1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * sparse memory mappings. 4 */ 5 #include <linux/mm.h> 6 #include <linux/slab.h> 7 #include <linux/mmzone.h> 8 #include <linux/bootmem.h> 9 #include <linux/compiler.h> 10 #include <linux/highmem.h> 11 #include <linux/export.h> 12 #include <linux/spinlock.h> 13 #include <linux/vmalloc.h> 14 15 #include "internal.h" 16 #include <asm/dma.h> 17 #include <asm/pgalloc.h> 18 #include <asm/pgtable.h> 19 20 /* 21 * Permanent SPARSEMEM data: 22 * 23 * 1) mem_section - memory sections, mem_map's for valid memory 24 */ 25 #ifdef CONFIG_SPARSEMEM_EXTREME 26 struct mem_section **mem_section; 27 #else 28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 29 ____cacheline_internodealigned_in_smp; 30 #endif 31 EXPORT_SYMBOL(mem_section); 32 33 #ifdef NODE_NOT_IN_PAGE_FLAGS 34 /* 35 * If we did not store the node number in the page then we have to 36 * do a lookup in the section_to_node_table in order to find which 37 * node the page belongs to. 38 */ 39 #if MAX_NUMNODES <= 256 40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 41 #else 42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 43 #endif 44 45 int page_to_nid(const struct page *page) 46 { 47 return section_to_node_table[page_to_section(page)]; 48 } 49 EXPORT_SYMBOL(page_to_nid); 50 51 static void set_section_nid(unsigned long section_nr, int nid) 52 { 53 section_to_node_table[section_nr] = nid; 54 } 55 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 56 static inline void set_section_nid(unsigned long section_nr, int nid) 57 { 58 } 59 #endif 60 61 #ifdef CONFIG_SPARSEMEM_EXTREME 62 static noinline struct mem_section __ref *sparse_index_alloc(int nid) 63 { 64 struct mem_section *section = NULL; 65 unsigned long array_size = SECTIONS_PER_ROOT * 66 sizeof(struct mem_section); 67 68 if (slab_is_available()) 69 section = kzalloc_node(array_size, GFP_KERNEL, nid); 70 else 71 section = memblock_virt_alloc_node(array_size, nid); 72 73 return section; 74 } 75 76 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 77 { 78 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 79 struct mem_section *section; 80 81 if (mem_section[root]) 82 return -EEXIST; 83 84 section = sparse_index_alloc(nid); 85 if (!section) 86 return -ENOMEM; 87 88 mem_section[root] = section; 89 90 return 0; 91 } 92 #else /* !SPARSEMEM_EXTREME */ 93 static inline int sparse_index_init(unsigned long section_nr, int nid) 94 { 95 return 0; 96 } 97 #endif 98 99 #ifdef CONFIG_SPARSEMEM_EXTREME 100 int __section_nr(struct mem_section* ms) 101 { 102 unsigned long root_nr; 103 struct mem_section *root = NULL; 104 105 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 106 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 107 if (!root) 108 continue; 109 110 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 111 break; 112 } 113 114 VM_BUG_ON(!root); 115 116 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 117 } 118 #else 119 int __section_nr(struct mem_section* ms) 120 { 121 return (int)(ms - mem_section[0]); 122 } 123 #endif 124 125 /* 126 * During early boot, before section_mem_map is used for an actual 127 * mem_map, we use section_mem_map to store the section's NUMA 128 * node. This keeps us from having to use another data structure. The 129 * node information is cleared just before we store the real mem_map. 130 */ 131 static inline unsigned long sparse_encode_early_nid(int nid) 132 { 133 return (nid << SECTION_NID_SHIFT); 134 } 135 136 static inline int sparse_early_nid(struct mem_section *section) 137 { 138 return (section->section_mem_map >> SECTION_NID_SHIFT); 139 } 140 141 /* Validate the physical addressing limitations of the model */ 142 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 143 unsigned long *end_pfn) 144 { 145 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 146 147 /* 148 * Sanity checks - do not allow an architecture to pass 149 * in larger pfns than the maximum scope of sparsemem: 150 */ 151 if (*start_pfn > max_sparsemem_pfn) { 152 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 153 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 154 *start_pfn, *end_pfn, max_sparsemem_pfn); 