xref: /linux/mm/sparse.c (revision ce7240e445303de3ca66e6d08f17a2ec278a5bf6)
1 /*
2  * sparse memory mappings.
3  */
4 #include <linux/mm.h>
5 #include <linux/slab.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/highmem.h>
9 #include <linux/export.h>
10 #include <linux/spinlock.h>
11 #include <linux/vmalloc.h>
12 #include "internal.h"
13 #include <asm/dma.h>
14 #include <asm/pgalloc.h>
15 #include <asm/pgtable.h>
16 
17 /*
18  * Permanent SPARSEMEM data:
19  *
20  * 1) mem_section	- memory sections, mem_map's for valid memory
21  */
22 #ifdef CONFIG_SPARSEMEM_EXTREME
23 struct mem_section *mem_section[NR_SECTION_ROOTS]
24 	____cacheline_internodealigned_in_smp;
25 #else
26 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
27 	____cacheline_internodealigned_in_smp;
28 #endif
29 EXPORT_SYMBOL(mem_section);
30 
31 #ifdef NODE_NOT_IN_PAGE_FLAGS
32 /*
33  * If we did not store the node number in the page then we have to
34  * do a lookup in the section_to_node_table in order to find which
35  * node the page belongs to.
36  */
37 #if MAX_NUMNODES <= 256
38 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
39 #else
40 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #endif
42 
43 int page_to_nid(const struct page *page)
44 {
45 	return section_to_node_table[page_to_section(page)];
46 }
47 EXPORT_SYMBOL(page_to_nid);
48 
49 static void set_section_nid(unsigned long section_nr, int nid)
50 {
51 	section_to_node_table[section_nr] = nid;
52 }
53 #else /* !NODE_NOT_IN_PAGE_FLAGS */
54 static inline void set_section_nid(unsigned long section_nr, int nid)
55 {
56 }
57 #endif
58 
59 #ifdef CONFIG_SPARSEMEM_EXTREME
60 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
61 {
62 	struct mem_section *section = NULL;
63 	unsigned long array_size = SECTIONS_PER_ROOT *
64 				   sizeof(struct mem_section);
65 
66 	if (slab_is_available()) {
67 		if (node_state(nid, N_HIGH_MEMORY))
68 			section = kmalloc_node(array_size, GFP_KERNEL, nid);
69 		else
70 			section = kmalloc(array_size, GFP_KERNEL);
71 	} else
72 		section = alloc_bootmem_node(NODE_DATA(nid), array_size);
73 
74 	if (section)
75 		memset(section, 0, array_size);
76 
77 	return section;
78 }
79 
80 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
81 {
82 	static DEFINE_SPINLOCK(index_init_lock);
83 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
84 	struct mem_section *section;
85 	int ret = 0;
86 
87 	if (mem_section[root])
88 		return -EEXIST;
89 
90 	section = sparse_index_alloc(nid);
91 	if (!section)
92 		return -ENOMEM;
93 	/*
94 	 * This lock keeps two different sections from
95 	 * reallocating for the same index
96 	 */
97 	spin_lock(&index_init_lock);
98 
99 	if (mem_section[root]) {
100 		ret = -EEXIST;
101 		goto out;
102 	}
103 
104 	mem_section[root] = section;
105 out:
106 	spin_unlock(&index_init_lock);
107 	return ret;
108 }
109 #else /* !SPARSEMEM_EXTREME */
110 static inline int sparse_index_init(unsigned long section_nr, int nid)
111 {
112 	return 0;
113 }
114 #endif
115 
116 /*
117  * Although written for the SPARSEMEM_EXTREME case, this happens
118  * to also work for the flat array case because
119  * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
120  */
121 int __section_nr(struct mem_section* ms)
122 {
123 	unsigned long root_nr;
124 	struct mem_section* root;
125 
126 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
127 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
128 		if (!root)
129 			continue;
130 
131 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
132 		     break;
133 	}
134 
135 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
136 }
137 
138 /*
139  * During early boot, before section_mem_map is used for an actual
140  * mem_map, we use section_mem_map to store the section's NUMA
141  * node.  This keeps us from having to use another data structure.  The
142  * node information is cleared just before we store the real mem_map.
