xref: /linux/mm/sparse.c (revision d91517839e5d95adc0cf4b28caa7af62a71de526)
1 /*
2  * sparse memory mappings.
3  */
4 #include <linux/mm.h>
5 #include <linux/slab.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/highmem.h>
9 #include <linux/export.h>
10 #include <linux/spinlock.h>
11 #include <linux/vmalloc.h>
12 #include "internal.h"
13 #include <asm/dma.h>
14 #include <asm/pgalloc.h>
15 #include <asm/pgtable.h>
16 
17 /*
18  * Permanent SPARSEMEM data:
19  *
20  * 1) mem_section	- memory sections, mem_map's for valid memory
21  */
22 #ifdef CONFIG_SPARSEMEM_EXTREME
23 struct mem_section *mem_section[NR_SECTION_ROOTS]
24 	____cacheline_internodealigned_in_smp;
25 #else
26 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
27 	____cacheline_internodealigned_in_smp;
28 #endif
29 EXPORT_SYMBOL(mem_section);
30 
31 #ifdef NODE_NOT_IN_PAGE_FLAGS
32 /*
33  * If we did not store the node number in the page then we have to
34  * do a lookup in the section_to_node_table in order to find which
35  * node the page belongs to.
36  */
37 #if MAX_NUMNODES <= 256
38 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
39 #else
40 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #endif
42 
43 int page_to_nid(const struct page *page)
44 {
45 	return section_to_node_table[page_to_section(page)];
46 }
47 EXPORT_SYMBOL(page_to_nid);
48 
49 static void set_section_nid(unsigned long section_nr, int nid)
50 {
51 	section_to_node_table[section_nr] = nid;
52 }
53 #else /* !NODE_NOT_IN_PAGE_FLAGS */
54 static inline void set_section_nid(unsigned long section_nr, int nid)
55 {
56 }
57 #endif
58 
59 #ifdef CONFIG_SPARSEMEM_EXTREME
60 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
61 {
62 	struct mem_section *section = NULL;
63 	unsigned long array_size = SECTIONS_PER_ROOT *
64 				   sizeof(struct mem_section);
65 
66 	if (slab_is_available()) {
67 		if (node_state(nid, N_HIGH_MEMORY))
68 			section = kzalloc_node(array_size, GFP_KERNEL, nid);
69 		else
70 			section = kzalloc(array_size, GFP_KERNEL);
71 	} else {
72 		section = memblock_virt_alloc_node(array_size, nid);
73 	}
74 
75 	return section;
76 }
77 
78 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
79 {
80 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
81 	struct mem_section *section;
82 
83 	if (mem_section[root])
84 		return -EEXIST;
85 
86 	section = sparse_index_alloc(nid);
87 	if (!section)
88 		return -ENOMEM;
89 
90 	mem_section[root] = section;
91 
92 	return 0;
93 }
94 #else /* !SPARSEMEM_EXTREME */
95 static inline int sparse_index_init(unsigned long section_nr, int nid)
96 {
97 	return 0;
98 }
99 #endif
100 
101 /*
102  * Although written for the SPARSEMEM_EXTREME case, this happens
103  * to also work for the flat array case because
104  * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
105  */
106 int __section_nr(struct mem_section* ms)
107 {
108 	unsigned long root_nr;
109 	struct mem_section* root;
110 
111 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
112 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
113 		if (!root)
114 			continue;
115 
116 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
117 		     break;
118 	}
119 
120 	VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
121 
122 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
123 }
124 
125 /*
126  * During early boot, before section_mem_map is used for an actual
127  * mem_map, we use section_mem_map to store the section's NUMA
128  * node.  This keeps us from having to use another data structure.  The
129  * node information is cleared just before we store the real mem_map.