155 WARN_ON_ONCE(1); 156 *start_pfn = max_sparsemem_pfn; 157 *end_pfn = max_sparsemem_pfn; 158 } else if (*end_pfn > max_sparsemem_pfn) { 159 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 160 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 161 *start_pfn, *end_pfn, max_sparsemem_pfn); 162 WARN_ON_ONCE(1); 163 *end_pfn = max_sparsemem_pfn; 164 } 165 } 166 167 /* 168 * There are a number of times that we loop over NR_MEM_SECTIONS, 169 * looking for section_present() on each. But, when we have very 170 * large physical address spaces, NR_MEM_SECTIONS can also be 171 * very large which makes the loops quite long. 172 * 173 * Keeping track of this gives us an easy way to break out of 174 * those loops early. 175 */ 176 int __highest_present_section_nr; 177 static void section_mark_present(struct mem_section *ms) 178 { 179 int section_nr = __section_nr(ms); 180 181 if (section_nr > __highest_present_section_nr) 182 __highest_present_section_nr = section_nr; 183 184 ms->section_mem_map |= SECTION_MARKED_PRESENT; 185 } 186 187 static inline int next_present_section_nr(int section_nr) 188 { 189 do { 190 section_nr++; 191 if (present_section_nr(section_nr)) 192 return section_nr; 193 } while ((section_nr <= __highest_present_section_nr)); 194 195 return -1; 196 } 197 #define for_each_present_section_nr(start, section_nr) \ 198 for (section_nr = next_present_section_nr(start-1); \ 199 ((section_nr >= 0) && \ 200 (section_nr <= __highest_present_section_nr)); \ 201 section_nr = next_present_section_nr(section_nr)) 202 203 /* Record a memory area against a node. */ 204 void __init memory_present(int nid, unsigned long start, unsigned long end) 205 { 206 unsigned long pfn; 207 208 #ifdef CONFIG_SPARSEMEM_EXTREME 209 if (unlikely(!mem_section)) { 210 unsigned long size, align; 211 212 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS; 213 align = 1 << (INTERNODE_CACHE_SHIFT); 214 mem_section = memblock_virt_alloc(size, align); 215 } 216 #endif 217 218 start &= PAGE_SECTION_MASK; 219 mminit_validate_memmodel_limits(&start, &end); 220 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 221 unsigned long section = pfn_to_section_nr(pfn); 222 struct mem_section *ms; 223 224 sparse_index_init(section, nid); 225 set_section_nid(section, nid); 226 227 ms = __nr_to_section(section); 228 if (!ms->section_mem_map) { 229 ms->section_mem_map = sparse_encode_early_nid(nid) | 230 SECTION_IS_ONLINE; 231 section_mark_present(ms); 232 } 233 } 234 } 235 236 /* 237 * Subtle, we encode the real pfn into the mem_map such that 238 * the identity pfn - section_mem_map will return the actual 239 * physical page frame number. 240 */ 241 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 242 { 243 unsigned long coded_mem_map = 244 (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 245 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT)); 246 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK); 247 return coded_mem_map; 248 } 249 250 /* 251 * Decode mem_map from the coded memmap 252 */ 253 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 254 { 255 /* mask off the extra low bits of information */ 256 coded_mem_map &= SECTION_MAP_MASK; 257 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 258 } 259 260 static int __meminit sparse_init_one_section(struct mem_section *ms, 261 unsigned long pnum, struct page *mem_map, 262 unsigned long *pageblock_bitmap) 263 { 264 if (!present_section(ms)) 265 return -EINVAL; 266 267 ms->section_mem_map &= ~SECTION_MAP_MASK; 268 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | 269 SECTION_HAS_MEM_MAP; 270 ms->pageblock_flags = pageblock_bitmap; 271 272 return 1; 273 } 274 275 unsigned long usemap_size(void) 276 { 277 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long); 278 } 279 280 #ifdef CONFIG_MEMORY_HOTPLUG 281 static unsigned long *__kmalloc_section_usemap(void) 282 { 283 return kmalloc(usemap_size(), GFP_KERNEL); 284 } 285 #endif /* CONFIG_MEMORY_HOTPLUG */ 286 287 #ifdef CONFIG_MEMORY_HOTREMOVE 288 static unsigned long * __init 289 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 290 unsigned long size) 291 { 292 unsigned long goal, limit; 293 unsigned long *p; 294 int nid; 295 /* 296 * A page may contain usemaps for other sections preventing the 297 * page being freed and making a section unremovable while 298 * other sections referencing the usemap remain active. Similarly, 299 * a pgdat can prevent a section being removed. If section A 300 * contains a pgdat and section B contains the usemap, both 301 * sections become inter-dependent. This allocates usemaps 302 * from the same section as the pgdat where possible to avoid 303 * this problem. 