1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * sparse memory mappings. 4 */ 5 #include <linux/mm.h> 6 #include <linux/slab.h> 7 #include <linux/mmzone.h> 8 #include <linux/memblock.h> 9 #include <linux/compiler.h> 10 #include <linux/highmem.h> 11 #include <linux/export.h> 12 #include <linux/spinlock.h> 13 #include <linux/vmalloc.h> 14 #include <linux/swap.h> 15 #include <linux/swapops.h> 16 17 #include "internal.h" 18 #include <asm/dma.h> 19 #include <asm/pgalloc.h> 20 #include <asm/pgtable.h> 21 22 /* 23 * Permanent SPARSEMEM data: 24 * 25 * 1) mem_section - memory sections, mem_map's for valid memory 26 */ 27 #ifdef CONFIG_SPARSEMEM_EXTREME 28 struct mem_section **mem_section; 29 #else 30 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 31 ____cacheline_internodealigned_in_smp; 32 #endif 33 EXPORT_SYMBOL(mem_section); 34 35 #ifdef NODE_NOT_IN_PAGE_FLAGS 36 /* 37 * If we did not store the node number in the page then we have to 38 * do a lookup in the section_to_node_table in order to find which 39 * node the page belongs to. 40 */ 41 #if MAX_NUMNODES <= 256 42 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 43 #else 44 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 45 #endif 46 47 int page_to_nid(const struct page *page) 48 { 49 return section_to_node_table[page_to_section(page)]; 50 } 51 EXPORT_SYMBOL(page_to_nid); 52 53 static void set_section_nid(unsigned long section_nr, int nid) 54 { 55 section_to_node_table[section_nr] = nid; 56 } 57 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 58 static inline void set_section_nid(unsigned long section_nr, int nid) 59 { 60 } 61 #endif 62 63 #ifdef CONFIG_SPARSEMEM_EXTREME 64 static noinline struct mem_section __ref *sparse_index_alloc(int nid) 65 { 66 struct mem_section *section = NULL; 67 unsigned long array_size = SECTIONS_PER_ROOT * 68 sizeof(struct mem_section); 69 70 if (slab_is_available()) { 71 section = kzalloc_node(array_size, GFP_KERNEL, nid); 72 } else { 73 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES, 74 nid); 75 if (!section) 76 panic("%s: Failed to allocate %lu bytes nid=%d\n", 77 __func__, array_size, nid); 78 } 79 80 return section; 81 } 82 83 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 84 { 85 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 86 struct mem_section *section; 87 88 /* 89 * An existing section is possible in the sub-section hotplug 90 * case. First hot-add instantiates, follow-on hot-add reuses 91 * the existing section. 92 * 93 * The mem_hotplug_lock resolves the apparent race below. 94 */ 95 if (mem_section[root]) 96 return 0; 97 98 section = sparse_index_alloc(nid); 99 if (!section) 100 return -ENOMEM; 101 102 mem_section[root] = section; 103 104 return 0; 105 } 106 #else /* !SPARSEMEM_EXTREME */ 107 static inline int sparse_index_init(unsigned long section_nr, int nid) 108 { 109 return 0; 110 } 111 #endif 112 113 #ifdef CONFIG_SPARSEMEM_EXTREME 114 unsigned long __section_nr(struct mem_section *ms) 115 { 116 unsigned long root_nr; 117 struct mem_section *root = NULL; 118 119 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 120 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 121 if (!root) 122 continue; 123 124 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 125 break; 126 } 127 128 VM_BUG_ON(!root); 129 130 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 131 } 132 #else 133 unsigned long __section_nr(struct mem_section *ms) 134 { 135 return (unsigned long)(ms - mem_section[0]); 136 } 137 #endif 138 139 /* 140 * During early boot, before section_mem_map is used for an actual 141 * mem_map, we use section_mem_map to store the section's NUMA 142 * node. This keeps us from having to use another data structure. The 143 * node information is cleared just before we store the real mem_map. 144 */ 145 static inline unsigned long sparse_encode_early_nid(int nid) 146 { 147 return (nid << SECTION_NID_SHIFT); 148 } 149 150 static inline int sparse_early_nid(struct mem_section *section) 151 { 152 return (section->section_mem_map >> SECTION_NID_SHIFT); 153 } 154 155 /* Validate the physical addressing