1 /* 2 * sparse memory mappings. 3 */ 4 #include <linux/mm.h> 5 #include <linux/slab.h> 6 #include <linux/mmzone.h> 7 #include <linux/bootmem.h> 8 #include <linux/highmem.h> 9 #include <linux/export.h> 10 #include <linux/spinlock.h> 11 #include <linux/vmalloc.h> 12 #include "internal.h" 13 #include <asm/dma.h> 14 #include <asm/pgalloc.h> 15 #include <asm/pgtable.h> 16 17 /* 18 * Permanent SPARSEMEM data: 19 * 20 * 1) mem_section - memory sections, mem_map's for valid memory 21 */ 22 #ifdef CONFIG_SPARSEMEM_EXTREME 23 struct mem_section *mem_section[NR_SECTION_ROOTS] 24 ____cacheline_internodealigned_in_smp; 25 #else 26 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 27 ____cacheline_internodealigned_in_smp; 28 #endif 29 EXPORT_SYMBOL(mem_section); 30 31 #ifdef NODE_NOT_IN_PAGE_FLAGS 32 /* 33 * If we did not store the node number in the page then we have to 34 * do a lookup in the section_to_node_table in order to find which 35 * node the page belongs to. 36 */ 37 #if MAX_NUMNODES <= 256 38 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 39 #else 40 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 41 #endif 42 43 int page_to_nid(const struct page *page) 44 { 45 return section_to_node_table[page_to_section(page)]; 46 } 47 EXPORT_SYMBOL(page_to_nid); 48 49 static void set_section_nid(unsigned long section_nr, int nid) 50 { 51 section_to_node_table[section_nr] = nid; 52 } 53 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 54 static inline void set_section_nid(unsigned long section_nr, int nid) 55 { 56 } 57 #endif 58 59 #ifdef CONFIG_SPARSEMEM_EXTREME 60 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid) 61 { 62 struct mem_section *section = NULL; 63 unsigned long array_size = SECTIONS_PER_ROOT * 64 sizeof(struct mem_section); 65 66 if (slab_is_available()) { 67 if (node_state(nid, N_HIGH_MEMORY)) 68 section = kmalloc_node(array_size, GFP_KERNEL, nid); 69 else 70 section = kmalloc(array_size, GFP_KERNEL); 71 } else 72 section = alloc_bootmem_node(NODE_DATA(nid), array_size); 73 74 if (section) 75 memset(section, 0, array_size); 76 77 return section; 78 } 79 80 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 81 { 82 static DEFINE_SPINLOCK(index_init_lock); 83 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 84 struct mem_section *section; 85 int ret = 0; 86 87 if (mem_section[root]) 88 return -EEXIST; 89 90 section = sparse_index_alloc(nid); 91 if (!section) 92 return -ENOMEM; 93 /* 94 * This lock keeps two different sections from 95 * reallocating for the same index 96 */ 97 spin_lock(&index_init_lock); 98 99 if (mem_section[root]) { 100 ret = -EEXIST; 101 goto out; 102 } 103 104 mem_section[root] = section; 105 out: 106 spin_unlock(&index_init_lock); 107 return ret; 108 } 109 #else /* !SPARSEMEM_EXTREME */ 110 static inline int sparse_index_init(unsigned long section_nr, int nid) 111 { 112 return 0; 113 } 114 #endif 115 116 /* 117 * Although written for the SPARSEMEM_EXTREME case, this happens 118 * to also work for the flat array case because 119 * NR_SECTION_ROOTS==NR_MEM_SECTIONS. 120 */ 121 int __section_nr(struct mem_section* ms) 122 { 123 unsigned long root_nr; 124 struct mem_section* root; 125 126 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 127 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 128 if (!root) 129 continue; 130 131 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 132 break; 133 } 134 135 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 136 } 137 138 /* 139 * During early boot, before section_mem_map is used for an actual 140 * mem_map, we use section_mem_map to store the section's NUMA 141 * node. This keeps us from having to use another data structure. The 142 * node information is cleared just before we store the real mem_map. 143 */ 144 static inline unsigned long sparse_encode_early_nid(int nid) 145 { 146 return (nid << SECTION_NID_SHIFT); 147 } 148 149 static inline int sparse_early_nid(struct mem_section *section) 150 { 151 return (section->section_mem_map >> SECTION_NID_SHIFT); 152 } 153 154 /* Validate the physical addressing limitations of the model */ 155 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 156 unsigned long *end_pfn) 157 { 158 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 159 160 /* 161 * Sanity checks - do not allow an architecture to pass 162 * in larger pfns than the maximum scope of sparsemem: 163 */ 164 if (*start_pfn > max_sparsemem_pfn) { 165 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 