304 */ 305 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); 306 limit = goal + (1UL << PA_SECTION_SHIFT); 307 nid = early_pfn_to_nid(goal >> PAGE_SHIFT); 308 again: 309 p = memblock_virt_alloc_try_nid_nopanic(size, 310 SMP_CACHE_BYTES, goal, limit, 311 nid); 312 if (!p && limit) { 313 limit = 0; 314 goto again; 315 } 316 return p; 317 } 318 319 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 320 { 321 unsigned long usemap_snr, pgdat_snr; 322 static unsigned long old_usemap_snr; 323 static unsigned long old_pgdat_snr; 324 struct pglist_data *pgdat = NODE_DATA(nid); 325 int usemap_nid; 326 327 /* First call */ 328 if (!old_usemap_snr) { 329 old_usemap_snr = NR_MEM_SECTIONS; 330 old_pgdat_snr = NR_MEM_SECTIONS; 331 } 332 333 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); 334 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 335 if (usemap_snr == pgdat_snr) 336 return; 337 338 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 339 /* skip redundant message */ 340 return; 341 342 old_usemap_snr = usemap_snr; 343 old_pgdat_snr = pgdat_snr; 344 345 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 346 if (usemap_nid != nid) { 347 pr_info("node %d must be removed before remove section %ld\n", 348 nid, usemap_snr); 349 return; 350 } 351 /* 352 * There is a circular dependency. 353 * Some platforms allow un-removable section because they will just 354 * gather other removable sections for dynamic partitioning. 355 * Just notify un-removable section's number here. 356 */ 357 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n", 358 usemap_snr, pgdat_snr, nid); 359 } 360 #else 361 static unsigned long * __init 362 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 363 unsigned long size) 364 { 365 return memblock_virt_alloc_node_nopanic(size, pgdat->node_id); 366 } 367 368 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 369 { 370 } 371 #endif /* CONFIG_MEMORY_HOTREMOVE */ 372 373 static void __init sparse_early_usemaps_alloc_node(void *data, 374 unsigned long pnum_begin, 375 unsigned long pnum_end, 376 unsigned long usemap_count, int nodeid) 377 { 378 void *usemap; 379 unsigned long pnum; 380 unsigned long **usemap_map = (unsigned long **)data; 381 int size = usemap_size(); 382 383 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid), 384 size * usemap_count); 385 if (!usemap) { 386 pr_warn("%s: allocation failed\n", __func__); 387 return; 388 } 389 390 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 391 if (!present_section_nr(pnum)) 392 continue; 393 usemap_map[pnum] = usemap; 394 usemap += size; 395 check_usemap_section_nr(nodeid, usemap_map[pnum]); 396 } 397 } 398 399 #ifndef CONFIG_SPARSEMEM_VMEMMAP 400 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid, 401 struct vmem_altmap *altmap) 402 { 403 struct page *map; 404 unsigned long size; 405 406 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); 407 map = memblock_virt_alloc_try_nid(size, 408 PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 409 BOOTMEM_ALLOC_ACCESSIBLE, nid); 410 return map; 411 } 412 void __init sparse_mem_maps_populate_node(struct page **map_map, 413 unsigned long pnum_begin, 414 unsigned long pnum_end, 415 unsigned long map_count, int nodeid) 416 { 417 void *map; 418 unsigned long pnum; 419 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION; 420 421 size = PAGE_ALIGN(size); 422 map = memblock_virt_alloc_try_nid_raw(size * map_count, 423 PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 424 BOOTMEM_ALLOC_ACCESSIBLE, nodeid); 425 if (map) { 426 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 427 if (!present_section_nr(pnum)) 428 continue; 429 map_map[pnum] = map; 430 map += size; 431 } 432 return; 433 } 434 435 /* fallback */ 436 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 437 struct mem_section *ms; 438 439 if (!present_section_nr(pnum)) 440 continue; 441 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid, NULL); 442 if (map_map[pnum]) 443 continue; 444 ms = __nr_to_section(pnum); 445 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n", 446 __func__); 447 ms->section_mem_map = 0; 448 } 449 } 450 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 451 452 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 453 static void __init sparse_early_mem_maps_alloc_node(void *data, 454 unsigned long pnum_begin, 455 unsigned long pnum_end, 456 unsigned long map_count, int nodeid) 457 { 458 struct page **map_map = (struct page **)data; 459 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end, 460 map_count, nodeid); 461 } 462 #else 463 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) 464 { 465 struct page *map; 466 struct mem_section *ms = __nr_to_section(pnum); 467 int nid = sparse_early_nid(ms); 468 469 map = sparse_mem_map_populate(pnum, nid, NULL); 470 if (map) 471 return map; 472 473 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n", 474 __func__); 475 ms->section_mem_map = 0; 476 return NULL; 477 } 478 #endif 479 480 void __weak __meminit vmemmap_populate_print_last(void) 481 { 482 } 483 484 /** 485 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap 486 * @map: usemap_map for pageblock flags or mmap_map for vmemmap 487 */ 488 static void __init alloc_usemap_and_memmap(void (*alloc_func) 489 (void *, unsigned long, unsigned long, 490 unsigned long, int), void *data) 491 { 492 unsigned long pnum; 493 unsigned long map_count; 494 int nodeid_begin = 0; 495 unsigned long pnum_begin = 0; 496 497 for_each_present_section_nr(0, pnum) { 498 struct mem_section *ms; 499 500 ms = __nr_to_section(pnum); 501 nodeid_begin = sparse_early_nid(ms); 502 pnum_begin = pnum; 503 break; 504 } 505 map_count = 1; 506 for_each_present_section_nr(pnum_begin + 1, pnum) { 507 struct mem_section *ms; 508 int nodeid; 509 510 ms = __nr_to_section(pnum); 511 nodeid = sparse_early_nid(ms); 512 if (nodeid == nodeid_begin) { 513 map_count++; 514 continue; 515 } 516 /* ok, we need to take cake of from pnum_begin to pnum - 1*/ 517 alloc_func(data, pnum_begin, pnum, 518 map_count, nodeid_begin); 519 /* new start, update count etc*/ 520 nodeid_begin = nodeid; 521 pnum_begin = pnum; 522 map_count = 1; 523 } 524 /* ok, last chunk */ 525 alloc_func(data, pnum_begin, __highest_present_section_nr+1, 526 map_count, nodeid_begin); 527 } 528 529 /* 530 * Allocate the accumulated non-linear sections, allocate a mem_map 531 * for each and record the physical to section mapping. 532 */ 533 void __init sparse_init(void) 534 { 535 unsigned long pnum; 536 struct page *map; 537 unsigned long *usemap; 538 unsigned long **usemap_map; 539 int size; 540 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 541 int size2; 542 struct page **map_map; 543 #endif 544 545 /* see include/linux/mmzone.h 'struct mem_section' definition */ 546 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section))); 547 548 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ 549 set_pageblock_order(); 550 551 /* 552 * map is using big page (aka 2M in x86 64 bit) 553 * usemap is less one page (aka 24 bytes) 554 * so alloc 2M (with 2M align) and 24 bytes in turn will 555 * make next 2M slip to one more 2M later. 556 * then in big system, the memory will have a lot of holes... 557 * here try to allocate 2M pages continuously. 558 * 559 * powerpc need to call sparse_init_one_section right after each 560 * sparse_early_mem_map_alloc, so allocate usemap_map at first. 