limitations of the model */ 156 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 157 unsigned long *end_pfn) 158 { 159 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 160 161 /* 162 * Sanity checks - do not allow an architecture to pass 163 * in larger pfns than the maximum scope of sparsemem: 164 */ 165 if (*start_pfn > max_sparsemem_pfn) { 166 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 167 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 168 *start_pfn, *end_pfn, max_sparsemem_pfn); 169 WARN_ON_ONCE(1); 170 *start_pfn = max_sparsemem_pfn; 171 *end_pfn = max_sparsemem_pfn; 172 } else if (*end_pfn > max_sparsemem_pfn) { 173 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 174 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 175 *start_pfn, *end_pfn, max_sparsemem_pfn); 176 WARN_ON_ONCE(1); 177 *end_pfn = max_sparsemem_pfn; 178 } 179 } 180 181 /* 182 * There are a number of times that we loop over NR_MEM_SECTIONS, 183 * looking for section_present() on each. But, when we have very 184 * large physical address spaces, NR_MEM_SECTIONS can also be 185 * very large which makes the loops quite long. 186 * 187 * Keeping track of this gives us an easy way to break out of 188 * those loops early. 189 */ 190 unsigned long __highest_present_section_nr; 191 static void section_mark_present(struct mem_section *ms) 192 { 193 unsigned long section_nr = __section_nr(ms); 194 195 if (section_nr > __highest_present_section_nr) 196 __highest_present_section_nr = section_nr; 197 198 ms->section_mem_map |= SECTION_MARKED_PRESENT; 199 } 200 201 #define for_each_present_section_nr(start, section_nr) \ 202 for (section_nr = next_present_section_nr(start-1); \ 203 ((section_nr != -1) && \ 204 (section_nr <= __highest_present_section_nr)); \ 205 section_nr = next_present_section_nr(section_nr)) 206 207 static inline unsigned long first_present_section_nr(void) 208 { 209 return next_present_section_nr(-1); 210 } 211 212 #ifdef CONFIG_SPARSEMEM_VMEMMAP 213 static void subsection_mask_set(unsigned long *map, unsigned long pfn, 214 unsigned long nr_pages) 215 { 216 int idx = subsection_map_index(pfn); 217 int end = subsection_map_index(pfn + nr_pages - 1); 218 219 bitmap_set(map, idx, end - idx + 1); 220 } 221 222 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages) 223 { 224 int end_sec = pfn_to_section_nr(pfn + nr_pages - 1); 225 unsigned long nr, start_sec = pfn_to_section_nr(pfn); 226 227 if (!nr_pages) 228 return; 229 230 for (nr = start_sec; nr <= end_sec; nr++) { 231 struct mem_section *ms; 232 unsigned long pfns; 233 234 pfns = min(nr_pages, PAGES_PER_SECTION 235 - (pfn & ~PAGE_SECTION_MASK)); 236 ms = __nr_to_section(nr); 237 subsection_mask_set(ms->usage->subsection_map, pfn, pfns); 238 239 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr, 240 pfns, subsection_map_index(pfn), 241 subsection_map_index(pfn + pfns - 1)); 242 243 pfn += pfns; 244 nr_pages -= pfns; 245 } 246 } 247 #else 248 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages) 249 { 250 } 251 #endif 252 253 /* Record a memory area against a node. */ 254 void __init memory_present(int nid, unsigned long start, unsigned long end) 255 { 256 unsigned long pfn; 257 258 #ifdef CONFIG_SPARSEMEM_EXTREME 259 if (unlikely(!mem_section)) { 260 unsigned long size, align; 261 262 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS; 263 align = 1 << (INTERNODE_CACHE_SHIFT); 264 mem_section = memblock_alloc(size, align); 265 if (!mem_section) 266 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 267 __func__, size, align); 268 } 269 #endif 270 271 start &= PAGE_SECTION_MASK; 272 mminit_validate_memmodel_limits(&start, &end); 273 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 274 unsigned long section = pfn_to_section_nr(pfn); 275 struct mem_section *ms; 276 277 sparse_index_init(section, nid); 278 set_section_nid(section, nid); 279 280 ms = __nr_to_section(section); 281 if (!ms->section_mem_map) { 282 ms->section_mem_map = sparse_encode_early_nid(nid) | 283 SECTION_IS_ONLINE; 284 section_mark_present(ms); 285 } 286 } 287 } 288 289 /* 290 * Mark all memblocks as present using memory_present(). This is a 291 * convienence function that is useful for a number of arches 292 * to mark all of the systems memory as present during initialization. 