsigned long nr_pages)
408 {
409 	return __kmalloc_section_memmap(nr_pages);
410 }
411 
412 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
413 {
414 	if (is_vmalloc_addr(memmap))
415 		vfree(memmap);
416 	else
417 		free_pages((unsigned long)memmap,
418 			   get_order(sizeof(struct page) * nr_pages));
419 }
420 
421 static void free_map_bootmem(struct page *page, unsigned long nr_pages)
422 {
423 	unsigned long maps_section_nr, removing_section_nr, i;
424 	int magic;
425 
426 	for (i = 0; i < nr_pages; i++, page++) {
427 		magic = atomic_read(&page->_mapcount);
428 
429 		BUG_ON(magic == NODE_INFO);
430 
431 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
432 		removing_section_nr = page->private;
433 
434 		/*
435 		 * When this function is called, the removing section is
436 		 * logical offlined state. This means all pages are isolated
437 		 * from page allocator. If removing section's memmap is placed
438 		 * on the same section, it must not be freed.
439 		 * If it is freed, page allocator may allocate it which will
440 		 * be removed physically soon.
441 		 */
442 		if (maps_section_nr != removing_section_nr)
443 			put_page_bootmem(page);
444 	}
445 }
446 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
447 
448 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
449 {
450 	struct page *usemap_page;
451 	unsigned long nr_pages;
452 
453 	if (!usemap)
454 		return;
455 
456 	usemap_page = virt_to_page(usemap);
457 	/*
458 	 * Check to see if allocation came from hot-plug-add
459 	 */
460 	if (PageSlab(usemap_page)) {
461 		kfree(usemap);
462 		if (memmap)
463 			__kfree_section_memmap(memmap, PAGES_PER_SECTION);
464 		return;
465 	}
466 
467 	/*
468 	 * The usemap came from bootmem. This is packed with other usemaps
469 	 * on the section which has pgdat at boot time. Just keep it as is now.
470 	 */
471 
472 	if (memmap) {
473 		struct page *memmap_page;
474 		memmap_page = virt_to_page(memmap);
475 
476 		nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
477 			>> PAGE_SHIFT;
478 
479 		free_map_bootmem(memmap_page, nr_pages);
480 	}
481 }
482 
483 /*
484  * returns the number of sections whose mem_maps were properly
485  * set.  If this is <=0, then that means that the passed-in
486  * map was not consumed and must be freed.
487  */
488 int sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
489 			   int nr_pages)
490 {
491 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
492 	struct pglist_data *pgdat = zone->zone_pgdat;
493 	struct mem_section *ms;
494 	struct page *memmap;
495 	unsigned long *usemap;
496 	unsigned long flags;
497 	int ret;
498 
499 	/*
500 	 * no locking for this, because it does its own
501 	 * plus, it does a kmalloc
502 	 */
503 	ret = sparse_index_init(section_nr, pgdat->node_id);
504 	if (ret < 0 && ret != -EEXIST)
505 		return ret;
506 	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
507 	if (!memmap)
508 		return -ENOMEM;
509 	usemap = __kmalloc_section_usemap();
510 	if (!usemap) {
511 		__kfree_section_memmap(memmap, nr_pages);
512 		return -ENOMEM;
513 	}
514 
515 	pgdat_resize_lock(pgdat, &flags);
516 
517 	ms = __pfn_to_section(start_pfn);
518 	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
519 		ret = -EEXIST;
520 		goto out;
521 	}
522 
523 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
524 
525 	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
526 
527 out:
528 	pgdat_resize_unlock(pgdat, &flags);
529 	if (ret <= 0) {
530 		kfree(usemap);
531 		__kfree_section_memmap(memmap, nr_pages);
532 	}
533 	return ret;
534 }
535 
536 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
537 {
538 	struct page *memmap = NULL;
539 	unsigned long *usemap = NULL;
540 
541 	if (ms->section_mem_map) {
542 		usemap = ms->pageblock_flags;
543 		memmap = sparse_decode_mem_map(ms->section_mem_map,
544 						__section_nr(ms));
545 		ms->section_mem_map = 0;
546 		ms->pageblock_flags = NULL;
547 	}
548 
549 	free_section_usemap(memmap, usemap);
550 }
551 #endif
552