143  */
144 static inline unsigned long sparse_encode_early_nid(int nid)
145 {
146 	return (nid << SECTION_NID_SHIFT);
147 }
148 
149 static inline int sparse_early_nid(struct mem_section *section)
150 {
151 	return (section->section_mem_map >> SECTION_NID_SHIFT);
152 }
153 
154 /* Validate the physical addressing limitations of the model */
155 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
156 						unsigned long *end_pfn)
157 {
158 	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
159 
160 	/*
161 	 * Sanity checks - do not allow an architecture to pass
162 	 * in larger pfns than the maximum scope of sparsemem:
163 	 */
164 	if (*start_pfn > max_sparsemem_pfn) {
165 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
166 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
167 			*start_pfn, *end_pfn, max_sparsemem_pfn);
168 		WARN_ON_ONCE(1);
169 		*start_pfn = max_sparsemem_pfn;
170 		*end_pfn = max_sparsemem_pfn;
171 	} else if (*end_pfn > max_sparsemem_pfn) {
172 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
173 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
174 			*start_pfn, *end_pfn, max_sparsemem_pfn);
175 		WARN_ON_ONCE(1);
176 		*end_pfn = max_sparsemem_pfn;
177 	}
178 }
179 
180 /* Record a memory area against a node. */
181 void __init memory_present(int nid, unsigned long start, unsigned long end)
182 {
183 	unsigned long pfn;
184 
185 	start &= PAGE_SECTION_MASK;
186 	mminit_validate_memmodel_limits(&start, &end);
187 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
188 		unsigned long section = pfn_to_section_nr(pfn);
189 		struct mem_section *ms;
190 
191 		sparse_index_init(section, nid);
192 		set_section_nid(section, nid);
193 
194 		ms = __nr_to_section(section);
195 		if (!ms->section_mem_map)
196 			ms->section_mem_map = sparse_encode_early_nid(nid) |
197 							SECTION_MARKED_PRESENT;
198 	}
199 }
200 
201 /*
202  * Only used by the i386 NUMA architecures, but relatively
203  * generic code.
204  */
205 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
206 						     unsigned long end_pfn)
207 {
208 	unsigned long pfn;
209 	unsigned long nr_pages = 0;
210 
211 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
212 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
213 		if (nid != early_pfn_to_nid(pfn))
214 			continue;
215 
216 		if (pfn_present(pfn))
217 			nr_pages += PAGES_PER_SECTION;
218 	}
219 
220 	return nr_pages * sizeof(struct page);
221 }
222 
223 /*
224  * Subtle, we encode the real pfn into the mem_map such that
225  * the identity pfn - section_mem_map will return the actual
226  * physical page frame number.