293 */ 294 void __init memblocks_present(void) 295 { 296 struct memblock_region *reg; 297 298 for_each_memblock(memory, reg) { 299 memory_present(memblock_get_region_node(reg), 300 memblock_region_memory_base_pfn(reg), 301 memblock_region_memory_end_pfn(reg)); 302 } 303 } 304 305 /* 306 * Subtle, we encode the real pfn into the mem_map such that 307 * the identity pfn - section_mem_map will return the actual 308 * physical page frame number. 309 */ 310 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 311 { 312 unsigned long coded_mem_map = 313 (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 314 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT)); 315 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK); 316 return coded_mem_map; 317 } 318 319 /* 320 * Decode mem_map from the coded memmap 321 */ 322 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 323 { 324 /* mask off the extra low bits of information */ 325 coded_mem_map &= SECTION_MAP_MASK; 326 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 327 } 328 329 static void __meminit sparse_init_one_section(struct mem_section *ms, 330 unsigned long pnum, struct page *mem_map, 331 struct mem_section_usage *usage, unsigned long flags) 332 { 333 ms->section_mem_map &= ~SECTION_MAP_MASK; 334 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) 335 | SECTION_HAS_MEM_MAP | flags; 336 ms->usage = usage; 337 } 338 339 static unsigned long usemap_size(void) 340 { 341 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long); 342 } 343 344 size_t mem_section_usage_size(void) 345 { 346 return sizeof(struct mem_section_usage) + usemap_size(); 347 } 348 349 #ifdef CONFIG_MEMORY_HOTREMOVE 350 static struct mem_section_usage * __init 351 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 352 unsigned long size) 353 { 354 struct mem_section_usage *usage; 355 unsigned long goal, limit; 356 int nid; 357 /* 358 * A page may contain usemaps for other sections preventing the 359 * page being freed and making a section unremovable while 360 * other sections referencing the usemap remain active. Similarly, 361 * a pgdat can prevent a section being removed. If section A 362 * contains a pgdat and section B contains the usemap, both 363 * sections become inter-dependent. This allocates usemaps 364 * from the same section as the pgdat where possible to avoid 365 * this problem. 366 */ 367 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); 368 limit = goal + (1UL << PA_SECTION_SHIFT); 369 nid = early_pfn_to_nid(goal >> PAGE_SHIFT); 370 again: 371 usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid); 372 if (!usage && limit) { 373 limit = 0; 374 goto again; 375 } 376 return usage; 377 } 378 379 static void __init check_usemap_section_nr(int nid, 380 struct mem_section_usage *usage) 381 { 382 unsigned long usemap_snr, pgdat_snr; 383 static unsigned long old_usemap_snr; 384 static unsigned long old_pgdat_snr; 385 struct pglist_data *pgdat = NODE_DATA(nid); 386 int usemap_nid; 387 388 /* First call */ 389 if (!old_usemap_snr) { 390 old_usemap_snr = NR_MEM_SECTIONS; 391 old_pgdat_snr = NR_MEM_SECTIONS; 392 } 393 394 usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT); 395 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 396 if (usemap_snr == pgdat_snr) 397 return; 398 399 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 400 /* skip redundant message */ 401 return; 402 403 old_usemap_snr = usemap_snr; 404 old_pgdat_snr = pgdat_snr; 405 406 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 407 if (usemap_nid != nid) { 408 pr_info("node %d must be removed before remove section %ld\n", 409 nid, usemap_snr); 410 return; 411 } 412 /* 413 * There is a circular dependency. 414 * Some platforms allow un-removable section because they will just 415 * gather other removable sections for dynamic partitioning. 