166 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 167 *start_pfn, *end_pfn, max_sparsemem_pfn); 168 WARN_ON_ONCE(1); 169 *start_pfn = max_sparsemem_pfn; 170 *end_pfn = max_sparsemem_pfn; 171 } else if (*end_pfn > max_sparsemem_pfn) { 172 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 173 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 174 *start_pfn, *end_pfn, max_sparsemem_pfn); 175 WARN_ON_ONCE(1); 176 *end_pfn = max_sparsemem_pfn; 177 } 178 } 179 180 /* Record a memory area against a node. */ 181 void __init memory_present(int nid, unsigned long start, unsigned long end) 182 { 183 unsigned long pfn; 184 185 start &= PAGE_SECTION_MASK; 186 mminit_validate_memmodel_limits(&start, &end); 187 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 188 unsigned long section = pfn_to_section_nr(pfn); 189 struct mem_section *ms; 190 191 sparse_index_init(section, nid); 192 set_section_nid(section, nid); 193 194 ms = __nr_to_section(section); 195 if (!ms->section_mem_map) 196 ms->section_mem_map = sparse_encode_early_nid(nid) | 197 SECTION_MARKED_PRESENT; 198 } 199 } 200 201 /* 202 * Only used by the i386 NUMA architecures, but relatively 203 * generic code. 204 */ 205 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn, 206 unsigned long end_pfn) 207 { 208 unsigned long pfn; 209 unsigned long nr_pages = 0; 210 211 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 212 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 213 if (nid != early_pfn_to_nid(pfn)) 214 continue; 215 216 if (pfn_present(pfn)) 217 nr_pages += PAGES_PER_SECTION; 218 } 219 220 return nr_pages * sizeof(struct page); 221 } 222 223 /* 224 * Subtle, we encode the real pfn into the mem_map such that 225 * the identity pfn - section_mem_map will return the actual 226 * physical page frame number. 227 */ 228 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 229 { 230 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 231 } 232 233 /* 234 * Decode mem_map from the coded memmap 235 */ 236 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 237 { 238 /* mask off the extra low bits of information */ 239 coded_mem_map &= SECTION_MAP_MASK; 240 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 241 } 242 243 static int __meminit sparse_init_one_section(struct mem_section *ms, 244 unsigned long pnum, struct page *mem_map, 245 unsigned long *pageblock_bitmap) 246 { 247 if (!present_section(ms)) 248 return -EINVAL; 249 250 ms->section_mem_map &= ~SECTION_MAP_MASK; 251 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | 252 SECTION_HAS_MEM_MAP; 253 ms->pageblock_flags = pageblock_bitmap; 254 255 return 1; 256 } 257 258 unsigned long usemap_size(void) 259 { 260 unsigned long size_bytes; 261 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8; 262 size_bytes = roundup(size_bytes, sizeof(unsigned long)); 263 return size_bytes; 264 } 265 266 #ifdef CONFIG_MEMORY_HOTPLUG 267 static unsigned long *__kmalloc_section_usemap(void) 268 { 269 return kmalloc(usemap_size(), GFP_KERNEL); 270 } 271 #endif /* CONFIG_MEMORY_HOTPLUG */ 272 273 #ifdef CONFIG_MEMORY_HOTREMOVE 274 static unsigned long * __init 275 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 276 unsigned long size) 277 { 278 unsigned long goal, limit; 279 unsigned long *p; 280 int nid; 281 /* 282 * A page may contain usemaps for other sections preventing the 283 * page being freed and making a section unremovable while 284 * other sections referencing the usemap retmain active. Similarly, 285 * a pgdat can prevent a section being removed. If section A 286 * contains a pgdat and section B contains the usemap, both 287 * sections become inter-dependent. This allocates usemaps 288 * from the same section as the pgdat where possible to avoid 289 * this problem. 290 */ 291 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); 292 limit = goal + (1UL << PA_SECTION_SHIFT); 293 nid = early_pfn_to_nid(goal >> PAGE_SHIFT); 294 again: 295 p = ___alloc_bootmem_node_nopanic(NODE_DATA(nid), size, 296 SMP_CACHE_BYTES, goal, limit); 297 if (!p && limit) { 298 limit = 0; 299 goto again; 300 } 301 return p; 302 } 303 304 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 305 { 306 unsigned long usemap_snr, pgdat_snr; 307 static unsigned long old_usemap_snr = NR_MEM_SECTIONS; 308 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS; 309 struct pglist_data *pgdat = NODE_DATA(nid); 310 int usemap_nid; 311 312 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); 313 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 314 if (usemap_snr == pgdat_snr) 315 return; 316 317 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 318 /* skip redundant message */ 319 return; 320 321 old_usemap_snr = usemap_snr; 322 old_pgdat_snr = pgdat_snr; 323 324 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 325 if (usemap_nid != nid) { 326 printk(KERN_INFO 327 "node %d must be removed before remove section %ld\n", 328 nid, usemap_snr); 329 return; 330 } 331 /* 332 * There is a circular dependency. 