130  */
131 static inline unsigned long sparse_encode_early_nid(int nid)
132 {
133 	return (nid << SECTION_NID_SHIFT);
134 }
135 
136 static inline int sparse_early_nid(struct mem_section *section)
137 {
138 	return (section->section_mem_map >> SECTION_NID_SHIFT);
139 }
140 
141 /* Validate the physical addressing limitations of the model */
142 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
143 						unsigned long *end_pfn)
144 {
145 	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
146 
147 	/*
148 	 * Sanity checks - do not allow an architecture to pass
149 	 * in larger pfns than the maximum scope of sparsemem:
150 	 */
151 	if (*start_pfn > max_sparsemem_pfn) {
152 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
153 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
154 			*start_pfn, *end_pfn, max_sparsemem_pfn);
155 		WARN_ON_ONCE(1);
156 		*start_pfn = max_sparsemem_pfn;
157 		*end_pfn = max_sparsemem_pfn;
158 	} else if (*end_pfn > max_sparsemem_pfn) {
159 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
160 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
161 			*start_pfn, *end_pfn, max_sparsemem_pfn);
162 		WARN_ON_ONCE(1);
163 		*end_pfn = max_sparsemem_pfn;
164 	}
165 }
166 
167 /* Record a memory area against a node. */
168 void __init memory_present(int nid, unsigned long start, unsigned long end)
169 {
170 	unsigned long pfn;
171 
172 	start &= PAGE_SECTION_MASK;
173 	mminit_validate_memmodel_limits(&start, &end);
174 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
175 		unsigned long section = pfn_to_section_nr(pfn);
176 		struct mem_section *ms;
177 
178 		sparse_index_init(section, nid);
179 		set_section_nid(section, nid);
180 
181 		ms = __nr_to_section(section);
182 		if (!ms->section_mem_map)
183 			ms->section_mem_map = sparse_encode_early_nid(nid) |
184 							SECTION_MARKED_PRESENT;
185 	}
186 }
187 
188 /*
189  * Only used by the i386 NUMA architecures, but relatively
190  * generic code.
191  */
192 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
193 						     unsigned long end_pfn)
194 {
195 	unsigned long pfn;
196 	unsigned long nr_pages = 0;
197 
198 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
199 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
200 		if (nid != early_pfn_to_nid(pfn))
201 			continue;
202 
203 		if (pfn_present(pfn))
204 			nr_pages += PAGES_PER_SECTION;
205 	}
206 
207 	return nr_pages * sizeof(struct page);
208 }
209 
210 /*
211  * Subtle, we encode the real pfn into the mem_map such that
212  * the identity pfn - section_mem_map will return the actual
213  * physical page frame number.
214  */
215 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
216 {
217 	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
218 }
219 
220 /*
221  * Decode mem_map from the coded memmap
222  */
223 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
224 {
225 	/* mask off the extra low bits of information */
226 	coded_mem_map &= SECTION_MAP_MASK;
227 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
228 }
229 
230 static int __meminit sparse_init_one_section(struct mem_section *ms,
231 		unsigned long pnum, struct page *mem_map,
232 		unsigned long *pageblock_bitmap)
233 {
234 	if (!present_section(ms))
235 		return -EINVAL;
236 
237 	ms->section_mem_map &= ~SECTION_MAP_MASK;
238 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
239 							SECTION_HAS_MEM_MAP;
240  	ms->pageblock_flags = pageblock_bitmap;
241 
242 	return 1;
243 }
244 
245 unsigned long usemap_size(void)
246 {
247 	unsigned long size_bytes;
248 	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
249 	size_bytes = roundup(size_bytes, sizeof(unsigned long));
250 	return size_bytes;
251 }
252 
253 #ifdef CONFIG_MEMORY_HOTPLUG
254 static unsigned long *__kmalloc_section_usemap(void)
255 {
256 	return kmalloc(usemap_size(), GFP_KERNEL);
257 }
258 #endif /* CONFIG_MEMORY_HOTPLUG */
259 
260 #ifdef CONFIG_MEMORY_HOTREMOVE
261 static unsigned long * __init
262 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
263 					 unsigned long size)
264 {
265 	unsigned long goal, limit;
266 	unsigned long *p;
267 	int nid;
268 	/*
269 	 * A page may contain usemaps for other sections preventing the
270 	 * page being freed and making a section unremovable while
271 	 * other sections referencing the usemap retmain active. Similarly,
272 	 * a pgdat can prevent a section being removed. If section A
273 	 * contains a pgdat and section B contains the usemap, both
274 	 * sections become inter-dependent. This allocates usemaps
275 	 * from the same section as the pgdat where possible to avoid
276 	 * this problem.