416 * Just notify un-removable section's number here. 417 */ 418 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n", 419 usemap_snr, pgdat_snr, nid); 420 } 421 #else 422 static struct mem_section_usage * __init 423 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 424 unsigned long size) 425 { 426 return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id); 427 } 428 429 static void __init check_usemap_section_nr(int nid, 430 struct mem_section_usage *usage) 431 { 432 } 433 #endif /* CONFIG_MEMORY_HOTREMOVE */ 434 435 #ifdef CONFIG_SPARSEMEM_VMEMMAP 436 static unsigned long __init section_map_size(void) 437 { 438 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE); 439 } 440 441 #else 442 static unsigned long __init section_map_size(void) 443 { 444 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); 445 } 446 447 struct page __init *__populate_section_memmap(unsigned long pfn, 448 unsigned long nr_pages, int nid, struct vmem_altmap *altmap) 449 { 450 unsigned long size = section_map_size(); 451 struct page *map = sparse_buffer_alloc(size); 452 phys_addr_t addr = __pa(MAX_DMA_ADDRESS); 453 454 if (map) 455 return map; 456 457 map = memblock_alloc_try_nid_raw(size, size, addr, 458 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 459 if (!map) 460 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n", 461 __func__, size, PAGE_SIZE, nid, &addr); 462 463 return map; 464 } 465 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 466 467 static void *sparsemap_buf __meminitdata; 468 static void *sparsemap_buf_end __meminitdata; 469 470 static inline void __meminit sparse_buffer_free(unsigned long size) 471 { 472 WARN_ON(!sparsemap_buf || size == 0); 473 memblock_free_early(__pa(sparsemap_buf), size); 474 } 475 476 static void __init sparse_buffer_init(unsigned long size, int nid) 477 { 478 phys_addr_t addr = __pa(MAX_DMA_ADDRESS); 479 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */ 480 /* 481 * Pre-allocated buffer is mainly used by __populate_section_memmap 482 * and we want it to be properly aligned to the section size - this is 483 * especially the case for VMEMMAP which maps memmap to PMDs 484 */ 485 sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(), 486 addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 487 sparsemap_buf_end = sparsemap_buf + size; 488 } 489 490 static void __init sparse_buffer_fini(void) 491 { 492 unsigned long size = sparsemap_buf_end - sparsemap_buf; 493 494 if (sparsemap_buf && size > 0) 495 sparse_buffer_free(size); 496 sparsemap_buf = NULL; 497 } 498 499 void * __meminit sparse_buffer_alloc(unsigned long size) 500 { 501 void *ptr = NULL; 502 503 if (sparsemap_buf) { 504 ptr = (void *) roundup((unsigned long)sparsemap_buf, size); 505 if (ptr + size > sparsemap_buf_end) 506 ptr = NULL; 507 else { 508 /* Free redundant aligned space */ 509 if ((unsigned long)(ptr - sparsemap_buf) > 0) 510 sparse_buffer_free((unsigned long)(ptr - sparsemap_buf)); 511 sparsemap_buf = ptr + size; 512 } 513 } 514 return ptr; 515 } 516 517 void __weak __meminit vmemmap_populate_print_last(void) 518 { 519 } 520 521 /* 522 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end) 523 * And number of present sections in this node is map_count. 524 */ 525 static void __init sparse_init_nid(int nid, unsigned long pnum_begin, 526 unsigned long pnum_end, 527 unsigned long map_count) 528 { 529 struct mem_section_usage *usage; 530 unsigned long pnum; 531 struct page *map; 532 533 usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid), 534 mem_section_usage_size() * map_count); 535 if (!usage) { 536 pr_err("%s: node[%d] usemap allocation failed", __func__, nid); 537 goto failed; 538 } 539 sparse_buffer_init(map_count * section_map_size(), nid); 540 for_each_present_section_nr(pnum_begin, pnum) { 541 unsigned long pfn = section_nr_to_pfn(pnum); 542 543 if (pnum >= pnum_end) 544 break; 545 546 map = __populate_section_memmap(pfn, PAGES_PER_SECTION, 547 nid, NULL); 548 if (!map) { 549 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.", 550 __func__, nid); 551 pnum_begin = pnum; 552 goto failed; 553 } 554 check_usemap_section_nr(nid, usage); 555 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage, 556 SECTION_IS_EARLY); 557 usage = (void *) usage + mem_section_usage_size(); 558 } 559 sparse_buffer_fini(); 560 return; 561 failed: 562 /* We failed to allocate, mark all the following pnums as not present */ 563 for_each_present_section_nr(pnum_begin, pnum) { 564 struct mem_section *ms; 565 566 if (pnum >= pnum_end) 567 break; 568 ms = __nr_to_section(pnum); 569 ms->section_mem_map = 0; 570 } 571 } 572 573 /* 574 * Allocate the accumulated non-linear sections, allocate a mem_map 575 * for each and record the physical to section mapping. 