333 * Some platforms allow un-removable section because they will just 334 * gather other removable sections for dynamic partitioning. 335 * Just notify un-removable section's number here. 336 */ 337 printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr, 338 pgdat_snr, nid); 339 printk(KERN_CONT 340 " have a circular dependency on usemap and pgdat allocations\n"); 341 } 342 #else 343 static unsigned long * __init 344 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 345 unsigned long size) 346 { 347 return alloc_bootmem_node_nopanic(pgdat, size); 348 } 349 350 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 351 { 352 } 353 #endif /* CONFIG_MEMORY_HOTREMOVE */ 354 355 static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map, 356 unsigned long pnum_begin, 357 unsigned long pnum_end, 358 unsigned long usemap_count, int nodeid) 359 { 360 void *usemap; 361 unsigned long pnum; 362 int size = usemap_size(); 363 364 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid), 365 size * usemap_count); 366 if (!usemap) { 367 printk(KERN_WARNING "%s: allocation failed\n", __func__); 368 return; 369 } 370 371 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 372 if (!present_section_nr(pnum)) 373 continue; 374 usemap_map[pnum] = usemap; 375 usemap += size; 376 check_usemap_section_nr(nodeid, usemap_map[pnum]); 377 } 378 } 379 380 #ifndef CONFIG_SPARSEMEM_VMEMMAP 381 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid) 382 { 383 struct page *map; 384 unsigned long size; 385 386 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION); 387 if (map) 388 return map; 389 390 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); 391 map = __alloc_bootmem_node_high(NODE_DATA(nid), size, 392 PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 393 return map; 394 } 395 void __init sparse_mem_maps_populate_node(struct page **map_map, 396 unsigned long pnum_begin, 397 unsigned long pnum_end, 398 unsigned long map_count, int nodeid) 399 { 400 void *map; 401 unsigned long pnum; 402 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION; 403 404 map = alloc_remap(nodeid, size * map_count); 405 if (map) { 406 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 407 if (!present_section_nr(pnum)) 408 continue; 409 map_map[pnum] = map; 410 map += size; 411 } 412 return; 413 } 414 415 size = PAGE_ALIGN(size); 416 map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count, 417 PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 418 if (map) { 419 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 420 if (!present_section_nr(pnum)) 421 continue; 422 map_map[pnum] = map; 423 map += size; 424 } 425 return; 426 } 427 428 /* fallback */ 429 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 430 struct mem_section *ms; 431 432 if (!present_section_nr(pnum)) 433 continue; 434 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid); 435 if (map_map[pnum]) 436 continue; 437 ms = __nr_to_section(pnum); 438 printk(KERN_ERR "%s: sparsemem memory map backing failed " 439 "some memory will not be available.\n", __func__); 440 ms->section_mem_map = 0; 441 } 442 } 443 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 444 445 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 446 static void __init sparse_early_mem_maps_alloc_node(struct page **map_map, 447 unsigned long pnum_begin, 448 unsigned long pnum_end, 449 unsigned long map_count, int nodeid) 450 { 451 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end, 452 map_count, nodeid); 453 } 454 #else 455 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) 456 { 457 struct page *map; 458 struct mem_section *ms = __nr_to_section(pnum); 459 int nid = sparse_early_nid(ms); 460 461 map = sparse_mem_map_populate(pnum, nid); 462 if (map) 463 return map; 464 465 printk(KERN_ERR "%s: sparsemem memory map backing failed " 466 "some memory will not be available.