277 	 */
278 	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
279 	limit = goal + (1UL << PA_SECTION_SHIFT);
280 	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
281 again:
282 	p = memblock_virt_alloc_try_nid_nopanic(size,
283 						SMP_CACHE_BYTES, goal, limit,
284 						nid);
285 	if (!p && limit) {
286 		limit = 0;
287 		goto again;
288 	}
289 	return p;
290 }
291 
292 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
293 {
294 	unsigned long usemap_snr, pgdat_snr;
295 	static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
296 	static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
297 	struct pglist_data *pgdat = NODE_DATA(nid);
298 	int usemap_nid;
299 
300 	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
301 	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
302 	if (usemap_snr == pgdat_snr)
303 		return;
304 
305 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
306 		/* skip redundant message */
307 		return;
308 
309 	old_usemap_snr = usemap_snr;
310 	old_pgdat_snr = pgdat_snr;
311 
312 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
313 	if (usemap_nid != nid) {
314 		printk(KERN_INFO
315 		       "node %d must be removed before remove section %ld\n",
316 		       nid, usemap_snr);
317 		return;
318 	}
319 	/*
320 	 * There is a circular dependency.
321 	 * Some platforms allow un-removable section because they will just
322 	 * gather other removable sections for dynamic partitioning.
323 	 * Just notify un-removable section's number here.
324 	 */
325 	printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
326 	       pgdat_snr, nid);
327 	printk(KERN_CONT
328 	       " have a circular dependency on usemap and pgdat allocations\n");
329 }
330 #else
331 static unsigned long * __init
332 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
333 					 unsigned long size)
334 {
335 	return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
336 }
337 
338 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
339 {
340 }
341 #endif /* CONFIG_MEMORY_HOTREMOVE */
342 
343 static void __init sparse_early_usemaps_alloc_node(void *data,
344 				 unsigned long pnum_begin,
345 				 unsigned long pnum_end,
346 				 unsigned long usemap_count, int nodeid)
347 {
348 	void *usemap;
349 	unsigned long pnum;
350 	unsigned long **usemap_map = (unsigned long **)data;
351 	int size = usemap_size();
352 
353 	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
354 							  size * usemap_count);
355 	if (!usemap) {
356 		printk(KERN_WARNING "%s: allocation failed\n", __func__);
357 		return;
358 	}
359 
360 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
361 		if (!present_section_nr(pnum))
362 			continue;
363 		usemap_map[pnum] = usemap;
364 		usemap += size;
365 		check_usemap_section_nr(nodeid, usemap_map[pnum]);
366 	}
367 }
368 
369 #ifndef CONFIG_SPARSEMEM_VMEMMAP
370 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
371 {
372 	struct page *map;
373 	unsigned long size;
374 
375 	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
376 	if (map)
377 		return map;
378 
379 	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
380 	map = memblock_virt_alloc_try_nid(size,
381 					  PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
382 					  BOOTMEM_ALLOC_ACCESSIBLE, nid);
383 	return map;
384 }
385 void __init sparse_mem_maps_populate_node(struct page **map_map,
386 					  unsigned long pnum_begin,
387 					  unsigned long pnum_end,
388 					  unsigned long map_count, int nodeid)
389 {
390 	void *map;
391 	unsigned long pnum;
392 	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
393 
394 	map = alloc_remap(nodeid, size * map_count);
395 	if (map) {
396 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
397 			if (!present_section_nr(pnum))
398 				continue;
399 			map_map[pnum] = map;
400 			map += size;
401 		}
402 		return;
403 	}
404 
405 	size = PAGE_ALIGN(size);
406 	map = memblock_virt_alloc_try_nid(size * map_count,
407 					  PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