576 */ 577 void __init sparse_init(void) 578 { 579 unsigned long pnum_begin = first_present_section_nr(); 580 int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin)); 581 unsigned long pnum_end, map_count = 1; 582 583 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ 584 set_pageblock_order(); 585 586 for_each_present_section_nr(pnum_begin + 1, pnum_end) { 587 int nid = sparse_early_nid(__nr_to_section(pnum_end)); 588 589 if (nid == nid_begin) { 590 map_count++; 591 continue; 592 } 593 /* Init node with sections in range [pnum_begin, pnum_end) */ 594 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); 595 nid_begin = nid; 596 pnum_begin = pnum_end; 597 map_count = 1; 598 } 599 /* cover the last node */ 600 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); 601 vmemmap_populate_print_last(); 602 } 603 604 #ifdef CONFIG_MEMORY_HOTPLUG 605 606 /* Mark all memory sections within the pfn range as online */ 607 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 608 { 609 unsigned long pfn; 610 611 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 612 unsigned long section_nr = pfn_to_section_nr(pfn); 613 struct mem_section *ms; 614 615 /* onlining code should never touch invalid ranges */ 616 if (WARN_ON(!valid_section_nr(section_nr))) 617 continue; 618 619 ms = __nr_to_section(section_nr); 620 ms->section_mem_map |= SECTION_IS_ONLINE; 621 } 622 } 623 624 #ifdef CONFIG_MEMORY_HOTREMOVE 625 /* Mark all memory sections within the pfn range as offline */ 626 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 627 { 628 unsigned long pfn; 629 630 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 631 unsigned long section_nr = pfn_to_section_nr(pfn); 632 struct mem_section *ms; 633 634 /* 635 * TODO this needs some double checking. Offlining code makes 636 * sure to check pfn_valid but those checks might be just bogus 637 */ 638 if (WARN_ON(!valid_section_nr(section_nr))) 639 continue; 640 641 ms = __nr_to_section(section_nr); 642 ms->section_mem_map &= ~SECTION_IS_ONLINE; 643 } 644 } 645 #endif 646 647 #ifdef CONFIG_SPARSEMEM_VMEMMAP 648 static struct page * __meminit populate_section_memmap(unsigned long pfn, 649 unsigned long nr_pages, int nid, struct vmem_altmap *altmap) 650 { 651 return __populate_section_memmap(pfn, nr_pages, nid, altmap); 652 } 653 654 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages, 655 struct vmem_altmap *altmap) 656 { 657 unsigned long start = (unsigned long) pfn_to_page(pfn); 658 unsigned long end = start + nr_pages * sizeof(struct page); 659 660 vmemmap_free(start, end, altmap); 661 } 662 static void free_map_bootmem(struct page *memmap) 663 { 664 unsigned long start = (unsigned long)memmap; 665 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 666 667 vmemmap_free(start, end, NULL); 668 } 669 670 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages) 671 { 672 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 }; 673 DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 }; 674 struct mem_section *ms = __pfn_to_section(pfn); 675 unsigned long *subsection_map = ms->usage 676 ? &ms->usage->subsection_map[0] : NULL; 677 678 subsection_mask_set(map, pfn, nr_pages); 679 if (subsection_map) 680 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION); 681 682 if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION), 683 "section already deactivated (%#lx + %ld)\n", 684 pfn, nr_pages)) 685 return -EINVAL; 686 687 bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION); 688 return 0; 689 } 690 691 static bool is_subsection_map_empty(struct mem_section *ms) 692 { 693 return bitmap_empty(&ms->usage->subsection_map[0], 694 SUBSECTIONS_PER_SECTION); 695 } 696 697 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages) 698 { 699 struct mem_section *ms = __pfn_to_section(pfn); 700 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 }; 701 unsigned long *subsection_map; 702 int rc = 0; 703 704 subsection_mask_set(map, pfn, nr_pages); 705 706 subsection_map = &ms->usage->subsection_map[0]; 707 708 if (bitmap_empty(map, SUBSECTIONS_PER_SECTION)) 709 rc = -EINVAL; 710 else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION)) 711 rc = -EEXIST; 712 else 713 bitmap_or(subsection_map, map, subsection_map, 714 SUBSECTIONS_PER_SECTION); 715 716 return rc; 717 } 718 #else 719 struct page * __meminit populate_section_memmap(unsigned long pfn, 720 unsigned long nr_pages, int nid, struct vmem_altmap *altmap) 721 { 722 return kvmalloc_node(array_size(sizeof(struct page), 723 PAGES_PER_SECTION), GFP_KERNEL, nid); 724 } 725 726 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages, 727 struct vmem_altmap *altmap) 728 { 729 kvfree(pfn_to_page(pfn)); 730 } 731 732 static void free_map_bootmem(struct page *memmap) 733 { 734 unsigned long maps_section_nr, removing_section_nr, i; 735 unsigned long magic, nr_pages; 736 struct page *page = virt_to_page(memmap); 737 738 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 739 >> PAGE_SHIFT; 740 741 for (i = 0; i < nr_pages; i++, page++) { 742 magic = (unsigned long) page->freelist; 743 744 BUG_ON(magic == NODE_INFO); 745 746 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 747 removing_section_nr = page_private(page); 748 749 /* 750 * When this function is called, the removing section is 751 * logical offlined state. This means all pages are isolated 752 * from page allocator. If removing section's memmap is placed 753 * on the same section, it must not be freed. 754 * If it is freed, page allocator may allocate it which will 755 * be removed physically soon. 756 */ 757 if (maps_section_nr != removing_section_nr) 758 put_page_bootmem(page); 759 } 760 } 761 762 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages) 763 { 764 return 0; 765 } 766 767 static bool is_subsection_map_empty(struct mem_section *ms) 768 { 769 return true; 770 } 771 772 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages) 773 { 774 return 0; 775 } 776 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 777 778 /* 779 * To deactivate a memory region, there are 3 cases to handle across 780 * two configurations (SPARSEMEM_VMEMMAP={y,n}): 781 * 782 * 1. deactivation of a partial hot-added section (only possible in 783 * the SPARSEMEM_VMEMMAP=y case). 784 * a) section was present at memory init. 785 * b) section was hot-added post memory init. 786 * 2. deactivation of a complete hot-added section. 787 * 3. deactivation of a complete section from memory init. 788 * 789 * For 1, when subsection_map does not empty we will not be freeing the 790 * usage map, but still need to free the vmemmap range. 791 * 792 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified 793 */ 794 static void section_deactivate(unsigned long pfn, unsigned long nr_pages, 795 struct vmem_altmap *altmap) 796 { 797 struct mem_section *ms = __pfn_to_section(pfn); 798 bool section_is_early = early_section(ms); 799 struct page *memmap = NULL; 800 bool empty; 801 802 if (clear_subsection_map(pfn, nr_pages)) 803 return; 804 805 empty = is_subsection_map_empty(ms); 806 if (empty) { 807 unsigned long section_nr = pfn_to_section_nr(pfn); 808 809 /* 810 * When removing an early section, the usage map is kept (as the 811 * usage maps of other sections fall into the same page). It 812 * will be re-used when re-adding the section - which is then no 813 * longer an early section. If the usage map is PageReserved, it 814 * was allocated during boot. 815 */ 816 if (!PageReserved(virt_to_page(ms->usage))) { 817 kfree(ms->usage); 818 ms->usage = NULL; 819 } 820 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 821 /* 822 * Mark the section invalid so that valid_section() 823 * return false. This prevents code from dereferencing 824 * ms->usage array. 