227  */
228 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
229 {
230 	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
231 }
232 
233 /*
234  * Decode mem_map from the coded memmap
235  */
236 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
237 {
238 	/* mask off the extra low bits of information */
239 	coded_mem_map &= SECTION_MAP_MASK;
240 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
241 }
242 
243 static int __meminit sparse_init_one_section(struct mem_section *ms,
244 		unsigned long pnum, struct page *mem_map,
245 		unsigned long *pageblock_bitmap)
246 {
247 	if (!present_section(ms))
248 		return -EINVAL;
249 
250 	ms->section_mem_map &= ~SECTION_MAP_MASK;
251 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
252 							SECTION_HAS_MEM_MAP;
253  	ms->pageblock_flags = pageblock_bitmap;
254 
255 	return 1;
256 }
257 
258 unsigned long usemap_size(void)
259 {
260 	unsigned long size_bytes;
261 	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
262 	size_bytes = roundup(size_bytes, sizeof(unsigned long));
263 	return size_bytes;
264 }
265 
266 #ifdef CONFIG_MEMORY_HOTPLUG
267 static unsigned long *__kmalloc_section_usemap(void)
268 {
269 	return kmalloc(usemap_size(), GFP_KERNEL);
270 }
271 #endif /* CONFIG_MEMORY_HOTPLUG */
272 
273 #ifdef CONFIG_MEMORY_HOTREMOVE
274 static unsigned long * __init
275 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
276 					 unsigned long size)
277 {
278 	unsigned long goal, limit;
279 	unsigned long *p;
280 	int nid;
281 	/*
282 	 * A page may contain usemaps for other sections preventing the
283 	 * page being freed and making a section unremovable while
284 	 * other sections referencing the usemap retmain active. Similarly,
285 	 * a pgdat can prevent a section being removed. If section A
286 	 * contains a pgdat and section B contains the usemap, both
287 	 * sections become inter-dependent. This allocates usemaps
288 	 * from the same section as the pgdat where possible to avoid
289 	 * this problem.
290 	 */
291 	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
292 	limit = goal + (1UL << PA_SECTION_SHIFT);
293 	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
294 again:
295 	p = ___alloc_bootmem_node_nopanic(NODE_DATA(nid), size,
296 					  SMP_CACHE_BYTES, goal, limit);
297 	if (!p && limit) {
298 		limit = 0;
299 		goto again;
300 	}
301 	return p;
302 }
303 
304 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
305 {
306 	unsigned long usemap_snr, pgdat_snr;
307 	static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
308 	static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
309 	struct pglist_data *pgdat = NODE_DATA(nid);
310 	int usemap_nid;
311 
312 	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
313 	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
314 	if (usemap_snr == pgdat_snr)
315 		return;
316 
317 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
318 		/* skip redundant message */
319 		return;
320 
321 	old_usemap_snr = usemap_snr;
322 	old_pgdat_snr = pgdat_snr;
323 
324 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
325 	if (usemap_nid != nid) {
326 		printk(KERN_INFO
327 		       "node %d must be removed before remove section %ld\n",
328 		       nid, usemap_snr);
329 		return;
330 	}
331 	/*
332 	 * There is a circular dependency.
333 	 * Some platforms allow un-removable section because they will just
334 	 * gather other removable sections for dynamic partitioning.
335 	 * Just notify un-removable section's number here.
336 	 */
337 	printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
338 	       pgdat_snr, nid);
339 	printk(KERN_CONT
340 	       " have a circular dependency on usemap and pgdat allocations\n");
341 }
342 #else
343 static unsigned long * __init
344 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
345 					 unsigned long size)
346 {
347 	return alloc_bootmem_node_nopanic(pgdat, size);
348 }
349 
350 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
351 {
352 }
353 #endif /* CONFIG_MEMORY_HOTREMOVE */
354 
355 static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map,
356 				 unsigned long pnum_begin,
357 				 unsigned long pnum_end,
358 				 unsigned long usemap_count, int nodeid)