408 					  BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
409 	if (map) {
410 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
411 			if (!present_section_nr(pnum))
412 				continue;
413 			map_map[pnum] = map;
414 			map += size;
415 		}
416 		return;
417 	}
418 
419 	/* fallback */
420 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
421 		struct mem_section *ms;
422 
423 		if (!present_section_nr(pnum))
424 			continue;
425 		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
426 		if (map_map[pnum])
427 			continue;
428 		ms = __nr_to_section(pnum);
429 		printk(KERN_ERR "%s: sparsemem memory map backing failed "
430 			"some memory will not be available.\n", __func__);
431 		ms->section_mem_map = 0;
432 	}
433 }
434 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
435 
436 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
437 static void __init sparse_early_mem_maps_alloc_node(void *data,
438 				 unsigned long pnum_begin,
439 				 unsigned long pnum_end,
440 				 unsigned long map_count, int nodeid)
441 {
442 	struct page **map_map = (struct page **)data;
443 	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
444 					 map_count, nodeid);
445 }
446 #else
447 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
448 {
449 	struct page *map;
450 	struct mem_section *ms = __nr_to_section(pnum);
451 	int nid = sparse_early_nid(ms);
452 
453 	map = sparse_mem_map_populate(pnum, nid);
454 	if (map)
455 		return map;
456 
457 	printk(KERN_ERR "%s: sparsemem memory map backing failed "
458 			"some memory will not be available.\n", __func__);
459 	ms->section_mem_map = 0;
460 	return NULL;
461 }
462 #endif
463 
464 void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
465 {
466 }
467 
468 /**
469  *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
470  *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
471  */
472 static void __init alloc_usemap_and_memmap(void (*alloc_func)
473 					(void *, unsigned long, unsigned long,
474 					unsigned long, int), void *data)
475 {
476 	unsigned long pnum;
477 	unsigned long map_count;
478 	int nodeid_begin = 0;
479 	unsigned long pnum_begin = 0;
480 
481 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
482 		struct mem_section *ms;
483 
484 		if (!present_section_nr(pnum))
485 			continue;
486 		ms = __nr_to_section(pnum);
487 		nodeid_begin = sparse_early_nid(ms);
488 		pnum_begin = pnum;
489 		break;
490 	}
491 	map_count = 1;
492 	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
493 		struct mem_section *ms;
494 		int nodeid;
495 
496 		if (!present_section_nr(pnum))
497 			continue;
498 		ms = __nr_to_section(pnum);
499 		nodeid = sparse_early_nid(ms);
500 		if (nodeid == nodeid_begin) {
501 			map_count++;
502 			continue;
503 		}
504 		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
505 		alloc_func(data, pnum_begin, pnum,
506 						map_count, nodeid_begin);
507 		/* new start, update count etc*/
508 		nodeid_begin = nodeid;
509 		pnum_begin = pnum;
510 		map_count = 1;
511 	}
512 	/* ok, last chunk */
513 	alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
514 						map_count, nodeid_begin);
515 }
516 
517 /*
518  * Allocate the accumulated non-linear sections, allocate a mem_map
519  * for each and record the physical to section mapping.
520  */
521 void __init sparse_init(void)
522 {
523 	unsigned long pnum;
524 	struct page *map;
525 	unsigned long *usemap;
526 	unsigned long **usemap_map;
527 	int size;
528 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
529 	int size2;
530 	struct page **map_map;
531 #endif
532 
533 	/* see include/linux/mmzone.h 'struct mem_section' definition */
534 	BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
535 
536 	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
537 	set_pageblock_order();
538 
539 	/*
540 	 * map is using big page (aka 2M in x86 64 bit)
541 	 * usemap is less one page (aka 24 bytes)
542 	 * so alloc 2M (with 2M align) and 24 bytes in turn will
543 	 * make next 2M slip to one more 2M later.