825 */ 826 ms->section_mem_map &= ~SECTION_HAS_MEM_MAP; 827 } 828 829 if (section_is_early && memmap) 830 free_map_bootmem(memmap); 831 else 832 depopulate_section_memmap(pfn, nr_pages, altmap); 833 834 if (empty) 835 ms->section_mem_map = (unsigned long)NULL; 836 } 837 838 static struct page * __meminit section_activate(int nid, unsigned long pfn, 839 unsigned long nr_pages, struct vmem_altmap *altmap) 840 { 841 struct mem_section *ms = __pfn_to_section(pfn); 842 struct mem_section_usage *usage = NULL; 843 struct page *memmap; 844 int rc = 0; 845 846 if (!ms->usage) { 847 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL); 848 if (!usage) 849 return ERR_PTR(-ENOMEM); 850 ms->usage = usage; 851 } 852 853 rc = fill_subsection_map(pfn, nr_pages); 854 if (rc) { 855 if (usage) 856 ms->usage = NULL; 857 kfree(usage); 858 return ERR_PTR(rc); 859 } 860 861 /* 862 * The early init code does not consider partially populated 863 * initial sections, it simply assumes that memory will never be 864 * referenced. If we hot-add memory into such a section then we 865 * do not need to populate the memmap and can simply reuse what 866 * is already there. 867 */ 868 if (nr_pages < PAGES_PER_SECTION && early_section(ms)) 869 return pfn_to_page(pfn); 870 871 memmap = populate_section_memmap(pfn, nr_pages, nid, altmap); 872 if (!memmap) { 873 section_deactivate(pfn, nr_pages, altmap); 874 return ERR_PTR(-ENOMEM); 875 } 876 877 return memmap; 878 } 879 880 /** 881 * sparse_add_section - add a memory section, or populate an existing one 882 * @nid: The node to add section on 883 * @start_pfn: start pfn of the memory range 884 * @nr_pages: number of pfns to add in the section 885 * @altmap: device page map 886 * 887 * This is only intended for hotplug. 888 * 889 * Note that only VMEMMAP supports sub-section aligned hotplug, 890 * the proper alignment and size are gated by check_pfn_span(). 891 * 892 * 893 * Return: 894 * * 0 - On success. 895 * * -EEXIST - Section has been present. 896 * * -ENOMEM - Out of memory. 897 */ 898 int __meminit sparse_add_section(int nid, unsigned long start_pfn, 899 unsigned long nr_pages, struct vmem_altmap *altmap) 900 { 901 unsigned long section_nr = pfn_to_section_nr(start_pfn); 902 struct mem_section *ms; 903 struct page *memmap; 904 int ret; 905 906 ret = sparse_index_init(section_nr, nid); 907 if (ret < 0) 908 return ret; 909 910 memmap = section_activate(nid, start_pfn, nr_pages, altmap); 911 if (IS_ERR(memmap)) 912 return PTR_ERR(memmap); 913 914 /* 915 * Poison uninitialized struct pages in order to catch invalid flags 916 * combinations. 917 */ 918 page_init_poison(memmap, sizeof(struct page) * nr_pages); 919 920 ms = __nr_to_section(section_nr); 921 set_section_nid(section_nr, nid); 922 section_mark_present(ms); 923 924 /* Align memmap to section boundary in the subsection case */ 925 if (section_nr_to_pfn(section_nr) != start_pfn) 926 memmap = pfn_to_page(section_nr_to_pfn(section_nr)); 927 sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0); 928 929 return 0; 930 } 931 932 #ifdef CONFIG_MEMORY_FAILURE 933 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 934 { 935 int i; 936 937 /* 938 * A further optimization is to have per section refcounted 939 * num_poisoned_pages. But that would need more space per memmap, so 940 * for now just do a quick global check to speed up this routine in the 941 * absence of bad pages. 942 */ 943 if (atomic_long_read(&num_poisoned_pages) == 0) 944 return; 945 946 for (i = 0; i < nr_pages; i++) { 947 if (PageHWPoison(&memmap[i])) { 948 num_poisoned_pages_dec(); 949 ClearPageHWPoison(&memmap[i]); 950 } 951 } 952 } 953 #else 954 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 955 { 956 } 957 #endif 958 959 void sparse_remove_section(struct mem_section *ms, unsigned long pfn, 960 unsigned long nr_pages, unsigned long map_offset, 961 struct vmem_altmap *altmap) 962 { 963 clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset, 964 nr_pages - map_offset); 965 section_deactivate(pfn, nr_pages, altmap); 966 } 967 #endif /* CONFIG_MEMORY_HOTPLUG */ 968