\n", __func__); 467 ms->section_mem_map = 0; 468 return NULL; 469 } 470 #endif 471 472 void __attribute__((weak)) __meminit vmemmap_populate_print_last(void) 473 { 474 } 475 476 /* 477 * Allocate the accumulated non-linear sections, allocate a mem_map 478 * for each and record the physical to section mapping. 479 */ 480 void __init sparse_init(void) 481 { 482 unsigned long pnum; 483 struct page *map; 484 unsigned long *usemap; 485 unsigned long **usemap_map; 486 int size; 487 int nodeid_begin = 0; 488 unsigned long pnum_begin = 0; 489 unsigned long usemap_count; 490 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 491 unsigned long map_count; 492 int size2; 493 struct page **map_map; 494 #endif 495 496 /* 497 * map is using big page (aka 2M in x86 64 bit) 498 * usemap is less one page (aka 24 bytes) 499 * so alloc 2M (with 2M align) and 24 bytes in turn will 500 * make next 2M slip to one more 2M later. 501 * then in big system, the memory will have a lot of holes... 502 * here try to allocate 2M pages continuously. 503 * 504 * powerpc need to call sparse_init_one_section right after each 505 * sparse_early_mem_map_alloc, so allocate usemap_map at first. 506 */ 507 size = sizeof(unsigned long *) * NR_MEM_SECTIONS; 508 usemap_map = alloc_bootmem(size); 509 if (!usemap_map) 510 panic("can not allocate usemap_map\n"); 511 512 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 513 struct mem_section *ms; 514 515 if (!present_section_nr(pnum)) 516 continue; 517 ms = __nr_to_section(pnum); 518 nodeid_begin = sparse_early_nid(ms); 519 pnum_begin = pnum; 520 break; 521 } 522 usemap_count = 1; 523 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) { 524 struct mem_section *ms; 525 int nodeid; 526 527 if (!present_section_nr(pnum)) 528 continue; 529 ms = __nr_to_section(pnum); 530 nodeid = sparse_early_nid(ms); 531 if (nodeid == nodeid_begin) { 532 usemap_count++; 533 continue; 534 } 535 /* ok, we need to take cake of from pnum_begin to pnum - 1*/ 536 sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum, 537 usemap_count, nodeid_begin); 538 /* new start, update count etc*/ 539 nodeid_begin = nodeid; 540 pnum_begin = pnum; 541 usemap_count = 1; 542 } 543 /* ok, last chunk */ 544 sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS, 545 usemap_count, nodeid_begin); 546 547 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 548 size2 = sizeof(struct page *) * NR_MEM_SECTIONS; 549 map_map = alloc_bootmem(size2); 550 if (!map_map) 551 panic("can not allocate map_map\n"); 552 553 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 554 struct mem_section *ms; 555 556 if (!present_section_nr(pnum)) 557 continue; 558 ms = __nr_to_section(pnum); 559 nodeid_begin = sparse_early_nid(ms); 560 pnum_begin = pnum; 561 break; 562 } 563 map_count = 1; 564 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) { 565 struct mem_section *ms; 566 int nodeid; 567 568 if (!present_section_nr(pnum)) 569 continue; 570 ms = __nr_to_section(pnum); 571 nodeid = sparse_early_nid(ms); 572 if (nodeid == nodeid_begin) { 573 map_count++; 574 continue; 575 } 576 /* ok, we need to take cake of from pnum_begin to pnum - 1*/ 577 sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum, 578 map_count, nodeid_begin); 579 /* new start, update count etc*/ 580 nodeid_begin = nodeid; 581 pnum_begin = pnum; 582 map_count = 1; 583 } 584 /* ok, last chunk */ 585 sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS, 586 map_count, nodeid_begin); 587 #endif 588 589 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 590 if (!present_section_nr(pnum)) 591 continue; 592 593 usemap = usemap_map[pnum]; 594 if (!usemap) 595 continue; 596 597 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 598 map = map_map[pnum]; 599 #else 600 map = sparse_early_mem_map_alloc(pnum); 601 #endif 602 if (!map) 603 continue; 604 605 sparse_init_one_section(__nr_to_section(pnum), pnum, map, 606 usemap); 607 } 608 609 vmemmap_populate_print_last(); 610 611 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 612 free_bootmem(__pa(map_map), size2); 613 #endif 614 free_bootmem(__pa(usemap_map), size); 615 } 616 617 #ifdef CONFIG_MEMORY_HOTPLUG 618 #ifdef CONFIG_SPARSEMEM_VMEMMAP 619 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, 620 unsigned long nr_pages) 621 { 622 /* This will make the necessary allocations eventually. */ 623 return sparse_mem_map_populate(pnum, nid); 624 } 625 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) 626 { 627 return; /* XXX: Not implemented yet */ 628 } 629 static void free_map_bootmem(struct page *page, unsigned