544 	 * then in big system, the memory will have a lot of holes...
545 	 * here try to allocate 2M pages continuously.
546 	 *
547 	 * powerpc need to call sparse_init_one_section right after each
548 	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
549 	 */
550 	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
551 	usemap_map = memblock_virt_alloc(size, 0);
552 	if (!usemap_map)
553 		panic("can not allocate usemap_map\n");
554 	alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
555 							(void *)usemap_map);
556 
557 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
558 	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
559 	map_map = memblock_virt_alloc(size2, 0);
560 	if (!map_map)
561 		panic("can not allocate map_map\n");
562 	alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
563 							(void *)map_map);
564 #endif
565 
566 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
567 		if (!present_section_nr(pnum))
568 			continue;
569 
570 		usemap = usemap_map[pnum];
571 		if (!usemap)
572 			continue;
573 
574 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
575 		map = map_map[pnum];
576 #else
577 		map = sparse_early_mem_map_alloc(pnum);
578 #endif
579 		if (!map)
580 			continue;
581 
582 		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
583 								usemap);
584 	}
585 
586 	vmemmap_populate_print_last();
587 
588 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
589 	memblock_free_early(__pa(map_map), size2);
590 #endif
591 	memblock_free_early(__pa(usemap_map), size);
592 }
593 
594 #ifdef CONFIG_MEMORY_HOTPLUG
595 #ifdef CONFIG_SPARSEMEM_VMEMMAP
596 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
597 {
598 	/* This will make the necessary allocations eventually. */
599 	return sparse_mem_map_populate(pnum, nid);
600 }
601 static void __kfree_section_memmap(struct page *memmap)
602 {
603 	unsigned long start = (unsigned long)memmap;
604 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
605 
606 	vmemmap_free(start, end);
607 }
608 #ifdef CONFIG_MEMORY_HOTREMOVE
609 static void free_map_bootmem(struct page *memmap)
610 {
611 	unsigned long start = (unsigned long)memmap;
612 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
613 
614 	vmemmap_free(start, end);
615 }
616 #endif /* CONFIG_MEMORY_HOTREMOVE */
617 #else
618 static struct page *__kmalloc_section_memmap(void)
619 {
620 	struct page *page, *ret;
621 	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
622 
623 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
624 	if (page)
625 		goto got_map_page;
626 
627 	ret = vmalloc(memmap_size);
628 	if (ret)
629 		goto got_map_ptr;
630 
631 	return NULL;
632 got_map_page:
633 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
634 got_map_ptr:
635 
636 	return ret;
637 }
638 
639 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
640 {
641 	return __kmalloc_section_memmap();
642 }
643 
644 static void __kfree_section_memmap(struct page *memmap)
645 {
646 	if (is_vmalloc_addr(memmap))
647 		vfree(memmap);
648 	else
649 		free_pages((unsigned long)memmap,
650 			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
651 }
652 
653 #ifdef CONFIG_MEMORY_HOTREMOVE
654 static void free_map_bootmem(struct page *memmap)
655 {
656 	unsigned long maps_section_nr, removing_section_nr, i;
657 	unsigned long magic, nr_pages;
658 	struct page *page = virt_to_page(memmap);
659 
660 	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
661 		>> PAGE_SHIFT;
662 
663 	for (i = 0; i < nr_pages; i++, page++) {
664 		magic = (unsigned long) page->lru.next;
665 
666 		BUG_ON(magic == NODE_INFO);
667 
668 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
669 		removing_section_nr = page->private;
670 
671 		/*
672 		 * When this function is called, the removing section is
673 		 * logical offlined state. This means all pages are isolated
674 		 * from page allocator. If removing section's memmap is placed
675 		 * on the same section, it must not be freed.