359 {
360 	void *usemap;
361 	unsigned long pnum;
362 	int size = usemap_size();
363 
364 	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
365 							  size * usemap_count);
366 	if (!usemap) {
367 		printk(KERN_WARNING "%s: allocation failed\n", __func__);
368 		return;
369 	}
370 
371 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
372 		if (!present_section_nr(pnum))
373 			continue;
374 		usemap_map[pnum] = usemap;
375 		usemap += size;
376 		check_usemap_section_nr(nodeid, usemap_map[pnum]);
377 	}
378 }
379 
380 #ifndef CONFIG_SPARSEMEM_VMEMMAP
381 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
382 {
383 	struct page *map;
384 	unsigned long size;
385 
386 	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
387 	if (map)
388 		return map;
389 
390 	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
391 	map = __alloc_bootmem_node_high(NODE_DATA(nid), size,
392 					 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
393 	return map;
394 }
395 void __init sparse_mem_maps_populate_node(struct page **map_map,
396 					  unsigned long pnum_begin,
397 					  unsigned long pnum_end,
398 					  unsigned long map_count, int nodeid)
399 {
400 	void *map;
401 	unsigned long pnum;
402 	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
403 
404 	map = alloc_remap(nodeid, size * map_count);
405 	if (map) {
406 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
407 			if (!present_section_nr(pnum))
408 				continue;
409 			map_map[pnum] = map;
410 			map += size;
411 		}
412 		return;
413 	}
414 
415 	size = PAGE_ALIGN(size);
416 	map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count,
417 					 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
418 	if (map) {
419 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
420 			if (!present_section_nr(pnum))
421 				continue;
422 			map_map[pnum] = map;
423 			map += size;
424 		}
425 		return;
426 	}
427 
428 	/* fallback */
429 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
430 		struct mem_section *ms;
431 
432 		if (!present_section_nr(pnum))
433 			continue;
434 		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
435 		if (map_map[pnum])
436 			continue;
437 		ms = __nr_to_section(pnum);
438 		printk(KERN_ERR "%s: sparsemem memory map backing failed "
439 			"some memory will not be available.\n", __func__);
440 		ms->section_mem_map = 0;
441 	}
442 }
443 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
444 
445 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
446 static void __init sparse_early_mem_maps_alloc_node(struct page **map_map,
447 				 unsigned long pnum_begin,
448 				 unsigned long pnum_end,
449 				 unsigned long map_count, int nodeid)
450 {
451 	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
452 					 map_count, nodeid);
453 }
454 #else
455 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
456 {
457 	struct page *map;
458 	struct mem_section *ms = __nr_to_section(pnum);
459 	int nid = sparse_early_nid(ms);
460 
461 	map = sparse_mem_map_populate(pnum, nid);
462 	if (map)
463 		return map;
464 
465 	printk(KERN_ERR "%s: sparsemem memory map backing failed "
466 			"some memory will not be available.\n", __func__);
467 	ms->section_mem_map = 0;
468 	return NULL;
469 }
470 #endif
471 
472 void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
473 {
474 }
475 
476 /*
477  * Allocate the accumulated non-linear sections, allocate a mem_map
478  * for each and record the physical to section mapping.
479  */
480 void __init sparse_init(void)
481 {
482 	unsigned long pnum;
483 	struct page *map;
484 	unsigned long *usemap;
485 	unsigned long **usemap_map;
486 	int size;
487 	int nodeid_begin = 0;
488 	unsigned long pnum_begin = 0;
489 	unsigned long usemap_count;
490 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
491 	unsigned long map_count;
492 	int size2;
493 	struct page **map_map;
494 #endif
495 
496 	/*
497 	 * map is using big page (aka 2M in x86 64 bit)
498 	 * usemap is less one page (aka 24 bytes)
499 	 * so alloc 2M (with 2M align) and 24 bytes in turn will
500 	 * make next 2M slip to one more 2M later.
501 	 * then in big system, the memory will have a lot of holes...
502 	 * here try to allocate 2M pages continuously.