561 */ 562 size = sizeof(unsigned long *) * NR_MEM_SECTIONS; 563 usemap_map = memblock_virt_alloc(size, 0); 564 if (!usemap_map) 565 panic("can not allocate usemap_map\n"); 566 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node, 567 (void *)usemap_map); 568 569 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 570 size2 = sizeof(struct page *) * NR_MEM_SECTIONS; 571 map_map = memblock_virt_alloc(size2, 0); 572 if (!map_map) 573 panic("can not allocate map_map\n"); 574 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node, 575 (void *)map_map); 576 #endif 577 578 for_each_present_section_nr(0, pnum) { 579 usemap = usemap_map[pnum]; 580 if (!usemap) 581 continue; 582 583 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 584 map = map_map[pnum]; 585 #else 586 map = sparse_early_mem_map_alloc(pnum); 587 #endif 588 if (!map) 589 continue; 590 591 sparse_init_one_section(__nr_to_section(pnum), pnum, map, 592 usemap); 593 } 594 595 vmemmap_populate_print_last(); 596 597 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 598 memblock_free_early(__pa(map_map), size2); 599 #endif 600 memblock_free_early(__pa(usemap_map), size); 601 } 602 603 #ifdef CONFIG_MEMORY_HOTPLUG 604 605 /* Mark all memory sections within the pfn range as online */ 606 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 607 { 608 unsigned long pfn; 609 610 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 611 unsigned long section_nr = pfn_to_section_nr(pfn); 612 struct mem_section *ms; 613 614 /* onlining code should never touch invalid ranges */ 615 if (WARN_ON(!valid_section_nr(section_nr))) 616 continue; 617 618 ms = __nr_to_section(section_nr); 619 ms->section_mem_map |= SECTION_IS_ONLINE; 620 } 621 } 622 623 #ifdef CONFIG_MEMORY_HOTREMOVE 624 /* Mark all memory sections within the pfn range as online */ 625 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 626 { 627 unsigned long pfn; 628 629 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 630 unsigned long section_nr = pfn_to_section_nr(pfn); 631 struct mem_section *ms; 632 633 /* 634 * TODO this needs some double checking. Offlining code makes 635 * sure to check pfn_valid but those checks might be just bogus 636 */ 637 if (WARN_ON(!valid_section_nr(section_nr))) 638 continue; 639 640 ms = __nr_to_section(section_nr); 641 ms->section_mem_map &= ~SECTION_IS_ONLINE; 642 } 643 } 644 #endif 645 646 #ifdef CONFIG_SPARSEMEM_VMEMMAP 647 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, 648 struct vmem_altmap *altmap) 649 { 650 /* This will make the necessary allocations eventually. */ 651 return sparse_mem_map_populate(pnum, nid, altmap); 652 } 653 static void __kfree_section_memmap(struct page *memmap, 654 struct vmem_altmap *altmap) 655 { 656 unsigned long start = (unsigned long)memmap; 657 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 658 659 vmemmap_free(start, end, altmap); 660 } 661 #ifdef CONFIG_MEMORY_HOTREMOVE 662 static void free_map_bootmem(struct page *memmap) 663 { 664 unsigned long start = (unsigned long)memmap; 665 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 666 667 vmemmap_free(start, end, NULL); 668 } 669 #endif /* CONFIG_MEMORY_HOTREMOVE */ 670 #else 671 static struct page *__kmalloc_section_memmap(void) 672 { 673 struct page *page, *ret; 674 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION; 675 676 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); 677 if (page) 678 goto got_map_page; 679 680 ret = vmalloc(memmap_size); 681 if (ret) 682 goto got_map_ptr; 683 684 return NULL; 685 got_map_page: 686 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); 687 got_map_ptr: 688 689 return ret; 690 } 691 692 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, 693 struct vmem_altmap *altmap) 694 { 695 return __kmalloc_section_memmap(); 696 } 697 698 static void __kfree_section_memmap(struct page *memmap, 699 struct vmem_altmap *altmap) 700 { 701 if (is_vmalloc_addr(memmap)) 702 vfree(memmap); 703 else 704 free_pages((unsigned long)memmap, 705 get_order(sizeof(struct page) * PAGES_PER_SECTION)); 706 } 707 708 #ifdef CONFIG_MEMORY_HOTREMOVE 709 static void free_map_bootmem(struct page *memmap) 710 { 711 unsigned long maps_section_nr, removing_section_nr, i; 712 unsigned long magic, nr_pages; 713 struct page *page = virt_to_page(memmap); 714 715 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 716 >> PAGE_SHIFT; 717 718 for (i = 0; i < nr_pages; i++, page++) { 719 magic = (unsigned long) page->freelist; 720 721 BUG_ON(magic == NODE_INFO); 722 723 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 724 removing_section_nr = page_private(page); 725 726 /* 727 * When this function is called, the removing section is 728 * logical offlined state. This means all pages are isolated 729 * from page allocator. If removing section's memmap is placed 730 * on the same section, it must not be freed. 