676 		 * If it is freed, page allocator may allocate it which will
677 		 * be removed physically soon.
678 		 */
679 		if (maps_section_nr != removing_section_nr)
680 			put_page_bootmem(page);
681 	}
682 }
683 #endif /* CONFIG_MEMORY_HOTREMOVE */
684 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
685 
686 /*
687  * returns the number of sections whose mem_maps were properly
688  * set.  If this is <=0, then that means that the passed-in
689  * map was not consumed and must be freed.
690  */
691 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn)
692 {
693 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
694 	struct pglist_data *pgdat = zone->zone_pgdat;
695 	struct mem_section *ms;
696 	struct page *memmap;
697 	unsigned long *usemap;
698 	unsigned long flags;
699 	int ret;
700 
701 	/*
702 	 * no locking for this, because it does its own
703 	 * plus, it does a kmalloc
704 	 */
705 	ret = sparse_index_init(section_nr, pgdat->node_id);
706 	if (ret < 0 && ret != -EEXIST)
707 		return ret;
708 	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
709 	if (!memmap)
710 		return -ENOMEM;
711 	usemap = __kmalloc_section_usemap();
712 	if (!usemap) {
713 		__kfree_section_memmap(memmap);
714 		return -ENOMEM;
715 	}
716 
717 	pgdat_resize_lock(pgdat, &flags);
718 
719 	ms = __pfn_to_section(start_pfn);
720 	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
721 		ret = -EEXIST;
722 		goto out;
723 	}
724 
725 	memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
726 
727 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
728 
729 	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
730 
731 out:
732 	pgdat_resize_unlock(pgdat, &flags);
733 	if (ret <= 0) {
734 		kfree(usemap);
735 		__kfree_section_memmap(memmap);
736 	}
737 	return ret;
738 }
739 
740 #ifdef CONFIG_MEMORY_HOTREMOVE
741 #ifdef CONFIG_MEMORY_FAILURE
742 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
743 {
744 	int i;
745 
746 	if (!memmap)
747 		return;
748 
749 	for (i = 0; i < PAGES_PER_SECTION; i++) {
750 		if (PageHWPoison(&memmap[i])) {
751 			atomic_long_sub(1, &num_poisoned_pages);
752 			ClearPageHWPoison(&memmap[i]);
753 		}
754 	}
755 }
756 #else
757 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
758 {
759 }
760 #endif
761 
762 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
763 {
764 	struct page *usemap_page;
765 
766 	if (!usemap)
767 		return;
768 
769 	usemap_page = virt_to_page(usemap);
770 	/*
771 	 * Check to see if allocation came from hot-plug-add
772 	 */
773 	if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
774 		kfree(usemap);
775 		if (memmap)
776 			__kfree_section_memmap(memmap);
777 		return;
778 	}
779 
780 	/*
781 	 * The usemap came from bootmem. This is packed with other usemaps
782 	 * on the section which has pgdat at boot time. Just keep it as is now.
783 	 */
784 
785 	if (memmap)
786 		free_map_bootmem(memmap);
787 }
788 
789 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
790 {
791 	struct page *memmap = NULL;
792 	unsigned long *usemap = NULL, flags;
793 	struct pglist_data *pgdat = zone->zone_pgdat;
794 
795 	pgdat_resize_lock(pgdat, &flags);
796 	if (ms->section_mem_map) {
797 		usemap = ms->pageblock_flags;
798 		memmap = sparse_decode_mem_map(ms->section_mem_map,
799 						__section_nr(ms));
800 		ms->section_mem_map = 0;
801 		ms->pageblock_flags = NULL;
802 	}
803 	pgdat_resize_unlock(pgdat, &flags);
804 
805 	clear_hwpoisoned_pages(memmap, PAGES_PER_SECTION);
806 	free_section_usemap(memmap, usemap);
807 }
808 #endif /* CONFIG_MEMORY_HOTREMOVE */
809 #endif /* CONFIG_MEMORY_HOTPLUG */
810