503 	 *
504 	 * powerpc need to call sparse_init_one_section right after each
505 	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
506 	 */
507 	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
508 	usemap_map = alloc_bootmem(size);
509 	if (!usemap_map)
510 		panic("can not allocate usemap_map\n");
511 
512 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
513 		struct mem_section *ms;
514 
515 		if (!present_section_nr(pnum))
516 			continue;
517 		ms = __nr_to_section(pnum);
518 		nodeid_begin = sparse_early_nid(ms);
519 		pnum_begin = pnum;
520 		break;
521 	}
522 	usemap_count = 1;
523 	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
524 		struct mem_section *ms;
525 		int nodeid;
526 
527 		if (!present_section_nr(pnum))
528 			continue;
529 		ms = __nr_to_section(pnum);
530 		nodeid = sparse_early_nid(ms);
531 		if (nodeid == nodeid_begin) {
532 			usemap_count++;
533 			continue;
534 		}
535 		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
536 		sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum,
537 						 usemap_count, nodeid_begin);
538 		/* new start, update count etc*/
539 		nodeid_begin = nodeid;
540 		pnum_begin = pnum;
541 		usemap_count = 1;
542 	}
543 	/* ok, last chunk */
544 	sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS,
545 					 usemap_count, nodeid_begin);
546 
547 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
548 	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
549 	map_map = alloc_bootmem(size2);
550 	if (!map_map)
551 		panic("can not allocate map_map\n");
552 
553 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
554 		struct mem_section *ms;
555 
556 		if (!present_section_nr(pnum))
557 			continue;
558 		ms = __nr_to_section(pnum);
559 		nodeid_begin = sparse_early_nid(ms);
560 		pnum_begin = pnum;
561 		break;
562 	}
563 	map_count = 1;
564 	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
565 		struct mem_section *ms;
566 		int nodeid;
567 
568 		if (!present_section_nr(pnum))
569 			continue;
570 		ms = __nr_to_section(pnum);
571 		nodeid = sparse_early_nid(ms);
572 		if (nodeid == nodeid_begin) {
573 			map_count++;
574 			continue;
575 		}
576 		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
577 		sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum,
578 						 map_count, nodeid_begin);
579 		/* new start, update count etc*/
580 		nodeid_begin = nodeid;
581 		pnum_begin = pnum;
582 		map_count = 1;
583 	}
584 	/* ok, last chunk */
585 	sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS,
586 					 map_count, nodeid_begin);
587 #endif
588 
589 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
590 		if (!present_section_nr(pnum))
591 			continue;
592 
593 		usemap = usemap_map[pnum];
594 		if (!usemap)
595 			continue;
596 
597 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
598 		map = map_map[pnum];
599 #else
600 		map = sparse_early_mem_map_alloc(pnum);
601 #endif
602 		if (!map)
603 			continue;
604 
605 		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
606 								usemap);
607 	}
608 
609 	vmemmap_populate_print_last();
610 
611 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
612 	free_bootmem(__pa(map_map), size2);
613 #endif
614 	free_bootmem(__pa(usemap_map), size);
615 }
616 
617 #ifdef CONFIG_MEMORY_HOTPLUG
618 #ifdef CONFIG_SPARSEMEM_VMEMMAP
619 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
620 						 unsigned long nr_pages)
621 {
622 	/* This will make the necessary allocations eventually. */
623 	return sparse_mem_map_populate(pnum, nid);
624 }
625 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
626 {
627 	return; /* XXX: Not implemented yet */
628 }
629 static void free_map_bootmem(struct page *page, unsigned long nr_pages)
630 {
631 }
632 #else
633 static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
634 {
635 	struct page *page, *ret;
636 	unsigned long memmap_size = sizeof(struct page) * nr_pages;
637 
638 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
639 	if (page)
640 		goto got_map_page;
641 
642 	ret = vmalloc(memmap_size);
643 	if (ret)
644 		goto got_map_ptr;
645 
646 	return NULL;
647 got_map_page:
648 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
649 got_map_ptr:
650 	memset(ret, 0, memmap_size);
651 
652 	return ret;
653 }
654 
655 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
656 						  unsigned long nr_pages)
657 {
658 	return __kmalloc_section_memmap(nr_pages);
659 }
660 
661 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
662 {
663 	if (is_vmalloc_addr(memmap))
664 		vfree(memmap);
665 	else
666 		free_pages((unsigned long)memmap,
667 			   get_order(sizeof(struct page) * nr_pages));
668 }
669 
670 static void free_map_bootmem(struct page *page, unsigned long nr_pages)
671 {
672 	unsigned long maps_section_nr, removing_section_nr, i;
673 	unsigned long magic;
674 
675 	for (i = 0; i < nr_pages; i++, page++) {
676 		magic = (unsigned long) page->lru.next;
677 
678 		BUG_ON(magic == NODE_INFO);
679 
680 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
681 		removing_section_nr = page->private;
682 
683 		/*
684 		 * When this function is called, the removing section is
685 		 * logical offlined state. This means all pages are isolated
686 		 * from page allocator. If removing section's memmap is placed
687 		 * on the same section, it must not be freed.