long nr_pages) 630 { 631 } 632 #else 633 static struct page *__kmalloc_section_memmap(unsigned long nr_pages) 634 { 635 struct page *page, *ret; 636 unsigned long memmap_size = sizeof(struct page) * nr_pages; 637 638 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); 639 if (page) 640 goto got_map_page; 641 642 ret = vmalloc(memmap_size); 643 if (ret) 644 goto got_map_ptr; 645 646 return NULL; 647 got_map_page: 648 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); 649 got_map_ptr: 650 memset(ret, 0, memmap_size); 651 652 return ret; 653 } 654 655 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, 656 unsigned long nr_pages) 657 { 658 return __kmalloc_section_memmap(nr_pages); 659 } 660 661 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) 662 { 663 if (is_vmalloc_addr(memmap)) 664 vfree(memmap); 665 else 666 free_pages((unsigned long)memmap, 667 get_order(sizeof(struct page) * nr_pages)); 668 } 669 670 static void free_map_bootmem(struct page *page, unsigned long nr_pages) 671 { 672 unsigned long maps_section_nr, removing_section_nr, i; 673 unsigned long magic; 674 675 for (i = 0; i < nr_pages; i++, page++) { 676 magic = (unsigned long) page->lru.next; 677 678 BUG_ON(magic == NODE_INFO); 679 680 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 681 removing_section_nr = page->private; 682 683 /* 684 * When this function is called, the removing section is 685 * logical offlined state. This means all pages are isolated 686 * from page allocator. If removing section's memmap is placed 687 * on the same section, it must not be freed. 688 * If it is freed, page allocator may allocate it which will 689 * be removed physically soon. 690 */ 691 if (maps_section_nr != removing_section_nr) 692 put_page_bootmem(page); 693 } 694 } 695 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 696 697 static void free_section_usemap(struct page *memmap, unsigned long *usemap) 698 { 699 struct page *usemap_page; 700 unsigned long nr_pages; 701 702 if (!usemap) 703 return; 704 705 usemap_page = virt_to_page(usemap); 706 /* 707 * Check to see if allocation came from hot-plug-add 708 */ 709 if (PageSlab(usemap_page)) { 710 kfree(usemap); 711 if (memmap) 712 __kfree_section_memmap(memmap, PAGES_PER_SECTION); 713 return; 714 } 715 716 /* 717 * The usemap came from bootmem. This is packed with other usemaps 718 * on the section which has pgdat at boot time. Just keep it as is now. 719 */ 720 721 if (memmap) { 722 struct page *memmap_page; 723 memmap_page = virt_to_page(memmap); 724 725 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 726 >> PAGE_SHIFT; 727 728 free_map_bootmem(memmap_page, nr_pages); 729 } 730 } 731 732 /* 733 * returns the number of sections whose mem_maps were properly 734 * set. If this is <=0, then that means that the passed-in 735 * map was not consumed and must be freed. 736 */ 737 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn, 738 int nr_pages) 739 { 740 unsigned long section_nr = pfn_to_section_nr(start_pfn); 741 struct pglist_data *pgdat = zone->zone_pgdat; 742 struct mem_section *ms; 743 struct page *memmap; 744 unsigned long *usemap; 745 unsigned long flags; 746 int ret; 747 748 /* 749 * no locking for this, because it does its own 750 * plus, it does a kmalloc 751 */ 752 ret = sparse_index_init(section_nr, pgdat->node_id); 753 if (ret < 0 && ret != -EEXIST) 754 return ret; 755 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages); 756 if (!memmap) 757 return -ENOMEM; 758 usemap = __kmalloc_section_usemap(); 759 if (!usemap) { 760 __kfree_section_memmap(memmap, nr_pages); 761 return -ENOMEM; 762 } 763 764 pgdat_resize_lock(pgdat, &flags); 765 766 ms = __pfn_to_section(start_pfn); 767 if (ms->section_mem_map & SECTION_MARKED_PRESENT) { 768 ret = -EEXIST; 769 goto out; 770 } 771 772 ms->section_mem_map |= SECTION_MARKED_PRESENT; 773 774 ret = sparse_init_one_section(ms, section_nr, memmap, usemap); 775 776 out: 777 pgdat_resize_unlock(pgdat, &flags); 778 if (ret <= 0) { 779 kfree(usemap); 780 __kfree_section_memmap(memmap, nr_pages); 781 } 782 return ret; 783 } 784 785 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms) 786 { 787 struct page *memmap = NULL; 788 unsigned long *usemap = NULL; 789 790 if (ms->section_mem_map) { 791 usemap = ms->pageblock_flags; 792 memmap = sparse_decode_mem_map(ms->section_mem_map, 793 __section_nr(ms)); 794 ms->section_mem_map = 0; 795 ms->pageblock_flags = NULL; 796 } 797 798 free_section_usemap(memmap, usemap); 799 } 800 #endif 801