731 * If it is freed, page allocator may allocate it which will 732 * be removed physically soon. 733 */ 734 if (maps_section_nr != removing_section_nr) 735 put_page_bootmem(page); 736 } 737 } 738 #endif /* CONFIG_MEMORY_HOTREMOVE */ 739 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 740 741 /* 742 * returns the number of sections whose mem_maps were properly 743 * set. If this is <=0, then that means that the passed-in 744 * map was not consumed and must be freed. 745 */ 746 int __meminit sparse_add_one_section(struct pglist_data *pgdat, 747 unsigned long start_pfn, struct vmem_altmap *altmap) 748 { 749 unsigned long section_nr = pfn_to_section_nr(start_pfn); 750 struct mem_section *ms; 751 struct page *memmap; 752 unsigned long *usemap; 753 unsigned long flags; 754 int ret; 755 756 /* 757 * no locking for this, because it does its own 758 * plus, it does a kmalloc 759 */ 760 ret = sparse_index_init(section_nr, pgdat->node_id); 761 if (ret < 0 && ret != -EEXIST) 762 return ret; 763 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, altmap); 764 if (!memmap) 765 return -ENOMEM; 766 usemap = __kmalloc_section_usemap(); 767 if (!usemap) { 768 __kfree_section_memmap(memmap, altmap); 769 return -ENOMEM; 770 } 771 772 pgdat_resize_lock(pgdat, &flags); 773 774 ms = __pfn_to_section(start_pfn); 775 if (ms->section_mem_map & SECTION_MARKED_PRESENT) { 776 ret = -EEXIST; 777 goto out; 778 } 779 780 #ifdef CONFIG_DEBUG_VM 781 /* 782 * Poison uninitialized struct pages in order to catch invalid flags 783 * combinations. 784 */ 785 memset(memmap, PAGE_POISON_PATTERN, sizeof(struct page) * PAGES_PER_SECTION); 786 #endif 787 788 section_mark_present(ms); 789 790 ret = sparse_init_one_section(ms, section_nr, memmap, usemap); 791 792 out: 793 pgdat_resize_unlock(pgdat, &flags); 794 if (ret <= 0) { 795 kfree(usemap); 796 __kfree_section_memmap(memmap, altmap); 797 } 798 return ret; 799 } 800 801 #ifdef CONFIG_MEMORY_HOTREMOVE 802 #ifdef CONFIG_MEMORY_FAILURE 803 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 804 { 805 int i; 806 807 if (!memmap) 808 return; 809 810 for (i = 0; i < nr_pages; i++) { 811 if (PageHWPoison(&memmap[i])) { 812 atomic_long_sub(1, &num_poisoned_pages); 813 ClearPageHWPoison(&memmap[i]); 814 } 815 } 816 } 817 #else 818 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 819 { 820 } 821 #endif 822 823 static void free_section_usemap(struct page *memmap, unsigned long *usemap, 824 struct vmem_altmap *altmap) 825 { 826 struct page *usemap_page; 827 828 if (!usemap) 829 return; 830 831 usemap_page = virt_to_page(usemap); 832 /* 833 * Check to see if allocation came from hot-plug-add 834 */ 835 if (PageSlab(usemap_page) || PageCompound(usemap_page)) { 836 kfree(usemap); 837 if (memmap) 838 __kfree_section_memmap(memmap, altmap); 839 return; 840 } 841 842 /* 843 * The usemap came from bootmem. This is packed with other usemaps 844 * on the section which has pgdat at boot time. Just keep it as is now. 845 */ 846 847 if (memmap) 848 free_map_bootmem(memmap); 849 } 850 851 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms, 852 unsigned long map_offset, struct vmem_altmap *altmap) 853 { 854 struct page *memmap = NULL; 855 unsigned long *usemap = NULL, flags; 856 struct pglist_data *pgdat = zone->zone_pgdat; 857 858 pgdat_resize_lock(pgdat, &flags); 859 if (ms->section_mem_map) { 860 usemap = ms->pageblock_flags; 861 memmap = sparse_decode_mem_map(ms->section_mem_map, 862 __section_nr(ms)); 863 ms->section_mem_map = 0; 864 ms->pageblock_flags = NULL; 865 } 866 pgdat_resize_unlock(pgdat, &flags); 867 868 clear_hwpoisoned_pages(memmap + map_offset, 869 PAGES_PER_SECTION - map_offset); 870 free_section_usemap(memmap, usemap, altmap); 871 } 872 #endif /* CONFIG_MEMORY_HOTREMOVE */ 873 #endif /* CONFIG_MEMORY_HOTPLUG */ 874