688 		 * If it is freed, page allocator may allocate it which will
689 		 * be removed physically soon.
690 		 */
691 		if (maps_section_nr != removing_section_nr)
692 			put_page_bootmem(page);
693 	}
694 }
695 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
696 
697 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
698 {
699 	struct page *usemap_page;
700 	unsigned long nr_pages;
701 
702 	if (!usemap)
703 		return;
704 
705 	usemap_page = virt_to_page(usemap);
706 	/*
707 	 * Check to see if allocation came from hot-plug-add
708 	 */
709 	if (PageSlab(usemap_page)) {
710 		kfree(usemap);
711 		if (memmap)
712 			__kfree_section_memmap(memmap, PAGES_PER_SECTION);
713 		return;
714 	}
715 
716 	/*
717 	 * The usemap came from bootmem. This is packed with other usemaps
718 	 * on the section which has pgdat at boot time. Just keep it as is now.
719 	 */
720 
721 	if (memmap) {
722 		struct page *memmap_page;
723 		memmap_page = virt_to_page(memmap);
724 
725 		nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
726 			>> PAGE_SHIFT;
727 
728 		free_map_bootmem(memmap_page, nr_pages);
729 	}
730 }
731 
732 /*
733  * returns the number of sections whose mem_maps were properly
734  * set.  If this is <=0, then that means that the passed-in
735  * map was not consumed and must be freed.
736  */
737 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
738 			   int nr_pages)
739 {
740 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
741 	struct pglist_data *pgdat = zone->zone_pgdat;
742 	struct mem_section *ms;
743 	struct page *memmap;
744 	unsigned long *usemap;
745 	unsigned long flags;
746 	int ret;
747 
748 	/*
749 	 * no locking for this, because it does its own
750 	 * plus, it does a kmalloc
751 	 */
752 	ret = sparse_index_init(section_nr, pgdat->node_id);
753 	if (ret < 0 && ret != -EEXIST)
754 		return ret;
755 	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
756 	if (!memmap)
757 		return -ENOMEM;
758 	usemap = __kmalloc_section_usemap();
759 	if (!usemap) {
760 		__kfree_section_memmap(memmap, nr_pages);
761 		return -ENOMEM;
762 	}
763 
764 	pgdat_resize_lock(pgdat, &flags);
765 
766 	ms = __pfn_to_section(start_pfn);
767 	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
768 		ret = -EEXIST;
769 		goto out;
770 	}
771 
772 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
773 
774 	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
775 
776 out:
777 	pgdat_resize_unlock(pgdat, &flags);
778 	if (ret <= 0) {
779 		kfree(usemap);
780 		__kfree_section_memmap(memmap, nr_pages);
781 	}
782 	return ret;
783 }
784 
785 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
786 {
787 	struct page *memmap = NULL;
788 	unsigned long *usemap = NULL;
789 
790 	if (ms->section_mem_map) {
791 		usemap = ms->pageblock_flags;
792 		memmap = sparse_decode_mem_map(ms->section_mem_map,
793 						__section_nr(ms));
794 		ms->section_mem_map = 0;
795 		ms->pageblock_flags = NULL;
796 	}
797 
798 	free_section_usemap(memmap, usemap);
799 }
800 #endif
801